#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace mbgl { using namespace style; static TileObserver nullObserver; TilePyramid::TilePyramid() : observer(&nullObserver) { } TilePyramid::~TilePyramid() = default; bool TilePyramid::isLoaded() const { for (const auto& pair : tiles) { if (!pair.second->isComplete()) { return false; } } return true; } void TilePyramid::startRender(const mat4& projMatrix, const mat4& clipMatrix, const TransformState& transform) { for (auto& pair : renderTiles) { auto& tile = pair.second; tile.calculateMatrices(projMatrix, clipMatrix, transform); } } void TilePyramid::finishRender(Painter& painter) { for (auto& pair : renderTiles) { auto& tile = pair.second; if (tile.used) { painter.renderTileDebug(tile); } } } std::map& TilePyramid::getRenderTiles() { return renderTiles; } void TilePyramid::update(const std::vector>& layers, const bool needsRendering, const bool needsRelayout, const TileParameters& parameters, const SourceType type, const uint16_t tileSize, const Range zoomRange, std::function (const OverscaledTileID&)> createTile) { // If we need a relayout, abandon any cached tiles; they're now stale. if (needsRelayout) { cache.clear(); } // If we're not going to render anything, move our existing tiles into // the cache (if they're not stale) or abandon them, and return. if (!needsRendering) { if (!needsRelayout) { for (auto& entry : tiles) { cache.add(entry.first, std::move(entry.second)); } } tiles.clear(); renderTiles.clear(); return; } // Determine the overzooming/underzooming amounts and required tiles. int32_t overscaledZoom = util::coveringZoomLevel(parameters.transformState.getZoom(), type, tileSize); int32_t tileZoom = overscaledZoom; std::vector idealTiles; if (overscaledZoom >= zoomRange.min) { int32_t idealZoom = std::min(zoomRange.max, overscaledZoom); // Make sure we're not reparsing overzoomed raster tiles. if (type == SourceType::Raster) { tileZoom = idealZoom; } idealTiles = util::tileCover(parameters.transformState, idealZoom); } // Stores a list of all the tiles that we're definitely going to retain. There are two // kinds of tiles we need: the ideal tiles determined by the tile cover. They may not yet be in // use because they're still loading. In addition to that, we also need to retain all tiles that // we're actively using, e.g. as a replacement for tile that aren't loaded yet. std::set retain; auto retainTileFn = [&](Tile& tile, Resource::Necessity necessity) -> void { retain.emplace(tile.id); tile.setNecessity(necessity); if (needsRelayout) { tile.setLayers(layers); } }; auto getTileFn = [&](const OverscaledTileID& tileID) -> Tile* { auto it = tiles.find(tileID); return it == tiles.end() ? nullptr : it->second.get(); }; auto createTileFn = [&](const OverscaledTileID& tileID) -> Tile* { std::unique_ptr tile = cache.get(tileID); if (!tile) { tile = createTile(tileID); if (tile) { tile->setObserver(observer); tile->setLayers(layers); } } if (!tile) { return nullptr; } return tiles.emplace(tileID, std::move(tile)).first->second.get(); }; auto renderTileFn = [&](const UnwrappedTileID& tileID, Tile& tile) { renderTiles.emplace(tileID, RenderTile{ tileID, tile }); }; renderTiles.clear(); algorithm::updateRenderables(getTileFn, createTileFn, retainTileFn, renderTileFn, idealTiles, zoomRange, tileZoom); if (type != SourceType::Annotations) { size_t conservativeCacheSize = std::max((float)parameters.transformState.getSize().width / tileSize, 1.0f) * std::max((float)parameters.transformState.getSize().height / tileSize, 1.0f) * (parameters.transformState.getMaxZoom() - parameters.transformState.getMinZoom() + 1) * 0.5; cache.setSize(conservativeCacheSize); } removeStaleTiles(retain); const PlacementConfig config { parameters.transformState.getAngle(), parameters.transformState.getPitch(), parameters.debugOptions & MapDebugOptions::Collision }; for (auto& pair : tiles) { pair.second->setPlacementConfig(config); } } // Moves all tiles to the cache except for those specified in the retain set. void TilePyramid::removeStaleTiles(const std::set& retain) { // Remove stale tiles. This goes through the (sorted!) tiles map and retain set in lockstep // and removes items from tiles that don't have the corresponding key in the retain set. auto tilesIt = tiles.begin(); auto retainIt = retain.begin(); while (tilesIt != tiles.end()) { if (retainIt == retain.end() || tilesIt->first < *retainIt) { tilesIt->second->setNecessity(Tile::Necessity::Optional); cache.add(tilesIt->first, std::move(tilesIt->second)); tiles.erase(tilesIt++); } else { if (!(*retainIt < tilesIt->first)) { ++tilesIt; } ++retainIt; } } } std::unordered_map> TilePyramid::queryRenderedFeatures(const ScreenLineString& geometry, const TransformState& transformState, const RenderStyle& style, const RenderedQueryOptions& options) const { std::unordered_map> result; if (renderTiles.empty() || geometry.empty()) { return result; } LineString queryGeometry; for (const auto& p : geometry) { queryGeometry.push_back(TileCoordinate::fromScreenCoordinate( transformState, 0, { p.x, transformState.getSize().height - p.y }).p); } mapbox::geometry::box box = mapbox::geometry::envelope(queryGeometry); auto sortRenderTiles = [](const RenderTile& a, const RenderTile& b) { return std::tie(a.id.canonical.z, a.id.canonical.y, a.id.wrap, a.id.canonical.x) < std::tie(b.id.canonical.z, b.id.canonical.y, b.id.wrap, b.id.canonical.x); }; std::vector> sortedTiles; std::transform(renderTiles.cbegin(), renderTiles.cend(), std::back_inserter(sortedTiles), [](const auto& pair) { return std::ref(pair.second); }); std::sort(sortedTiles.begin(), sortedTiles.end(), sortRenderTiles); for (const auto& renderTileRef : sortedTiles) { const RenderTile& renderTile = renderTileRef.get(); GeometryCoordinate tileSpaceBoundsMin = TileCoordinate::toGeometryCoordinate(renderTile.id, box.min); if (tileSpaceBoundsMin.x >= util::EXTENT || tileSpaceBoundsMin.y >= util::EXTENT) { continue; } GeometryCoordinate tileSpaceBoundsMax = TileCoordinate::toGeometryCoordinate(renderTile.id, box.max); if (tileSpaceBoundsMax.x < 0 || tileSpaceBoundsMax.y < 0) { continue; } GeometryCoordinates tileSpaceQueryGeometry; tileSpaceQueryGeometry.reserve(queryGeometry.size()); for (const auto& c : queryGeometry) { tileSpaceQueryGeometry.push_back(TileCoordinate::toGeometryCoordinate(renderTile.id, c)); } renderTile.tile.queryRenderedFeatures(result, tileSpaceQueryGeometry, transformState, style, options); } return result; } std::vector TilePyramid::querySourceFeatures(const SourceQueryOptions& options) const { std::vector result; for (const auto& pair : tiles) { pair.second->querySourceFeatures(result, options); } return result; } void TilePyramid::setCacheSize(size_t size) { cache.setSize(size); } void TilePyramid::onLowMemory() { cache.clear(); } void TilePyramid::setObserver(TileObserver* observer_) { observer = observer_; } void TilePyramid::dumpDebugLogs() const { for (const auto& pair : tiles) { pair.second->dumpDebugLogs(); } } } // namespace mbgl