#include #include #include #include #include #include #include #include #include #include namespace mbgl { OpacityState::OpacityState(bool placed_, bool skipFade) : opacity((skipFade && placed_) ? 1 : 0) , placed(placed_) { } OpacityState::OpacityState(const OpacityState& prevState, float increment, bool placed_) : opacity(::fmax(0, ::fmin(1, prevState.opacity + (prevState.placed ? increment : -increment)))), placed(placed_) {} bool OpacityState::isHidden() const { return opacity == 0 && !placed; } JointOpacityState::JointOpacityState(bool placedText, bool placedIcon, bool skipFade) : icon(OpacityState(placedIcon, skipFade)), text(OpacityState(placedText, skipFade)) {} JointOpacityState::JointOpacityState(const JointOpacityState& prevOpacityState, float increment, bool placedText, bool placedIcon) : icon(OpacityState(prevOpacityState.icon, increment, placedIcon)), text(OpacityState(prevOpacityState.text, increment, placedText)) {} bool JointOpacityState::isHidden() const { return icon.isHidden() && text.isHidden(); } const CollisionGroups::CollisionGroup& CollisionGroups::get(const std::string& sourceID) { // The predicate/groupID mechanism allows for arbitrary grouping, // but the current interface defines one source == one group when // crossSourceCollisions == true. if (!crossSourceCollisions) { if (collisionGroups.find(sourceID) == collisionGroups.end()) { uint16_t nextGroupID = ++maxGroupID; collisionGroups.emplace(sourceID, CollisionGroup( nextGroupID, optional([nextGroupID](const IndexedSubfeature& feature) -> bool { return feature.collisionGroupId == nextGroupID; }) )); } return collisionGroups[sourceID]; } else { static CollisionGroup nullGroup{0, nullopt}; return nullGroup; } } // PlacementController implemenation PlacementController::PlacementController() : placement(makeMutable()) {} void PlacementController::setPlacement(Immutable placement_) { placement = std::move(placement_); stale = false; } bool PlacementController::placementIsRecent(TimePoint now, const float zoom, optional maximumDuration) const { if (!placement->transitionsEnabled()) return false; auto updatePeriod = placement->getUpdatePeriod(zoom); if (maximumDuration) { updatePeriod = std::min(*maximumDuration, updatePeriod); } return placement->getCommitTime() + updatePeriod > now; } bool PlacementController::hasTransitions(TimePoint now) const { if (!placement->transitionsEnabled()) return false; if (stale) return true; return placement->hasTransitions(now); } // Placement implementation Placement::Placement(std::shared_ptr updateParameters_, optional> prevPlacement_) : updateParameters(std::move(updateParameters_)), collisionIndex(updateParameters->transformState, updateParameters->mode), mapMode(updateParameters->mode), transitionOptions(updateParameters->transitionOptions), commitTime(updateParameters->timePoint), placementZoom(updateParameters->transformState.getZoom()), collisionGroups(updateParameters->crossSourceCollisions), prevPlacement(std::move(prevPlacement_)), showCollisionBoxes(updateParameters->debugOptions & MapDebugOptions::Collision) { assert(prevPlacement || mapMode != MapMode::Continuous); if (prevPlacement) { prevPlacement->get()->prevPlacement = nullopt; // Only hold on to one placement back } } Placement::Placement() : collisionIndex({}, MapMode::Static), collisionGroups(true) {} void Placement::placeLayer(const RenderLayer& layer) { std::set seenCrossTileIDs; for (const auto& item : layer.getPlacementData()) { Bucket& bucket = item.bucket; BucketPlacementParameters params{item.tile, layer.baseImpl->source, item.featureIndex}; bucket.place(*this, params, seenCrossTileIDs); } } namespace { Point calculateVariableLayoutOffset(style::SymbolAnchorType anchor, float width, float height, std::array offset, float textBoxScale, bool rotateWithMap, bool pitchWithMap, float bearing) { AnchorAlignment alignment = AnchorAlignment::getAnchorAlignment(anchor); float shiftX = -(alignment.horizontalAlign - 0.5f) * width; float shiftY = -(alignment.verticalAlign - 0.5f) * height; auto variableOffset = SymbolLayout::evaluateVariableOffset(anchor, offset); Point shift{shiftX + variableOffset[0] * textBoxScale, shiftY + variableOffset[1] * textBoxScale}; if (rotateWithMap) { shift = util::rotate(shift, pitchWithMap ? bearing : -bearing); } return shift; } } // namespace void Placement::placeBucket(const SymbolBucket& bucket, const BucketPlacementParameters& params, std::set& seenCrossTileIDs) { assert(updateParameters); const auto& layout = *bucket.layout; const auto& renderTile = params.tile; const auto& state = collisionIndex.getTransformState(); const float pixelsToTileUnits = renderTile.id.pixelsToTileUnits(1, placementZoom); const OverscaledTileID& overscaledID = renderTile.getOverscaledTileID(); const float scale = std::pow(2, placementZoom - overscaledID.overscaledZ); const float pixelRatio = (util::tileSize * overscaledID.overscaleFactor()) / util::EXTENT; const bool rotateTextWithMap = layout.get() == style::AlignmentType::Map; const bool pitchTextWithMap = layout.get() == style::AlignmentType::Map; const bool rotateIconWithMap = layout.get() == style::AlignmentType::Map; const bool pitchIconWithMap = layout.get() == style::AlignmentType::Map; const mat4& posMatrix = renderTile.matrix; mat4 textLabelPlaneMatrix = getLabelPlaneMatrix(posMatrix, pitchTextWithMap, rotateTextWithMap, state, pixelsToTileUnits); mat4 iconLabelPlaneMatrix; if (rotateTextWithMap == rotateIconWithMap && pitchTextWithMap == pitchIconWithMap) { iconLabelPlaneMatrix = textLabelPlaneMatrix; } else { iconLabelPlaneMatrix = getLabelPlaneMatrix(posMatrix, pitchIconWithMap, rotateIconWithMap, state, pixelsToTileUnits); } const auto& collisionGroup = collisionGroups.get(params.sourceId); auto partiallyEvaluatedTextSize = bucket.textSizeBinder->evaluateForZoom(placementZoom); auto partiallyEvaluatedIconSize = bucket.iconSizeBinder->evaluateForZoom(placementZoom); optional tileBorders; optional avoidEdges; if (mapMode == MapMode::Tile) tileBorders = collisionIndex.projectTileBoundaries(posMatrix); if (tileBorders && (layout.get() || layout.get() == style::SymbolPlacementType::Line)) { avoidEdges = tileBorders; } const bool textAllowOverlap = layout.get(); const bool iconAllowOverlap = layout.get(); // This logic is similar to the "defaultOpacityState" logic below in updateBucketOpacities // If we know a symbol is always supposed to show, force it to be marked visible even if // it wasn't placed into the collision index (because some or all of it was outside the range // of the collision grid). // There is a subtle edge case here we're accepting: // Symbol A has text-allow-overlap: true, icon-allow-overlap: true, icon-optional: false // A's icon is outside the grid, so doesn't get placed // A's text would be inside grid, but doesn't get placed because of icon-optional: false // We still show A because of the allow-overlap settings. // Symbol B has allow-overlap: false, and gets placed where A's text would be // On panning in, there is a short period when Symbol B and Symbol A will overlap // This is the reverse of our normal policy of "fade in on pan", but should look like any other // collision and hopefully not be too noticeable. // See https://github.com/mapbox/mapbox-gl-native/issues/12683 const bool alwaysShowText = textAllowOverlap && (iconAllowOverlap || !(bucket.hasIconData() || bucket.hasSdfIconData()) || layout.get()); const bool alwaysShowIcon = iconAllowOverlap && (textAllowOverlap || !bucket.hasTextData() || layout.get()); std::vector variableTextAnchors = layout.get(); const bool hasIconTextFit = layout.get() != style::IconTextFitType::None; const bool zOrderByViewportY = layout.get() == style::SymbolZOrderType::ViewportY; std::vector textBoxes; std::vector iconBoxes; auto placeSymbol = [&](const SymbolInstance& symbolInstance) { if (symbolInstance.crossTileID == SymbolInstance::invalidCrossTileID() || seenCrossTileIDs.count(symbolInstance.crossTileID) != 0u) return; if (renderTile.holdForFade()) { // Mark all symbols from this tile as "not placed", but don't add to seenCrossTileIDs, because we don't // know yet if we have a duplicate in a parent tile that _should_ be placed. placements.emplace(symbolInstance.crossTileID, JointPlacement(false, false, false)); return; } textBoxes.clear(); iconBoxes.clear(); bool placeText = false; bool placeIcon = false; bool offscreen = true; std::pair placed{ false, false }; std::pair placedVerticalText{ false, false }; std::pair placedVerticalIcon{ false, false }; Point shift{0.0f, 0.0f}; optional horizontalTextIndex = symbolInstance.getDefaultHorizontalPlacedTextIndex(); if (horizontalTextIndex) { const PlacedSymbol& placedSymbol = bucket.text.placedSymbols.at(*horizontalTextIndex); const float fontSize = evaluateSizeForFeature(partiallyEvaluatedTextSize, placedSymbol); const auto updatePreviousOrientationIfNotPlaced = [&](bool isPlaced) { if (bucket.allowVerticalPlacement && !isPlaced && getPrevPlacement()) { auto prevOrientation = getPrevPlacement()->placedOrientations.find(symbolInstance.crossTileID); if (prevOrientation != getPrevPlacement()->placedOrientations.end()) { placedOrientations[symbolInstance.crossTileID] = prevOrientation->second; } } }; const auto placeTextForPlacementModes = [&](auto& placeHorizontalFn, auto& placeVerticalFn) { if (bucket.allowVerticalPlacement && symbolInstance.writingModes & WritingModeType::Vertical) { assert(!bucket.placementModes.empty()); for (auto& placementMode : bucket.placementModes) { if (placementMode == style::TextWritingModeType::Vertical) { placedVerticalText = placed = placeVerticalFn(); } else { placed = placeHorizontalFn(); } if (placed.first) { break; } } } else { placed = placeHorizontalFn(); } }; // Line or point label placement if (variableTextAnchors.empty()) { const auto placeFeature = [&](const CollisionFeature& collisionFeature, style::TextWritingModeType orientation) { textBoxes.clear(); auto placedFeature = collisionIndex.placeFeature(collisionFeature, {}, posMatrix, textLabelPlaneMatrix, pixelRatio, placedSymbol, scale, fontSize, textAllowOverlap, pitchTextWithMap, showCollisionBoxes, avoidEdges, collisionGroup.second, textBoxes); if (placedFeature.first) { placedOrientations.emplace(symbolInstance.crossTileID, orientation); } return placedFeature; }; const auto placeHorizontal = [&] { return placeFeature(symbolInstance.textCollisionFeature, style::TextWritingModeType::Horizontal); }; const auto placeVertical = [&] { if (bucket.allowVerticalPlacement && symbolInstance.verticalTextCollisionFeature) { return placeFeature(*symbolInstance.verticalTextCollisionFeature, style::TextWritingModeType::Vertical); } return std::pair{false, false}; }; placeTextForPlacementModes(placeHorizontal, placeVertical); updatePreviousOrientationIfNotPlaced(placed.first); placeText = placed.first; offscreen &= placed.second; } else if (!symbolInstance.textCollisionFeature.alongLine && !symbolInstance.textCollisionFeature.boxes.empty()) { // If this symbol was in the last placement, shift the previously used // anchor to the front of the anchor list, only if the previous anchor // is still in the anchor list. if (getPrevPlacement()) { auto prevOffset = getPrevPlacement()->variableOffsets.find(symbolInstance.crossTileID); if (prevOffset != getPrevPlacement()->variableOffsets.end()) { const auto prevAnchor = prevOffset->second.anchor; auto found = std::find(variableTextAnchors.begin(), variableTextAnchors.end(), prevAnchor); if (found != variableTextAnchors.begin() && found != variableTextAnchors.end()) { std::vector filtered; filtered.reserve(variableTextAnchors.size()); filtered.push_back(prevAnchor); for (auto anchor : variableTextAnchors) { if (anchor != prevAnchor) { filtered.push_back(anchor); } } variableTextAnchors = std::move(filtered); } } } const bool doVariableIconPlacement = hasIconTextFit && !iconAllowOverlap && symbolInstance.placedIconIndex; const auto placeFeatureForVariableAnchors = [&](const CollisionFeature& textCollisionFeature, style::TextWritingModeType orientation, const CollisionFeature& iconCollisionFeature) { const CollisionBox& textBox = textCollisionFeature.boxes[0]; const float width = textBox.x2 - textBox.x1; const float height = textBox.y2 - textBox.y1; const float textBoxScale = symbolInstance.textBoxScale; std::pair placedFeature = {false, false}; const size_t anchorsSize = variableTextAnchors.size(); const size_t placementAttempts = textAllowOverlap ? anchorsSize * 2 : anchorsSize; for (size_t i = 0u; i < placementAttempts; ++i) { auto anchor = variableTextAnchors[i % anchorsSize]; const bool isFirstAnchor = (anchor == variableTextAnchors.front()); const bool allowOverlap = (i >= anchorsSize); shift = calculateVariableLayoutOffset(anchor, width, height, symbolInstance.variableTextOffset, textBoxScale, rotateTextWithMap, pitchTextWithMap, state.getBearing()); textBoxes.clear(); if (mapMode == MapMode::Tile && !isFirstAnchor && collisionIndex.intercectsTileEdges(symbolInstance.textCollisionFeature.boxes.front(), shift, posMatrix, pixelRatio, *tileBorders)) { continue; } placedFeature = collisionIndex.placeFeature(textCollisionFeature, shift, posMatrix, mat4(), pixelRatio, placedSymbol, scale, fontSize, allowOverlap, pitchTextWithMap, showCollisionBoxes, avoidEdges, collisionGroup.second, textBoxes); if (doVariableIconPlacement) { auto placedIconFeature = collisionIndex.placeFeature(iconCollisionFeature, shift, posMatrix, iconLabelPlaneMatrix, pixelRatio, placedSymbol, scale, fontSize, iconAllowOverlap, pitchTextWithMap, // TODO: shall it be pitchIconWithMap? showCollisionBoxes, avoidEdges, collisionGroup.second, iconBoxes); iconBoxes.clear(); if (!placedIconFeature.first) continue; } if (placedFeature.first) { assert(symbolInstance.crossTileID != 0u); optional prevAnchor; // If this label was placed in the previous placement, record the anchor position // to allow us to animate the transition if (getPrevPlacement()) { auto prevOffset = getPrevPlacement()->variableOffsets.find(symbolInstance.crossTileID); auto prevPlacements = getPrevPlacement()->placements.find(symbolInstance.crossTileID); if (prevOffset != getPrevPlacement()->variableOffsets.end() && prevPlacements != getPrevPlacement()->placements.end() && prevPlacements->second.text) { // TODO: The prevAnchor seems to be unused, needs to be fixed. prevAnchor = prevOffset->second.anchor; } } variableOffsets.insert(std::make_pair(symbolInstance.crossTileID, VariableOffset{ symbolInstance.variableTextOffset, width, height, anchor, textBoxScale, prevAnchor })); if (bucket.allowVerticalPlacement) { placedOrientations.emplace(symbolInstance.crossTileID, orientation); } break; } } return placedFeature; }; const auto placeHorizontal = [&] { return placeFeatureForVariableAnchors(symbolInstance.textCollisionFeature, style::TextWritingModeType::Horizontal, symbolInstance.iconCollisionFeature); }; const auto placeVertical = [&] { if (bucket.allowVerticalPlacement && !placed.first && symbolInstance.verticalTextCollisionFeature) { return placeFeatureForVariableAnchors(*symbolInstance.verticalTextCollisionFeature, style::TextWritingModeType::Vertical, symbolInstance.verticalIconCollisionFeature ? *symbolInstance.verticalIconCollisionFeature : symbolInstance.iconCollisionFeature); } return std::pair{false, false}; }; placeTextForPlacementModes(placeHorizontal, placeVertical); placeText = placed.first; offscreen &= placed.second; updatePreviousOrientationIfNotPlaced(placed.first); // If we didn't get placed, we still need to copy our position from the last placement for // fade animations if (!placeText && getPrevPlacement()) { auto prevOffset = getPrevPlacement()->variableOffsets.find(symbolInstance.crossTileID); if (prevOffset != getPrevPlacement()->variableOffsets.end()) { variableOffsets[symbolInstance.crossTileID] = prevOffset->second; } } } } if (symbolInstance.placedIconIndex) { if (!hasIconTextFit || !placeText || variableTextAnchors.empty()) { shift = {0.0f, 0.0f}; } const auto& iconBuffer = symbolInstance.hasSdfIcon() ? bucket.sdfIcon : bucket.icon; const PlacedSymbol& placedSymbol = iconBuffer.placedSymbols.at(*symbolInstance.placedIconIndex); const float fontSize = evaluateSizeForFeature(partiallyEvaluatedIconSize, placedSymbol); const auto& placeIconFeature = [&](const CollisionFeature& collisionFeature) { return collisionIndex.placeFeature(collisionFeature, shift, posMatrix, iconLabelPlaneMatrix, pixelRatio, placedSymbol, scale, fontSize, iconAllowOverlap, pitchTextWithMap, showCollisionBoxes, avoidEdges, collisionGroup.second, iconBoxes); }; std::pair placedIcon = {false, false}; if (placedVerticalText.first && symbolInstance.verticalIconCollisionFeature) { placedIcon = placedVerticalIcon = placeIconFeature(*symbolInstance.verticalIconCollisionFeature); } else { placedIcon = placeIconFeature(symbolInstance.iconCollisionFeature); } placeIcon = placedIcon.first; offscreen &= placedIcon.second; } const bool iconWithoutText = !symbolInstance.hasText() || layout.get(); const bool textWithoutIcon = !symbolInstance.hasIcon() || layout.get(); // combine placements for icon and text if (!iconWithoutText && !textWithoutIcon) { placeText = placeIcon = placeText && placeIcon; } else if (!textWithoutIcon) { placeText = placeText && placeIcon; } else if (!iconWithoutText) { placeIcon = placeText && placeIcon; } if (placeText) { if (placedVerticalText.first && symbolInstance.verticalTextCollisionFeature) { collisionIndex.insertFeature(*symbolInstance.verticalTextCollisionFeature, textBoxes, layout.get(), bucket.bucketInstanceId, collisionGroup.first); } else { collisionIndex.insertFeature(symbolInstance.textCollisionFeature, textBoxes, layout.get(), bucket.bucketInstanceId, collisionGroup.first); } } if (placeIcon) { if (placedVerticalIcon.first && symbolInstance.verticalIconCollisionFeature) { collisionIndex.insertFeature(*symbolInstance.verticalIconCollisionFeature, iconBoxes, layout.get(), bucket.bucketInstanceId, collisionGroup.first); } else { collisionIndex.insertFeature(symbolInstance.iconCollisionFeature, iconBoxes, layout.get(), bucket.bucketInstanceId, collisionGroup.first); } } const bool hasIconCollisionCircleData = bucket.hasIconCollisionCircleData(); const bool hasTextCollisionCircleData = bucket.hasTextCollisionCircleData(); if (hasIconCollisionCircleData && symbolInstance.iconCollisionFeature.alongLine && !iconBoxes.empty()) { collisionCircles[&symbolInstance.iconCollisionFeature] = iconBoxes; } if (hasTextCollisionCircleData && symbolInstance.textCollisionFeature.alongLine && !textBoxes.empty()) { collisionCircles[&symbolInstance.textCollisionFeature] = textBoxes; } assert(symbolInstance.crossTileID != 0); if (placements.find(symbolInstance.crossTileID) != placements.end()) { // If there's a previous placement with this ID, it comes from a tile that's fading out // Erase it so that the placement result from the non-fading tile supersedes it placements.erase(symbolInstance.crossTileID); } placements.emplace(symbolInstance.crossTileID, JointPlacement(placeText || alwaysShowText, placeIcon || alwaysShowIcon, offscreen || bucket.justReloaded)); seenCrossTileIDs.insert(symbolInstance.crossTileID); }; if (zOrderByViewportY) { const auto& sortedSymbols = bucket.getSortedSymbols(state.getBearing()); // Place in the reverse order than draw i.e., starting from the foreground elements. for (auto it = sortedSymbols.rbegin(); it != sortedSymbols.rend(); ++it) { placeSymbol(*it); } } else if (mapMode == MapMode::Tile && !avoidEdges) { // In this case we first try to place symbols, which intersects the tile borders, so that // those symbols will remain even if each tile is handled independently. std::vector> symbolInstances(bucket.symbolInstances.begin(), bucket.symbolInstances.end()); optional variableAnchor; if (!variableTextAnchors.empty()) variableAnchor = variableTextAnchors.front(); std::unordered_map locationCache; locationCache.reserve(symbolInstances.size()); // Keeps the data necessary to find a feature location according to a tile. struct NeighborTileData { NeighborTileData(const CollisionIndex& collisionIndex, UnwrappedTileID id_, Point shift_) : id(id_), shift(shift_), matrix() { collisionIndex.getTransformState().matrixFor(matrix, id); matrix::multiply(matrix, collisionIndex.getTransformState().getProjectionMatrix(), matrix); borders = collisionIndex.projectTileBoundaries(matrix); } UnwrappedTileID id; Point shift; mat4 matrix; CollisionBoundaries borders; }; uint8_t z = renderTile.id.canonical.z; uint32_t x = renderTile.id.canonical.x; uint32_t y = renderTile.id.canonical.y; const std::array neightbors{{ {collisionIndex, UnwrappedTileID(z, x, y - 1), {0.0f, util::EXTENT}}, // top {collisionIndex, UnwrappedTileID(z, x, y + 1), {0.0f, -util::EXTENT}}, // bottom {collisionIndex, UnwrappedTileID(z, x - 1, y), {util::EXTENT, 0.0f}}, // left {collisionIndex, UnwrappedTileID(z, x + 1, y), {-util::EXTENT, 0.0f}} // right }}; auto intercectsTileEdges = [&](const CollisionBox& collisionBox, const SymbolInstance& symbol) -> bool { auto it = locationCache.find(symbol.crossTileID); if (it != locationCache.end()) return it->second; Point offset{}; if (variableAnchor) { const CollisionBox& textBox = symbol.textCollisionFeature.boxes.front(); float width = textBox.x2 - textBox.x1; float height = textBox.y2 - textBox.y1; offset = calculateVariableLayoutOffset(*variableAnchor, width, height, symbol.variableTextOffset, symbol.textBoxScale, rotateTextWithMap, pitchTextWithMap, state.getBearing()); } bool intercects = collisionIndex.intercectsTileEdges(collisionBox, offset, renderTile.matrix, pixelRatio, *tileBorders); if (!intercects) { // Check if this symbol intersects the neighbor tile borders. // If so, it also shall be placed with priority (location = FeatureLocation::IntersectsTileBorder). for (const auto& neighbor : neightbors) { intercects = collisionIndex.intercectsTileEdges( collisionBox, offset + neighbor.shift, neighbor.matrix, pixelRatio, neighbor.borders); if (intercects) break; } } locationCache.insert(std::make_pair(symbol.crossTileID, intercects)); return intercects; }; std::stable_sort(symbolInstances.begin(), symbolInstances.end(), [&intercectsTileEdges](const SymbolInstance& a, const SymbolInstance& b) { assert(!a.textCollisionFeature.alongLine); assert(!b.textCollisionFeature.alongLine); if (a.textCollisionFeature.boxes.empty() || b.textCollisionFeature.boxes.empty()) return false; auto intercectsA = intercectsTileEdges(a.textCollisionFeature.boxes.front(), a); auto intercectsB = intercectsTileEdges(b.textCollisionFeature.boxes.front(), b); if (intercectsA) { if (!intercectsB) return true; // Both symbols are inrecepting the tile borders, we need a universal cross-tile rule // to define which of them shall be placed first - use anchor `y` point. return a.anchor.point.y < b.anchor.point.y; } return false; }); for (const SymbolInstance& symbol : symbolInstances) { placeSymbol(symbol); } } else { for (const SymbolInstance& symbol : bucket.symbolInstances) { placeSymbol(symbol); } } bucket.justReloaded = false; // As long as this placement lives, we have to hold onto this bucket's // matching FeatureIndex/data for querying purposes retainedQueryData.emplace(std::piecewise_construct, std::forward_as_tuple(bucket.bucketInstanceId), std::forward_as_tuple(bucket.bucketInstanceId, params.featureIndex, overscaledID)); } void Placement::commit() { if (!getPrevPlacement()) { assert(mapMode != MapMode::Continuous); fadeStartTime = commitTime; for (auto& jointPlacement : placements) { opacities.emplace( jointPlacement.first, JointOpacityState( jointPlacement.second.text, jointPlacement.second.icon, jointPlacement.second.skipFade)); } return; } bool placementChanged = false; prevZoomAdjustment = getPrevPlacement()->zoomAdjustment(placementZoom); float increment = getPrevPlacement()->symbolFadeChange(commitTime); // add the opacities from the current placement, and copy their current values from the previous placement for (auto& jointPlacement : placements) { auto prevOpacity = getPrevPlacement()->opacities.find(jointPlacement.first); if (prevOpacity != getPrevPlacement()->opacities.end()) { opacities.emplace(jointPlacement.first, JointOpacityState(prevOpacity->second, increment, jointPlacement.second.text, jointPlacement.second.icon)); placementChanged = placementChanged || jointPlacement.second.icon != prevOpacity->second.icon.placed || jointPlacement.second.text != prevOpacity->second.text.placed; } else { opacities.emplace(jointPlacement.first, JointOpacityState(jointPlacement.second.text, jointPlacement.second.icon, jointPlacement.second.skipFade)); placementChanged = placementChanged || jointPlacement.second.icon || jointPlacement.second.text; } } // copy and update values from the previous placement that aren't in the current placement but haven't finished fading for (auto& prevOpacity : getPrevPlacement()->opacities) { if (opacities.find(prevOpacity.first) == opacities.end()) { JointOpacityState jointOpacity(prevOpacity.second, increment, false, false); if (!jointOpacity.isHidden()) { opacities.emplace(prevOpacity.first, jointOpacity); placementChanged = placementChanged || prevOpacity.second.icon.placed || prevOpacity.second.text.placed; } } } for (auto& prevOffset : getPrevPlacement()->variableOffsets) { const uint32_t crossTileID = prevOffset.first; auto foundOffset = variableOffsets.find(crossTileID); auto foundOpacity = opacities.find(crossTileID); if (foundOffset == variableOffsets.end() && foundOpacity != opacities.end() && !foundOpacity->second.isHidden()) { variableOffsets[prevOffset.first] = prevOffset.second; } } for (auto& prevOrientation : getPrevPlacement()->placedOrientations) { const uint32_t crossTileID = prevOrientation.first; auto foundOrientation = placedOrientations.find(crossTileID); auto foundOpacity = opacities.find(crossTileID); if (foundOrientation == placedOrientations.end() && foundOpacity != opacities.end() && !foundOpacity->second.isHidden()) { placedOrientations[prevOrientation.first] = prevOrientation.second; } } fadeStartTime = placementChanged ? commitTime : getPrevPlacement()->fadeStartTime; } void Placement::updateLayerBuckets(const RenderLayer& layer, const TransformState& state, bool updateOpacities) const { std::set seenCrossTileIDs; for (const auto& item : layer.getPlacementData()) { item.bucket.get().updateVertices(*this, updateOpacities, state, item.tile, seenCrossTileIDs); } } namespace { Point calculateVariableRenderShift(style::SymbolAnchorType anchor, float width, float height, std::array textOffset, float textBoxScale, float renderTextSize) { AnchorAlignment alignment = AnchorAlignment::getAnchorAlignment(anchor); float shiftX = -(alignment.horizontalAlign - 0.5f) * width; float shiftY = -(alignment.verticalAlign - 0.5f) * height; auto variablOffset = SymbolLayout::evaluateVariableOffset(anchor, textOffset); return { (shiftX / textBoxScale + variablOffset[0]) * renderTextSize, (shiftY / textBoxScale + variablOffset[1]) * renderTextSize }; } } // namespace bool Placement::updateBucketDynamicVertices(SymbolBucket& bucket, const TransformState& state, const RenderTile& tile) const { using namespace style; const auto& layout = *bucket.layout; const bool alongLine = layout.get() != SymbolPlacementType::Point; const bool hasVariableAnchors = !layout.get().empty() && bucket.hasTextData(); const bool updateTextFitIcon = layout.get() != IconTextFitType::None && (bucket.allowVerticalPlacement || hasVariableAnchors) && (bucket.hasIconData() || bucket.hasSdfIconData()); bool result = false; if (alongLine) { if (layout.get() == AlignmentType::Map) { const bool pitchWithMap = layout.get() == style::AlignmentType::Map; const bool keepUpright = layout.get(); if (bucket.hasSdfIconData()) { reprojectLineLabels(bucket.sdfIcon.dynamicVertices, bucket.sdfIcon.placedSymbols, tile.matrix, pitchWithMap, true /*rotateWithMap*/, keepUpright, tile, *bucket.iconSizeBinder, state); result = true; } if (bucket.hasIconData()) { reprojectLineLabels(bucket.icon.dynamicVertices, bucket.icon.placedSymbols, tile.matrix, pitchWithMap, true /*rotateWithMap*/, keepUpright, tile, *bucket.iconSizeBinder, state); result = true; } } if (bucket.hasTextData() && layout.get() == AlignmentType::Map) { const bool pitchWithMap = layout.get() == style::AlignmentType::Map; const bool keepUpright = layout.get(); reprojectLineLabels(bucket.text.dynamicVertices, bucket.text.placedSymbols, tile.matrix, pitchWithMap, true /*rotateWithMap*/, keepUpright, tile, *bucket.textSizeBinder, state); result = true; } } else if (hasVariableAnchors) { bucket.text.dynamicVertices.clear(); bucket.hasVariablePlacement = false; const auto partiallyEvaluatedSize = bucket.textSizeBinder->evaluateForZoom(state.getZoom()); const float tileScale = std::pow(2, state.getZoom() - tile.getOverscaledTileID().overscaledZ); const bool rotateWithMap = layout.get() == AlignmentType::Map; const bool pitchWithMap = layout.get() == AlignmentType::Map; const float pixelsToTileUnits = tile.id.pixelsToTileUnits(1.0, state.getZoom()); const auto labelPlaneMatrix = getLabelPlaneMatrix(tile.matrix, pitchWithMap, rotateWithMap, state, pixelsToTileUnits); std::unordered_map>> placedTextShifts; for (std::size_t i = 0; i < bucket.text.placedSymbols.size(); ++i) { const PlacedSymbol& symbol = bucket.text.placedSymbols[i]; optional variableOffset; const bool skipOrientation = bucket.allowVerticalPlacement && !symbol.placedOrientation; if (!symbol.hidden && symbol.crossTileID != 0u && !skipOrientation) { auto it = variableOffsets.find(symbol.crossTileID); if (it != variableOffsets.end()) { bucket.hasVariablePlacement = true; variableOffset = it->second; } } if (!variableOffset) { // These symbols are from a justification that is not being used, or a label that wasn't placed // so we don't need to do the extra math to figure out what incremental shift to apply. hideGlyphs(symbol.glyphOffsets.size(), bucket.text.dynamicVertices); } else { const Point tileAnchor = symbol.anchorPoint; const auto projectedAnchor = project(tileAnchor, pitchWithMap ? tile.matrix : labelPlaneMatrix); const float perspectiveRatio = 0.5f + 0.5f * (state.getCameraToCenterDistance() / projectedAnchor.second); float renderTextSize = evaluateSizeForFeature(partiallyEvaluatedSize, symbol) * perspectiveRatio / util::ONE_EM; if (pitchWithMap) { // Go from size in pixels to equivalent size in tile units renderTextSize *= bucket.tilePixelRatio / tileScale; } auto shift = calculateVariableRenderShift( (*variableOffset).anchor, (*variableOffset).width, (*variableOffset).height, (*variableOffset).offset, (*variableOffset).textBoxScale, renderTextSize); // Usual case is that we take the projected anchor and add the pixel-based shift // calculated above. In the (somewhat weird) case of pitch-aligned text, we add an equivalent // tile-unit based shift to the anchor before projecting to the label plane. Point shiftedAnchor; if (pitchWithMap) { shiftedAnchor = project(Point(tileAnchor.x + shift.x, tileAnchor.y + shift.y), labelPlaneMatrix).first; } else if (rotateWithMap) { auto rotated = util::rotate(shift, -state.getPitch()); shiftedAnchor = Point(projectedAnchor.first.x + rotated.x, projectedAnchor.first.y + rotated.y); } else { shiftedAnchor = Point(projectedAnchor.first.x + shift.x, projectedAnchor.first.y + shift.y); } if (updateTextFitIcon && symbol.placedIconIndex) { placedTextShifts.emplace(*symbol.placedIconIndex, std::pair>{i, shiftedAnchor}); } for (std::size_t j = 0; j < symbol.glyphOffsets.size(); ++j) { addDynamicAttributes(shiftedAnchor, symbol.angle, bucket.text.dynamicVertices); } } } if (updateTextFitIcon && bucket.hasVariablePlacement) { auto updateIcon = [&](SymbolBucket::Buffer& iconBuffer) { iconBuffer.dynamicVertices.clear(); for (std::size_t i = 0; i < iconBuffer.placedSymbols.size(); ++i) { const PlacedSymbol& placedIcon = iconBuffer.placedSymbols[i]; if (placedIcon.hidden || (!placedIcon.placedOrientation && bucket.allowVerticalPlacement)) { hideGlyphs(placedIcon.glyphOffsets.size(), iconBuffer.dynamicVertices); } else { const auto& pair = placedTextShifts.find(i); if (pair == placedTextShifts.end()) { hideGlyphs(placedIcon.glyphOffsets.size(), iconBuffer.dynamicVertices); } else { for (std::size_t j = 0; j < placedIcon.glyphOffsets.size(); ++j) { addDynamicAttributes(pair->second.second, placedIcon.angle, iconBuffer.dynamicVertices); } } } } }; updateIcon(bucket.icon); updateIcon(bucket.sdfIcon); } result = true; } else if (bucket.allowVerticalPlacement && bucket.hasTextData()) { const auto updateDynamicVertices = [](SymbolBucket::Buffer& buffer) { buffer.dynamicVertices.clear(); for (const PlacedSymbol& symbol : buffer.placedSymbols) { if (symbol.hidden || !symbol.placedOrientation) { hideGlyphs(symbol.glyphOffsets.size(), buffer.dynamicVertices); } else { for (std::size_t j = 0; j < symbol.glyphOffsets.size(); ++j) { addDynamicAttributes(symbol.anchorPoint, symbol.angle, buffer.dynamicVertices); } } } }; updateDynamicVertices(bucket.text); // When text box is rotated, icon-text-fit icon must be rotated as well. if (updateTextFitIcon) { updateDynamicVertices(bucket.icon); updateDynamicVertices(bucket.sdfIcon); } result = true; } return result; } void Placement::updateBucketOpacities(SymbolBucket& bucket, const TransformState& state, std::set& seenCrossTileIDs) const { if (bucket.hasTextData()) bucket.text.opacityVertices.clear(); if (bucket.hasIconData()) bucket.icon.opacityVertices.clear(); if (bucket.hasSdfIconData()) bucket.sdfIcon.opacityVertices.clear(); if (bucket.hasIconCollisionBoxData()) bucket.iconCollisionBox->dynamicVertices.clear(); if (bucket.hasIconCollisionCircleData()) bucket.iconCollisionCircle->dynamicVertices.clear(); if (bucket.hasTextCollisionBoxData()) bucket.textCollisionBox->dynamicVertices.clear(); if (bucket.hasTextCollisionCircleData()) bucket.textCollisionCircle->dynamicVertices.clear(); const JointOpacityState duplicateOpacityState(false, false, true); const bool textAllowOverlap = bucket.layout->get(); const bool iconAllowOverlap = bucket.layout->get(); const bool variablePlacement = !bucket.layout->get().empty(); const bool rotateWithMap = bucket.layout->get() == style::AlignmentType::Map; const bool pitchWithMap = bucket.layout->get() == style::AlignmentType::Map; const bool hasIconTextFit = bucket.layout->get() != style::IconTextFitType::None; // If allow-overlap is true, we can show symbols before placement runs on them // But we have to wait for placement if we potentially depend on a paired icon/text // with allow-overlap: false. // See https://github.com/mapbox/mapbox-gl-native/issues/12483 const JointOpacityState defaultOpacityState( textAllowOverlap && (iconAllowOverlap || !(bucket.hasIconData() || bucket.hasSdfIconData()) || bucket.layout->get()), iconAllowOverlap && (textAllowOverlap || !bucket.hasTextData() || bucket.layout->get()), true); for (SymbolInstance& symbolInstance : bucket.symbolInstances) { bool isDuplicate = seenCrossTileIDs.count(symbolInstance.crossTileID) > 0; auto it = opacities.find(symbolInstance.crossTileID); auto opacityState = defaultOpacityState; if (isDuplicate) { opacityState = duplicateOpacityState; } else if (it != opacities.end()) { opacityState = it->second; } seenCrossTileIDs.insert(symbolInstance.crossTileID); if (symbolInstance.hasText()) { size_t textOpacityVerticesSize = 0u; const auto& opacityVertex = SymbolSDFTextProgram::opacityVertex(opacityState.text.placed, opacityState.text.opacity); if (symbolInstance.placedRightTextIndex) { textOpacityVerticesSize += symbolInstance.rightJustifiedGlyphQuadsSize * 4; PlacedSymbol& placed = bucket.text.placedSymbols[*symbolInstance.placedRightTextIndex]; placed.hidden = opacityState.isHidden(); } if (symbolInstance.placedCenterTextIndex && !symbolInstance.singleLine) { textOpacityVerticesSize += symbolInstance.centerJustifiedGlyphQuadsSize * 4; PlacedSymbol& placed = bucket.text.placedSymbols[*symbolInstance.placedCenterTextIndex]; placed.hidden = opacityState.isHidden(); } if (symbolInstance.placedLeftTextIndex && !symbolInstance.singleLine) { textOpacityVerticesSize += symbolInstance.leftJustifiedGlyphQuadsSize * 4; PlacedSymbol& placed = bucket.text.placedSymbols[*symbolInstance.placedLeftTextIndex]; placed.hidden = opacityState.isHidden(); } if (symbolInstance.placedVerticalTextIndex) { textOpacityVerticesSize += symbolInstance.verticalGlyphQuadsSize * 4; bucket.text.placedSymbols[*symbolInstance.placedVerticalTextIndex].hidden = opacityState.isHidden(); } bucket.text.opacityVertices.extend(textOpacityVerticesSize, opacityVertex); style::TextWritingModeType previousOrientation = style::TextWritingModeType::Horizontal; if (bucket.allowVerticalPlacement) { auto prevOrientation = placedOrientations.find(symbolInstance.crossTileID); if (prevOrientation != placedOrientations.end()) { previousOrientation = prevOrientation->second; markUsedOrientation(bucket, prevOrientation->second, symbolInstance); } } auto prevOffset = variableOffsets.find(symbolInstance.crossTileID); if (prevOffset != variableOffsets.end()) { markUsedJustification(bucket, prevOffset->second.anchor, symbolInstance, previousOrientation); } } if (symbolInstance.hasIcon()) { size_t iconOpacityVerticesSize = 0u; const auto& opacityVertex = SymbolIconProgram::opacityVertex(opacityState.icon.placed, opacityState.icon.opacity); auto& iconBuffer = symbolInstance.hasSdfIcon() ? bucket.sdfIcon : bucket.icon; if (symbolInstance.placedIconIndex) { iconOpacityVerticesSize += symbolInstance.iconQuadsSize * 4; iconBuffer.placedSymbols[*symbolInstance.placedIconIndex].hidden = opacityState.isHidden(); } if (symbolInstance.placedVerticalIconIndex) { iconOpacityVerticesSize += symbolInstance.iconQuadsSize * 4; iconBuffer.placedSymbols[*symbolInstance.placedVerticalIconIndex].hidden = opacityState.isHidden(); } iconBuffer.opacityVertices.extend(iconOpacityVerticesSize, opacityVertex); } auto updateIconCollisionBox = [&](const auto& feature, const bool placed, const Point& shift) { if (feature.alongLine) { return; } const auto& dynamicVertex = CollisionBoxProgram::dynamicVertex(placed, false, shift); bucket.iconCollisionBox->dynamicVertices.extend(feature.boxes.size() * 4, dynamicVertex); }; auto updateTextCollisionBox = [this, &bucket, &symbolInstance, &state, variablePlacement, rotateWithMap, pitchWithMap]( const auto& feature, const bool placed) { Point shift{0.0f, 0.0f}; if (feature.alongLine) { return shift; } bool used = true; if (variablePlacement) { auto foundOffset = variableOffsets.find(symbolInstance.crossTileID); if (foundOffset != variableOffsets.end()) { const VariableOffset& variableOffset = foundOffset->second; // This will show either the currently placed position or the last // successfully placed position (so you can visualize what collision // just made the symbol disappear, and the most likely place for the // symbol to come back) shift = calculateVariableLayoutOffset(variableOffset.anchor, variableOffset.width, variableOffset.height, variableOffset.offset, variableOffset.textBoxScale, rotateWithMap, pitchWithMap, state.getBearing()); } else { // No offset -> this symbol hasn't been placed since coming on-screen // No single box is particularly meaningful and all of them would be too noisy // Use the center box just to show something's there, but mark it "not used" used = false; } } const auto& dynamicVertex = CollisionBoxProgram::dynamicVertex(placed, !used, shift); bucket.textCollisionBox->dynamicVertices.extend(feature.boxes.size() * 4, dynamicVertex); return shift; }; auto updateCollisionCircles = [&](const auto& feature, const bool placed, bool isText) { if (!feature.alongLine) { return; } auto circles = collisionCircles.find(&feature); if (circles != collisionCircles.end()) { for (const auto& circle : circles->second) { const auto& dynamicVertex = CollisionBoxProgram::dynamicVertex(placed, !circle.isCircle(), {}); isText ? bucket.textCollisionCircle->dynamicVertices.extend(4, dynamicVertex): bucket.iconCollisionCircle->dynamicVertices.extend(4, dynamicVertex); } } else { // This feature was not placed, because it was not loaded or from a fading tile. Apply default values. static const auto dynamicVertex = CollisionBoxProgram::dynamicVertex(placed, false /*not used*/, {}); isText ? bucket.textCollisionCircle->dynamicVertices.extend(4 * feature.boxes.size(), dynamicVertex): bucket.iconCollisionCircle->dynamicVertices.extend(4 * feature.boxes.size(), dynamicVertex); } }; Point textShift{0.0f, 0.0f}; Point verticalTextShift{0.0f, 0.0f}; if (bucket.hasTextCollisionBoxData()) { textShift = updateTextCollisionBox(symbolInstance.textCollisionFeature, opacityState.text.placed); if (bucket.allowVerticalPlacement && symbolInstance.verticalTextCollisionFeature) { verticalTextShift = updateTextCollisionBox(*symbolInstance.verticalTextCollisionFeature, opacityState.text.placed); } } if (bucket.hasIconCollisionBoxData()) { updateIconCollisionBox(symbolInstance.iconCollisionFeature, opacityState.icon.placed, hasIconTextFit ? textShift : Point{0.0f, 0.0f}); if (bucket.allowVerticalPlacement && symbolInstance.verticalIconCollisionFeature) { updateIconCollisionBox(*symbolInstance.verticalIconCollisionFeature, opacityState.text.placed, hasIconTextFit ? verticalTextShift : Point{0.0f, 0.0f}); } } if (bucket.hasIconCollisionCircleData()) { updateCollisionCircles(symbolInstance.iconCollisionFeature, opacityState.icon.placed, false); } if (bucket.hasTextCollisionCircleData()) { updateCollisionCircles(symbolInstance.textCollisionFeature, opacityState.text.placed, true); } } bucket.sortFeatures(state.getBearing()); auto retainedData = retainedQueryData.find(bucket.bucketInstanceId); if (retainedData != retainedQueryData.end()) { retainedData->second.featureSortOrder = bucket.featureSortOrder; } } namespace { optional justificationToIndex(style::TextJustifyType justify, const SymbolInstance& symbolInstance, style::TextWritingModeType orientation) { // Vertical symbol has just one justification, style::TextJustifyType::Left. if (orientation == style::TextWritingModeType::Vertical) { return symbolInstance.placedVerticalTextIndex; } switch(justify) { case style::TextJustifyType::Right: return symbolInstance.placedRightTextIndex; case style::TextJustifyType::Center: return symbolInstance.placedCenterTextIndex; case style::TextJustifyType::Left: return symbolInstance.placedLeftTextIndex; case style::TextJustifyType::Auto: break; } assert(false); return nullopt; } const style::TextJustifyType justifyTypes[] = { style::TextJustifyType::Right, style::TextJustifyType::Center, style::TextJustifyType::Left}; } // namespace void Placement::markUsedJustification(SymbolBucket& bucket, style::TextVariableAnchorType placedAnchor, const SymbolInstance& symbolInstance, style::TextWritingModeType orientation) const { style::TextJustifyType anchorJustify = getAnchorJustification(placedAnchor); assert(anchorJustify != style::TextJustifyType::Auto); const optional& autoIndex = justificationToIndex(anchorJustify, symbolInstance, orientation); for (auto& justify : justifyTypes) { const optional index = justificationToIndex(justify, symbolInstance, orientation); if (index) { assert(bucket.text.placedSymbols.size() > *index); if (autoIndex && *index != *autoIndex) { // There are multiple justifications and this one isn't it: shift offscreen bucket.text.placedSymbols.at(*index).crossTileID = 0u; } else { // Either this is the chosen justification or the justification is hardwired: use this one bucket.text.placedSymbols.at(*index).crossTileID = symbolInstance.crossTileID; } } } } void Placement::markUsedOrientation(SymbolBucket& bucket, style::TextWritingModeType orientation, const SymbolInstance& symbolInstance) const { auto horizontal = orientation == style::TextWritingModeType::Horizontal ? optional(orientation) : nullopt; auto vertical = orientation == style::TextWritingModeType::Vertical ? optional(orientation) : nullopt; if (symbolInstance.placedRightTextIndex) { bucket.text.placedSymbols.at(*symbolInstance.placedRightTextIndex).placedOrientation = horizontal; } if (symbolInstance.placedCenterTextIndex && !symbolInstance.singleLine) { bucket.text.placedSymbols.at(*symbolInstance.placedCenterTextIndex).placedOrientation = horizontal; } if (symbolInstance.placedLeftTextIndex && !symbolInstance.singleLine) { bucket.text.placedSymbols.at(*symbolInstance.placedLeftTextIndex).placedOrientation = horizontal; } if (symbolInstance.placedVerticalTextIndex) { bucket.text.placedSymbols.at(*symbolInstance.placedVerticalTextIndex).placedOrientation = vertical; } auto& iconBuffer = symbolInstance.hasSdfIcon() ? bucket.sdfIcon : bucket.icon; if (symbolInstance.placedIconIndex) { iconBuffer.placedSymbols.at(*symbolInstance.placedIconIndex).placedOrientation = horizontal; } if (symbolInstance.placedVerticalIconIndex) { iconBuffer.placedSymbols.at(*symbolInstance.placedVerticalIconIndex).placedOrientation = vertical; } } float Placement::symbolFadeChange(TimePoint now) const { if (transitionsEnabled() && transitionOptions.duration.value_or(util::DEFAULT_TRANSITION_DURATION) > Milliseconds(0)) { return std::chrono::duration(now - commitTime) / transitionOptions.duration.value_or(util::DEFAULT_TRANSITION_DURATION) + prevZoomAdjustment; } return 1.0; } float Placement::zoomAdjustment(const float zoom) const { // When zooming out labels can overlap each other quickly. This // adjustment is used to reduce the fade duration for symbols while zooming out quickly. // It is also used to reduce the interval between placement calculations. Reducing the // interval between placements means collisions are discovered and eliminated sooner. return std::max(0.0, (placementZoom - zoom) / 1.5); } Duration Placement::getUpdatePeriod(const float zoom) const { // Even if transitionOptions.duration is set to a value < 300ms, we still wait for this default transition duration // before attempting another placement operation. const auto fadeDuration = std::max(util::DEFAULT_TRANSITION_DURATION, transitionOptions.duration.value_or(util::DEFAULT_TRANSITION_DURATION)); return std::chrono::duration_cast(fadeDuration * (1.0 - zoomAdjustment(zoom))); } bool Placement::transitionsEnabled() const { return mapMode == MapMode::Continuous && transitionOptions.enablePlacementTransitions; } bool Placement::hasTransitions(TimePoint now) const { assert(transitionsEnabled()); return std::chrono::duration(now - fadeStartTime) < transitionOptions.duration.value_or(util::DEFAULT_TRANSITION_DURATION); } const CollisionIndex& Placement::getCollisionIndex() const { return collisionIndex; } const RetainedQueryData& Placement::getQueryData(uint32_t bucketInstanceId) const { auto it = retainedQueryData.find(bucketInstanceId); if (it == retainedQueryData.end()) { throw std::runtime_error("Placement::getQueryData with unrecognized bucketInstanceId"); } return it->second; } } // namespace mbgl