#pragma once // NOTE: DO NOT CHANGE THIS FILE. IT IS AUTOMATICALLY GENERATED. #include namespace mbgl { namespace shaders { class fill_pattern { public: static constexpr const char* name = "fill_pattern"; static constexpr const char* vertexSource = R"MBGL_SHADER( #ifdef GL_ES precision highp float; #else #if !defined(lowp) #define lowp #endif #if !defined(mediump) #define mediump #endif #if !defined(highp) #define highp #endif #endif float evaluate_zoom_function_1(const vec4 values, const float t) { if (t < 1.0) { return mix(values[0], values[1], t); } else if (t < 2.0) { return mix(values[1], values[2], t - 1.0); } else { return mix(values[2], values[3], t - 2.0); } } vec4 evaluate_zoom_function_4(const vec4 value0, const vec4 value1, const vec4 value2, const vec4 value3, const float t) { if (t < 1.0) { return mix(value0, value1, t); } else if (t < 2.0) { return mix(value1, value2, t - 1.0); } else { return mix(value2, value3, t - 2.0); } } // The offset depends on how many pixels are between the world origin and the edge of the tile: // vec2 offset = mod(pixel_coord, size) // // At high zoom levels there are a ton of pixels between the world origin and the edge of the tile. // The glsl spec only guarantees 16 bits of precision for highp floats. We need more than that. // // The pixel_coord is passed in as two 16 bit values: // pixel_coord_upper = floor(pixel_coord / 2^16) // pixel_coord_lower = mod(pixel_coord, 2^16) // // The offset is calculated in a series of steps that should preserve this precision: vec2 get_pattern_pos(const vec2 pixel_coord_upper, const vec2 pixel_coord_lower, const vec2 pattern_size, const float tile_units_to_pixels, const vec2 pos) { vec2 offset = mod(mod(mod(pixel_coord_upper, pattern_size) * 256.0, pattern_size) * 256.0 + pixel_coord_lower, pattern_size); return (tile_units_to_pixels * pos + offset) / pattern_size; } uniform mat4 u_matrix; uniform vec2 u_pattern_size_a; uniform vec2 u_pattern_size_b; uniform vec2 u_pixel_coord_upper; uniform vec2 u_pixel_coord_lower; uniform float u_scale_a; uniform float u_scale_b; uniform float u_tile_units_to_pixels; attribute vec2 a_pos; varying vec2 v_pos_a; varying vec2 v_pos_b; uniform lowp float a_opacity_t; attribute lowp float a_opacity_min; attribute lowp float a_opacity_max; varying lowp float opacity; void main() { opacity = mix(a_opacity_min, a_opacity_max, a_opacity_t); gl_Position = u_matrix * vec4(a_pos, 0, 1); v_pos_a = get_pattern_pos(u_pixel_coord_upper, u_pixel_coord_lower, u_scale_a * u_pattern_size_a, u_tile_units_to_pixels, a_pos); v_pos_b = get_pattern_pos(u_pixel_coord_upper, u_pixel_coord_lower, u_scale_b * u_pattern_size_b, u_tile_units_to_pixels, a_pos); } )MBGL_SHADER"; static constexpr const char* fragmentSource = R"MBGL_SHADER( #ifdef GL_ES precision mediump float; #else #if !defined(lowp) #define lowp #endif #if !defined(mediump) #define mediump #endif #if !defined(highp) #define highp #endif #endif uniform vec2 u_pattern_tl_a; uniform vec2 u_pattern_br_a; uniform vec2 u_pattern_tl_b; uniform vec2 u_pattern_br_b; uniform float u_mix; uniform sampler2D u_image; varying vec2 v_pos_a; varying vec2 v_pos_b; varying lowp float opacity; void main() { vec2 imagecoord = mod(v_pos_a, 1.0); vec2 pos = mix(u_pattern_tl_a, u_pattern_br_a, imagecoord); vec4 color1 = texture2D(u_image, pos); vec2 imagecoord_b = mod(v_pos_b, 1.0); vec2 pos2 = mix(u_pattern_tl_b, u_pattern_br_b, imagecoord_b); vec4 color2 = texture2D(u_image, pos2); gl_FragColor = mix(color1, color2, u_mix) * opacity; #ifdef OVERDRAW_INSPECTOR gl_FragColor = vec4(1.0); #endif } )MBGL_SHADER"; }; } // namespace shaders } // namespace mbgl