summaryrefslogtreecommitdiff
path: root/src/3rdparty/earcut/earcut.hpp
blob: ba3fb17a486e06e95c68140e455c5968aa41c6e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#pragma once
#ifndef EARCUT_HPP
#define EARCUT_HPP

#include <array>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <memory>
#include <vector>

namespace qt_mapbox {

namespace util {

template <std::size_t I, typename T> struct nth {

    inline static typename std::tuple_element<I, T>::type
    get(const T& t) { return std::get<I>(t); }
};


}

namespace detail {

template <typename N = uint32_t>
class Earcut {
public:
    std::vector<N> indices;
    N vertices = 0;

    template <typename Polygon>
    void operator()(const Polygon& points);

private:
    struct Node {
        Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
        Node(const Node&) = delete;
        Node& operator=(const Node&) = delete;
        Node(Node&&) = delete;
        Node& operator=(Node&&) = delete;

        const N i;
        const double x;
        const double y;

        // previous and next vertice nodes in a polygon ring
        Node* prev = nullptr;
        Node* next = nullptr;

        // z-order curve value
        int32_t z = 0;

        // previous and next nodes in z-order
        Node* prevZ = nullptr;
        Node* nextZ = nullptr;

        // indicates whether this is a steiner point
        bool steiner = false;
    };

    template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
    Node* filterPoints(Node* start, Node* end = nullptr);
    void earcutLinked(Node* ear, int pass = 0);
    bool isEar(Node* ear);
    bool isEarHashed(Node* ear);
    Node* cureLocalIntersections(Node* start);
    void splitEarcut(Node* start);
    template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
    void eliminateHole(Node* hole, Node* outerNode);
    Node* findHoleBridge(Node* hole, Node* outerNode);
    void indexCurve(Node* start);
    Node* sortLinked(Node* list);
    int32_t zOrder(const double x_, const double y_);
    Node* getLeftmost(Node* start);
    bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
    bool isValidDiagonal(Node* a, Node* b);
    double area(const Node* p, const Node* q, const Node* r) const;
    bool equals(const Node* p1, const Node* p2);
    bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
    bool intersectsPolygon(const Node* a, const Node* b);
    bool locallyInside(const Node* a, const Node* b);
    bool middleInside(const Node* a, const Node* b);
    Node* splitPolygon(Node* a, Node* b);
    template <typename Point> Node* insertNode(N i, const Point& p, Node* last);
    void removeNode(Node* p);

    bool hashing;
    double minX, maxX;
    double minY, maxY;
    double size;

    template <typename T, typename Alloc = std::allocator<T>>
    class ObjectPool {
    public:
        ObjectPool() { }
        ObjectPool(std::size_t blockSize_) {
            reset(blockSize_);
        }
        ~ObjectPool() {
            clear();
        }
        template <typename... Args>
        T* construct(Args&&... args) {
            if (currentIndex >= blockSize) {
                currentBlock = alloc.allocate(blockSize);
                allocations.emplace_back(currentBlock);
                currentIndex = 0;
            }
            T* object = &currentBlock[currentIndex++];
            alloc.construct(object, std::forward<Args>(args)...);
            return object;
        }
        void reset(std::size_t newBlockSize) {
            for (auto allocation : allocations) alloc.deallocate(allocation, blockSize);
            allocations.clear();
            blockSize = std::max<std::size_t>(1, newBlockSize);
            currentBlock = nullptr;
            currentIndex = blockSize;
        }
        void clear() { reset(blockSize); }
    private:
        T* currentBlock = nullptr;
        std::size_t currentIndex = 1;
        std::size_t blockSize = 1;
        std::vector<T*> allocations;
        Alloc alloc;
    };
    ObjectPool<Node> nodes;
};

template <typename N> template <typename Polygon>
void Earcut<N>::operator()(const Polygon& points) {
    // reset
    indices.clear();
    vertices = 0;

    if (points.empty()) return;

    double x;
    double y;
    size = 0;
    int threshold = 80;
    std::size_t len = 0;

    for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
        threshold -= static_cast<int>(points[i].size());
        len += points[i].size();
    }

    //estimate size of nodes and indices
    nodes.reset(len * 3 / 2);
    indices.reserve(len + points[0].size());

    Node* outerNode = linkedList(points[0], true);
    if (!outerNode) return;

    if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);

    // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
    hashing = threshold < 0;
    if (hashing) {
        Node* p = outerNode->next;
        minX = maxX = p->x;
        minY = maxY = p->y;
        do {
            x = p->x;
            y = p->y;
            minX = (std::min)(minX, x);
            minY = (std::min)(minY, y);
            maxX = (std::max)(maxX, x);
            maxY = (std::max)(maxY, y);
            p = p->next;
        } while (p != outerNode);

        // minX, minY and size are later used to transform coords into integers for z-order calculation
        size = (std::max)(maxX - minX, maxY - minY);
    }

    earcutLinked(outerNode);

    nodes.clear();
}

// create a circular doubly linked list from polygon points in the specified winding order
template <typename N> template <typename Ring>
typename Earcut<N>::Node*
Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
    using Point = typename Ring::value_type;
    double sum = 0;
    const int len = static_cast<int>(points.size());
    int i, j;
    Point p1, p2;
    Node* last = nullptr;

    // calculate original winding order of a polygon ring
    for (i = 0, j = len - 1; i < len; j = i++) {
        p1 = points[i];
        p2 = points[j];
        const double p20 = util::nth<0, Point>::get(p2);
        const double p10 = util::nth<0, Point>::get(p1);
        const double p11 = util::nth<1, Point>::get(p1);
        const double p21 = util::nth<1, Point>::get(p2);
        sum += (p20 - p10) * (p11 + p21);
    }

    // link points into circular doubly-linked list in the specified winding order
    if (clockwise == (sum > 0)) {
        for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
    } else {
        for (i = len - 1; i >= 0; i--) last = insertNode(vertices + i, points[i], last);
    }

    if (last && equals(last, last->next)) {
        removeNode(last);
        last = last->next;
    }

    vertices += len;

    return last;
}

// eliminate colinear or duplicate points
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::filterPoints(Node* start, Node* end) {
    if (!end) end = start;

    Node* p = start;
    bool again;
    do {
        again = false;

        if (!p->steiner && (equals(p, p->next) || area(p->prev, p, p->next) == 0)) {
            removeNode(p);
            p = end = p->prev;

            if (p == p->next) return nullptr;
            again = true;

        } else {
            p = p->next;
        }
    } while (again || p != end);

    return end;
}

// main ear slicing loop which triangulates a polygon (given as a linked list)
template <typename N>
void Earcut<N>::earcutLinked(Node* ear, int pass) {
    if (!ear) return;

    // interlink polygon nodes in z-order
    if (!pass && hashing) indexCurve(ear);

    Node* stop = ear;
    Node* prev;
    Node* next;

    int iterations = 0;

    // iterate through ears, slicing them one by one
    while (ear->prev != ear->next) {
        iterations++;
        prev = ear->prev;
        next = ear->next;

        if (hashing ? isEarHashed(ear) : isEar(ear)) {
            // cut off the triangle
            indices.emplace_back(prev->i);
            indices.emplace_back(ear->i);
            indices.emplace_back(next->i);

            removeNode(ear);

            // skipping the next vertice leads to less sliver triangles
            ear = next->next;
            stop = next->next;

            continue;
        }

        ear = next;

        // if we looped through the whole remaining polygon and can't find any more ears
        if (ear == stop) {
            // try filtering points and slicing again
            if (!pass) earcutLinked(filterPoints(ear), 1);

            // if this didn't work, try curing all small self-intersections locally
            else if (pass == 1) {
                ear = cureLocalIntersections(ear);
                earcutLinked(ear, 2);

            // as a last resort, try splitting the remaining polygon into two
            } else if (pass == 2) splitEarcut(ear);

            break;
        }
    }
}

// check whether a polygon node forms a valid ear with adjacent nodes
template <typename N>
bool Earcut<N>::isEar(Node* ear) {
    const Node* a = ear->prev;
    const Node* b = ear;
    const Node* c = ear->next;

    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear

    // now make sure we don't have other points inside the potential ear
    Node* p = ear->next->next;

    while (p != ear->prev) {
        if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
            area(p->prev, p, p->next) >= 0) return false;
        p = p->next;
    }

    return true;
}

template <typename N>
bool Earcut<N>::isEarHashed(Node* ear) {
    const Node* a = ear->prev;
    const Node* b = ear;
    const Node* c = ear->next;

    if (area(a, b, c) >= 0) return false; // reflex, can't be an ear

    // triangle bbox; min & max are calculated like this for speed
    const double minTX = (std::min)(a->x, (std::min)(b->x, c->x));
    const double minTY = (std::min)(a->y, (std::min)(b->y, c->y));
    const double maxTX = (std::max)(a->x, (std::max)(b->x, c->x));
    const double maxTY = (std::max)(a->y, (std::max)(b->y, c->y));

    // z-order range for the current triangle bbox;
    const int32_t minZ = zOrder(minTX, minTY);
    const int32_t maxZ = zOrder(maxTX, maxTY);

    // first look for points inside the triangle in increasing z-order
    Node* p = ear->nextZ;

    while (p && p->z <= maxZ) {
        if (p != ear->prev && p != ear->next &&
            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
            area(p->prev, p, p->next) >= 0) return false;
        p = p->nextZ;
    }

    // then look for points in decreasing z-order
    p = ear->prevZ;

    while (p && p->z >= minZ) {
        if (p != ear->prev && p != ear->next &&
            pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
            area(p->prev, p, p->next) >= 0) return false;
        p = p->prevZ;
    }

    return true;
}

// go through all polygon nodes and cure small local self-intersections
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::cureLocalIntersections(Node* start) {
    Node* p = start;
    do {
        Node* a = p->prev;
        Node* b = p->next->next;

        // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
        if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
            indices.emplace_back(a->i);
            indices.emplace_back(p->i);
            indices.emplace_back(b->i);

            // remove two nodes involved
            removeNode(p);
            removeNode(p->next);

            p = start = b;
        }
        p = p->next;
    } while (p != start);

    return p;
}

// try splitting polygon into two and triangulate them independently
template <typename N>
void Earcut<N>::splitEarcut(Node* start) {
    // look for a valid diagonal that divides the polygon into two
    Node* a = start;
    do {
        Node* b = a->next->next;
        while (b != a->prev) {
            if (a->i != b->i && isValidDiagonal(a, b)) {
                // split the polygon in two by the diagonal
                Node* c = splitPolygon(a, b);

                // filter colinear points around the cuts
                a = filterPoints(a, a->next);
                c = filterPoints(c, c->next);

                // run earcut on each half
                earcutLinked(a);
                earcutLinked(c);
                return;
            }
            b = b->next;
        }
        a = a->next;
    } while (a != start);
}

// link every hole into the outer loop, producing a single-ring polygon without holes
template <typename N> template <typename Polygon>
typename Earcut<N>::Node*
Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
    const size_t len = points.size();

    std::vector<Node*> queue;
    for (size_t i = 1; i < len; i++) {
        Node* list = linkedList(points[i], false);
        if (list) {
            if (list == list->next) list->steiner = true;
            queue.push_back(getLeftmost(list));
        }
    }
    std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
        return a->x < b->x;
    });

    // process holes from left to right
    for (size_t i = 0; i < queue.size(); i++) {
        eliminateHole(queue[i], outerNode);
        outerNode = filterPoints(outerNode, outerNode->next);
    }

    return outerNode;
}

// find a bridge between vertices that connects hole with an outer ring and and link it
template <typename N>
void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
    outerNode = findHoleBridge(hole, outerNode);
    if (outerNode) {
        Node* b = splitPolygon(outerNode, hole);
        filterPoints(b, b->next);
    }
}

// David Eberly's algorithm for finding a bridge between hole and outer polygon
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
    Node* p = outerNode;
    double hx = hole->x;
    double hy = hole->y;
    double qx = -std::numeric_limits<double>::infinity();
    Node* m = nullptr;

    // find a segment intersected by a ray from the hole's leftmost Vertex to the left;
    // segment's endpoint with lesser x will be potential connection Vertex
    do {
        if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
          double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
          if (x <= hx && x > qx) {
            qx = x;
            if (x == hx) {
                if (hy == p->y) return p;
                if (hy == p->next->y) return p->next;
            }
            m = p->x < p->next->x ? p : p->next;
          }
        }
        p = p->next;
    } while (p != outerNode);

    if (!m) return 0;

    if (hx == qx) return m->prev;

    // look for points inside the triangle of hole Vertex, segment intersection and endpoint;
    // if there are no points found, we have a valid connection;
    // otherwise choose the Vertex of the minimum angle with the ray as connection Vertex

    const Node* stop = m;
    double tanMin = std::numeric_limits<double>::infinity();
    double tanCur = 0;

    p = m->next;
    double mx = m->x;
    double my = m->y;

    while (p != stop) {
        if (hx >= p->x && p->x >= mx && hx != p->x &&
            pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {

            tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential

            if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole)) {
                m = p;
                tanMin = tanCur;
            }
        }

        p = p->next;
    }

    return m;
}

// interlink polygon nodes in z-order
template <typename N>
void Earcut<N>::indexCurve(Node* start) {
    assert(start);
    Node* p = start;

    do {
        p->z = p->z ? p->z : zOrder(p->x, p->y);
        p->prevZ = p->prev;
        p->nextZ = p->next;
        p = p->next;
    } while (p != start);

    p->prevZ->nextZ = nullptr;
    p->prevZ = nullptr;

    sortLinked(p);
}

// Simon Tatham's linked list merge sort algorithm
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::sortLinked(Node* list) {
    assert(list);
    Node* p;
    Node* q;
    Node* e;
    Node* tail;
    int i, numMerges, pSize, qSize;
    int inSize = 1;

    while (true) {
        p = list;
        list = nullptr;
        tail = nullptr;
        numMerges = 0;

        while (p) {
            numMerges++;
            q = p;
            pSize = 0;
            for (i = 0; i < inSize; i++) {
                pSize++;
                q = q->nextZ;
                if (!q) break;
            }

            qSize = inSize;

            while (pSize > 0 || (qSize > 0 && q)) {

                if (pSize == 0) {
                    e = q;
                    q = q->nextZ;
                    qSize--;
                } else if (qSize == 0 || !q) {
                    e = p;
                    p = p->nextZ;
                    pSize--;
                } else if (p->z <= q->z) {
                    e = p;
                    p = p->nextZ;
                    pSize--;
                } else {
                    e = q;
                    q = q->nextZ;
                    qSize--;
                }

                if (tail) tail->nextZ = e;
                else list = e;

                e->prevZ = tail;
                tail = e;
            }

            p = q;
        }

        tail->nextZ = nullptr;

        if (numMerges <= 1) return list;

        inSize *= 2;
    }
}

// z-order of a Vertex given coords and size of the data bounding box
template <typename N>
int32_t Earcut<N>::zOrder(const double x_, const double y_) {
    // coords are transformed into non-negative 15-bit integer range
    int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) / size);
    int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) / size);

    x = (x | (x << 8)) & 0x00FF00FF;
    x = (x | (x << 4)) & 0x0F0F0F0F;
    x = (x | (x << 2)) & 0x33333333;
    x = (x | (x << 1)) & 0x55555555;

    y = (y | (y << 8)) & 0x00FF00FF;
    y = (y | (y << 4)) & 0x0F0F0F0F;
    y = (y | (y << 2)) & 0x33333333;
    y = (y | (y << 1)) & 0x55555555;

    return x | (y << 1);
}

// find the leftmost node of a polygon ring
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::getLeftmost(Node* start) {
    Node* p = start;
    Node* leftmost = start;
    do {
        if (p->x < leftmost->x) leftmost = p;
        p = p->next;
    } while (p != start);

    return leftmost;
}

// check if a point lies within a convex triangle
template <typename N>
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
    return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
           (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
           (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
}

// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
template <typename N>
bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
    return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) &&
           locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
}

// signed area of a triangle
template <typename N>
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
    return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
}

// check if two points are equal
template <typename N>
bool Earcut<N>::equals(const Node* p1, const Node* p2) {
    return p1->x == p2->x && p1->y == p2->y;
}

// check if two segments intersect
template <typename N>
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
    if ((equals(p1, q1) && equals(p2, q2)) ||
        (equals(p1, q2) && equals(p2, q1))) return true;
    return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) &&
           (area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
}

// check if a polygon diagonal intersects any polygon segments
template <typename N>
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
    const Node* p = a;
    do {
        if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
                intersects(p, p->next, a, b)) return true;
        p = p->next;
    } while (p != a);

    return false;
}

// check if a polygon diagonal is locally inside the polygon
template <typename N>
bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
    return area(a->prev, a, a->next) < 0 ?
        area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
        area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
}

// check if the middle Vertex of a polygon diagonal is inside the polygon
template <typename N>
bool Earcut<N>::middleInside(const Node* a, const Node* b) {
    const Node* p = a;
    bool inside = false;
    double px = (a->x + b->x) / 2;
    double py = (a->y + b->y) / 2;
    do {
        if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
                (px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
            inside = !inside;
        p = p->next;
    } while (p != a);

    return inside;
}

// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
// single ring
template <typename N>
typename Earcut<N>::Node*
Earcut<N>::splitPolygon(Node* a, Node* b) {
    Node* a2 = nodes.construct(a->i, a->x, a->y);
    Node* b2 = nodes.construct(b->i, b->x, b->y);
    Node* an = a->next;
    Node* bp = b->prev;

    a->next = b;
    b->prev = a;

    a2->next = an;
    an->prev = a2;

    b2->next = a2;
    a2->prev = b2;

    bp->next = b2;
    b2->prev = bp;

    return b2;
}

// create a node and util::optionally link it with previous one (in a circular doubly linked list)
template <typename N> template <typename Point>
typename Earcut<N>::Node*
Earcut<N>::insertNode(N i, const Point& pt, Node* last) {
    Node* p = nodes.construct(i, util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));

    if (!last) {
        p->prev = p;
        p->next = p;

    } else {
        assert(last);
        p->next = last->next;
        p->prev = last;
        last->next->prev = p;
        last->next = p;
    }
    return p;
}

template <typename N>
void Earcut<N>::removeNode(Node* p) {
    p->next->prev = p->prev;
    p->prev->next = p->next;

    if (p->prevZ) p->prevZ->nextZ = p->nextZ;
    if (p->nextZ) p->nextZ->prevZ = p->prevZ;
}
}

template <typename N = uint32_t, typename Polygon>
std::vector<N> earcut(const Polygon& poly) {
    qt_mapbox::detail::Earcut<N> earcut;
    earcut(poly);
    return earcut.indices;
}
}
#endif //EARCUT_HPP