#include #include #include #include #include #include #include #include #include namespace mbgl { namespace { using ScanLine = const std::function; // Taken from polymaps src/Layer.js // https://github.com/simplegeo/polymaps/blob/master/src/Layer.js#L333-L383 struct edge { double x0 = 0, y0 = 0; double x1 = 0, y1 = 0; double dx = 0, dy = 0; edge(Point a, Point b) { if (a.y > b.y) std::swap(a, b); x0 = a.x; y0 = a.y; x1 = b.x; y1 = b.y; dx = b.x - a.x; dy = b.y - a.y; } }; // scan-line conversion static void scanSpans(edge e0, edge e1, int32_t ymin, int32_t ymax, ScanLine scanLine) { double y0 = ::fmax(ymin, std::floor(e1.y0)); double y1 = ::fmin(ymax, std::ceil(e1.y1)); // sort edges by x-coordinate if ((e0.x0 == e1.x0 && e0.y0 == e1.y0) ? (e0.x0 + e1.dy / e0.dy * e0.dx < e1.x1) : (e0.x1 - e1.dy / e0.dy * e0.dx < e1.x0)) { std::swap(e0, e1); } // scan lines! double m0 = e0.dx / e0.dy; double m1 = e1.dx / e1.dy; double d0 = e0.dx > 0; // use y + 1 to compute x0 double d1 = e1.dx < 0; // use y + 1 to compute x1 for (int32_t y = y0; y < y1; y++) { double x0 = m0 * ::fmax(0, ::fmin(e0.dy, y + d0 - e0.y0)) + e0.x0; double x1 = m1 * ::fmax(0, ::fmin(e1.dy, y + d1 - e1.y0)) + e1.x0; scanLine(std::floor(x1), std::ceil(x0), y); } } // scan-line conversion static void scanTriangle(const Point& a, const Point& b, const Point& c, int32_t ymin, int32_t ymax, ScanLine& scanLine) { edge ab = edge(a, b); edge bc = edge(b, c); edge ca = edge(c, a); // sort edges by y-length if (ab.dy > bc.dy) { std::swap(ab, bc); } if (ab.dy > ca.dy) { std::swap(ab, ca); } if (bc.dy > ca.dy) { std::swap(bc, ca); } // scan span! scan span! if (ab.dy) scanSpans(ca, ab, ymin, ymax, scanLine); if (bc.dy) scanSpans(ca, bc, ymin, ymax, scanLine); } } // namespace namespace util { namespace { std::vector tileCover(const Point& tl, const Point& tr, const Point& br, const Point& bl, const Point& c, int32_t z) { const int32_t tiles = 1 << z; struct ID { int32_t x, y; double sqDist; }; std::vector t; auto scanLine = [&](int32_t x0, int32_t x1, int32_t y) { int32_t x; if (y >= 0 && y <= tiles) { for (x = x0; x < x1; ++x) { const auto dx = x + 0.5 - c.x, dy = y + 0.5 - c.y; t.emplace_back(ID{ x, y, dx * dx + dy * dy }); } } }; // Divide the screen up in two triangles and scan each of them: // \---+ // | \ | // +---\. scanTriangle(tl, tr, br, 0, tiles, scanLine); scanTriangle(br, bl, tl, 0, tiles, scanLine); // Sort first by distance, then by x/y. std::sort(t.begin(), t.end(), [](const ID& a, const ID& b) { return std::tie(a.sqDist, a.x, a.y) < std::tie(b.sqDist, b.x, b.y); }); // Erase duplicate tile IDs (they typically occur at the common side of both triangles). t.erase(std::unique(t.begin(), t.end(), [](const ID& a, const ID& b) { return a.x == b.x && a.y == b.y; }), t.end()); std::vector result; for (const auto& id : t) { result.emplace_back(z, id.x, id.y); } return result; } } // namespace int32_t coveringZoomLevel(double zoom, style::SourceType type, uint16_t size) { zoom += util::log2(util::tileSize / size); if (type == style::SourceType::Raster || type == style::SourceType::Video) { return ::round(zoom); } else { return std::floor(zoom); } } std::vector tileCover(const LatLngBounds& bounds_, int32_t z) { if (bounds_.isEmpty() || bounds_.south() > util::LATITUDE_MAX || bounds_.north() < -util::LATITUDE_MAX) { return {}; } LatLngBounds bounds = LatLngBounds::hull( { std::max(bounds_.south(), -util::LATITUDE_MAX), bounds_.west() }, { std::min(bounds_.north(), util::LATITUDE_MAX), bounds_.east() }); return tileCover( Projection::project(bounds.northwest(), z), Projection::project(bounds.northeast(), z), Projection::project(bounds.southeast(), z), Projection::project(bounds.southwest(), z), Projection::project(bounds.center(), z), z); } std::vector tileCover(const TransformState& state, int32_t z) { assert(state.valid()); const double w = state.getSize().width; const double h = state.getSize().height; return tileCover( TileCoordinate::fromScreenCoordinate(state, z, { 0, 0 }).p, TileCoordinate::fromScreenCoordinate(state, z, { w, 0 }).p, TileCoordinate::fromScreenCoordinate(state, z, { w, h }).p, TileCoordinate::fromScreenCoordinate(state, z, { 0, h }).p, TileCoordinate::fromScreenCoordinate(state, z, { w/2, h/2 }).p, z); } std::vector tileCoverWithLOD(const TransformState& state, int32_t z, int32_t minZ) { assert(state.valid()); const double w = state.getSize().width; const double h = state.getSize().height; const auto offset = state.getCenterOffset(); constexpr double zoomDiff = 1.0; // Explanation on 0.55: mathematically, it is 0.5 used in calculation of // the next LOD. 0.55 is chosen to avoid using LOD for less than 60 degrees // pitch. constexpr double coefLOD[] = { 0.55 * zoomDiff / (zoomDiff + 1), 0.55 * (zoomDiff + 1) / (zoomDiff + 2), 0.55 * (zoomDiff + 2) / (zoomDiff + 3) }; // Tangens of field of view above center. const double tanFov = (h * 0.5 + offset.y) / (1.5 * h); std::vector result; double top = 0.0; double bottom = 0.0; for (size_t i = 0; top < h && i <= std::extent::value; i++, z--) { if (z == minZ || i == std::extent::value) { top = h; // final pass, get all to the top. } else { const double treshold = state.getPitch() ? : (h * 0.5 + offset.y); top = std::min(h, treshold ); top = state.getPitch() ? std::min(h, h * 0.5 - offset.y + h * coefLOD[i] / (tanFov * std::tan(state.getPitch()))) : h; } std::vector cover = tileCover( TileCoordinate::fromScreenCoordinate(state, z, { 0, top }).p, TileCoordinate::fromScreenCoordinate(state, z, { w, top }).p, TileCoordinate::fromScreenCoordinate(state, z, { w, bottom }).p, TileCoordinate::fromScreenCoordinate(state, z, { 0, bottom }).p, TileCoordinate::fromScreenCoordinate(state, z, { w/2, h/2 }).p, z); bottom = top; if (i == 0) { if (top == h) { return cover; } std::swap(result, cover); continue; } result.insert( result.end(), std::make_move_iterator(cover.begin()), std::make_move_iterator(cover.end())); } return result; } std::vector tileCover(const Geometry& geometry, int32_t z) { std::vector result; TileCover tc(geometry, z, true); while (tc.hasNext()) { result.push_back(*tc.next()); }; return result; } // Taken from https://github.com/mapbox/sphericalmercator#xyzbbox-zoom-tms_style-srs // Computes the projected tiles for the lower left and upper right points of the bounds // and uses that to compute the tile cover count uint64_t tileCount(const LatLngBounds& bounds, uint8_t zoom){ if (zoom == 0) { return 1; } auto sw = Projection::project(bounds.southwest(), zoom); auto ne = Projection::project(bounds.northeast(), zoom); auto maxTile = std::pow(2.0, zoom); auto x1 = floor(sw.x); auto x2 = ceil(ne.x) - 1; auto y1 = util::clamp(floor(sw.y), 0.0, maxTile - 1); auto y2 = util::clamp(floor(ne.y), 0.0, maxTile - 1); auto dx = x1 > x2 ? (maxTile - x1) + x2 : x2 - x1; auto dy = y1 - y2; return (dx + 1) * (dy + 1); } uint64_t tileCount(const Geometry& geometry, uint8_t z) { uint64_t tileCount = 0; TileCover tc(geometry, z, true); while (tc.next()) { tileCount++; }; return tileCount; } TileCover::TileCover(const LatLngBounds&bounds_, int32_t z) { LatLngBounds bounds = LatLngBounds::hull( { std::max(bounds_.south(), -util::LATITUDE_MAX), bounds_.west() }, { std::min(bounds_.north(), util::LATITUDE_MAX), bounds_.east() }); if (bounds.isEmpty() || bounds.south() > util::LATITUDE_MAX || bounds.north() < -util::LATITUDE_MAX) { bounds = LatLngBounds::world(); } auto sw = Projection::project(bounds.southwest(), z); auto ne = Projection::project(bounds.northeast(), z); auto se = Projection::project(bounds.southeast(), z); auto nw = Projection::project(bounds.northwest(), z); Polygon p({ {sw, nw, ne, se, sw} }); impl = std::make_unique(z, p, false); } TileCover::TileCover(const Geometry& geom, int32_t z, bool project/* = true*/) : impl( std::make_unique(z, geom, project)) { } TileCover::~TileCover() = default; optional TileCover::next() { return impl->next(); } bool TileCover::hasNext() { return impl->hasNext(); } } // namespace util } // namespace mbgl