#include #include #include #include #include #include #include #include using namespace mbgl; TEST(TileCoordinate, FromLatLng) { size_t changeCount = 0; struct TransformObserver : public mbgl::MapObserver { void onCameraWillChange(MapObserver::CameraChangeMode mode) final { if (mode == MapObserver::CameraChangeMode::Immediate && cameraWillChangeImmediateCallback) { cameraWillChangeImmediateCallback(); } } void onCameraDidChange(MapObserver::CameraChangeMode mode) final { if (mode == MapObserver::CameraChangeMode::Immediate && cameraDidChangeImmediateCallback) { cameraDidChangeImmediateCallback(); } } std::function cameraWillChangeImmediateCallback; std::function cameraDidChangeImmediateCallback; }; TransformObserver observer; observer.cameraWillChangeImmediateCallback = [&]() { ASSERT_EQ(changeCount, 0u); ++changeCount; }; observer.cameraDidChangeImmediateCallback = [&]() { ASSERT_EQ(changeCount, 1u); }; Transform transform(observer); const double max = util::tileSize; transform.resize({ static_cast(max), static_cast(max) }); // Center, top-left, bottom-left, bottom-right, top-right edges. std::vector> edges { { {}, { max / 2.0, max / 2.0 } }, { { util::LATITUDE_MAX, -util::LONGITUDE_MAX }, { 0, max } }, { { -util::LATITUDE_MAX, -util::LONGITUDE_MAX }, { 0, 0 } }, { { -util::LATITUDE_MAX, util::LONGITUDE_MAX }, { max, 0 } }, { { util::LATITUDE_MAX, util::LONGITUDE_MAX }, { max, max } }, }; for (const auto& pair : edges) { const auto& latLng = pair.first; const auto& screenCoordinate = pair.second; const auto base = TileCoordinate::fromLatLng(0, latLng); // 16 is the maximum zoom level where we actually compute placements. for (uint8_t integerZoom = 0; integerZoom <= 16; ++integerZoom) { const double zoom = integerZoom; const double maxTilesPerAxis = std::pow(2.0, zoom); const Point tilePoint = { latLng.longitude() == 0 ? 0.5 : latLng.longitude() == -util::LONGITUDE_MAX ? 0 : 1.0, latLng.latitude() == 0 ? 0.5 : latLng.latitude() == -util::LATITUDE_MAX ? 1.0 : 0, }; const auto fromLatLng = TileCoordinate::fromLatLng(zoom, latLng); ASSERT_DOUBLE_EQ(fromLatLng.z, zoom); ASSERT_DOUBLE_EQ(fromLatLng.p.x, tilePoint.x * maxTilesPerAxis); ASSERT_NEAR(fromLatLng.p.y, tilePoint.y * maxTilesPerAxis, 1.0e-7); const auto fromScreenCoordinate = TileCoordinate::fromScreenCoordinate(transform.getState(), zoom, screenCoordinate); ASSERT_DOUBLE_EQ(fromScreenCoordinate.z, fromLatLng.z); ASSERT_NEAR(fromScreenCoordinate.p.x, fromLatLng.p.x, 0.99); ASSERT_NEAR(fromScreenCoordinate.p.y, fromLatLng.p.y, 0.99); const auto zoomed = base.zoomTo(zoom); ASSERT_DOUBLE_EQ(zoomed.z, zoom); ASSERT_DOUBLE_EQ(zoomed.p.x, fromLatLng.p.x); ASSERT_DOUBLE_EQ(zoomed.p.y, fromLatLng.p.y); } } } TEST(TileCoordinate, ToGeometryCoordinate) { std::vector> edges { { 0.5, 0.5 }, { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 } }; for (uint8_t zoom = 0; zoom <= 16; ++zoom) { uint32_t maxTilesPerAxis = std::pow(2, zoom); for (const auto& edge : edges) { uint32_t tileX = edge.x == 0 ? 0 : edge.x == 1 ? maxTilesPerAxis - 1 : (maxTilesPerAxis / 2.0) - 1; uint32_t tileY = edge.y == 0 ? 0 : edge.y == 1 ? maxTilesPerAxis - 1 : (maxTilesPerAxis / 2.0) - 1; UnwrappedTileID unwrapped(0, CanonicalTileID { zoom, tileX, tileY }); auto tilePointX = ((edge.x * maxTilesPerAxis) - tileX) * util::EXTENT; auto tilePointY = ((edge.y * maxTilesPerAxis) - tileY) * util::EXTENT; GeometryCoordinate point = TileCoordinate::toGeometryCoordinate(unwrapped, edge); ASSERT_DOUBLE_EQ(point.x, tilePointX); ASSERT_DOUBLE_EQ(point.y, tilePointY); } } }