// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "runtime-profiler.h" #include "assembler.h" #include "code-stubs.h" #include "compilation-cache.h" #include "deoptimizer.h" #include "execution.h" #include "global-handles.h" #include "isolate-inl.h" #include "mark-compact.h" #include "platform.h" #include "scopeinfo.h" namespace v8 { namespace internal { // Optimization sampler constants. static const int kSamplerFrameCount = 2; // Constants for statistical profiler. static const int kSamplerFrameWeight[kSamplerFrameCount] = { 2, 1 }; static const int kSamplerTicksBetweenThresholdAdjustment = 32; static const int kSamplerThresholdInit = 3; static const int kSamplerThresholdMin = 1; static const int kSamplerThresholdDelta = 1; static const int kSamplerThresholdSizeFactorInit = 3; static const int kSizeLimit = 1500; // Constants for counter based profiler. // Number of times a function has to be seen on the stack before it is // optimized. static const int kProfilerTicksBeforeOptimization = 2; // If a function does not have enough type info (according to // FLAG_type_info_threshold), but has seen a huge number of ticks, // optimize it as it is. static const int kTicksWhenNotEnoughTypeInfo = 100; // We only have one byte to store the number of ticks. STATIC_ASSERT(kTicksWhenNotEnoughTypeInfo < 256); // Maximum size in bytes of generated code for a function to be optimized // the very first time it is seen on the stack. static const int kMaxSizeEarlyOpt = 500; Atomic32 RuntimeProfiler::state_ = 0; // TODO(isolates): Clean up the semaphore when it is no longer required. static LazySemaphore<0>::type semaphore = LAZY_SEMAPHORE_INITIALIZER; #ifdef DEBUG bool RuntimeProfiler::has_been_globally_set_up_ = false; #endif bool RuntimeProfiler::enabled_ = false; RuntimeProfiler::RuntimeProfiler(Isolate* isolate) : isolate_(isolate), sampler_threshold_(kSamplerThresholdInit), sampler_threshold_size_factor_(kSamplerThresholdSizeFactorInit), sampler_ticks_until_threshold_adjustment_( kSamplerTicksBetweenThresholdAdjustment), sampler_window_position_(0), any_ic_changed_(false), code_generated_(false) { ClearSampleBuffer(); } void RuntimeProfiler::GlobalSetUp() { ASSERT(!has_been_globally_set_up_); enabled_ = V8::UseCrankshaft() && FLAG_opt; #ifdef DEBUG has_been_globally_set_up_ = true; #endif } static void GetICCounts(JSFunction* function, int* ic_with_type_info_count, int* ic_total_count, int* percentage) { *ic_total_count = 0; *ic_with_type_info_count = 0; Object* raw_info = function->shared()->code()->type_feedback_info(); if (raw_info->IsTypeFeedbackInfo()) { TypeFeedbackInfo* info = TypeFeedbackInfo::cast(raw_info); *ic_with_type_info_count = info->ic_with_type_info_count(); *ic_total_count = info->ic_total_count(); } *percentage = *ic_total_count > 0 ? 100 * *ic_with_type_info_count / *ic_total_count : 100; } void RuntimeProfiler::Optimize(JSFunction* function, const char* reason) { ASSERT(function->IsOptimizable()); if (FLAG_trace_opt) { PrintF("[marking "); function->PrintName(); PrintF(" 0x%" V8PRIxPTR, reinterpret_cast(function->address())); PrintF(" for recompilation, reason: %s", reason); if (FLAG_type_info_threshold > 0) { int typeinfo, total, percentage; GetICCounts(function, &typeinfo, &total, &percentage); PrintF(", ICs with typeinfo: %d/%d (%d%%)", typeinfo, total, percentage); } PrintF("]\n"); } // The next call to the function will trigger optimization. function->MarkForLazyRecompilation(); } void RuntimeProfiler::AttemptOnStackReplacement(JSFunction* function) { // See AlwaysFullCompiler (in compiler.cc) comment on why we need // Debug::has_break_points(). ASSERT(function->IsMarkedForLazyRecompilation()); if (!FLAG_use_osr || isolate_->DebuggerHasBreakPoints() || function->IsBuiltin()) { return; } SharedFunctionInfo* shared = function->shared(); // If the code is not optimizable, don't try OSR. if (!shared->code()->optimizable()) return; // We are not prepared to do OSR for a function that already has an // allocated arguments object. The optimized code would bypass it for // arguments accesses, which is unsound. Don't try OSR. if (shared->uses_arguments()) return; // We're using on-stack replacement: patch the unoptimized code so that // any back edge in any unoptimized frame will trigger on-stack // replacement for that frame. if (FLAG_trace_osr) { PrintF("[patching stack checks in "); function->PrintName(); PrintF(" for on-stack replacement]\n"); } // Get the stack check stub code object to match against. We aren't // prepared to generate it, but we don't expect to have to. bool found_code = false; Code* stack_check_code = NULL; if (FLAG_count_based_interrupts) { InterruptStub interrupt_stub; found_code = interrupt_stub.FindCodeInCache(&stack_check_code); } else // NOLINT { // NOLINT StackCheckStub check_stub; found_code = check_stub.FindCodeInCache(&stack_check_code); } if (found_code) { Code* replacement_code = isolate_->builtins()->builtin(Builtins::kOnStackReplacement); Code* unoptimized_code = shared->code(); Deoptimizer::PatchStackCheckCode(unoptimized_code, stack_check_code, replacement_code); } } void RuntimeProfiler::ClearSampleBuffer() { memset(sampler_window_, 0, sizeof(sampler_window_)); memset(sampler_window_weight_, 0, sizeof(sampler_window_weight_)); } int RuntimeProfiler::LookupSample(JSFunction* function) { int weight = 0; for (int i = 0; i < kSamplerWindowSize; i++) { Object* sample = sampler_window_[i]; if (sample != NULL) { if (function == sample) { weight += sampler_window_weight_[i]; } } } return weight; } void RuntimeProfiler::AddSample(JSFunction* function, int weight) { ASSERT(IsPowerOf2(kSamplerWindowSize)); sampler_window_[sampler_window_position_] = function; sampler_window_weight_[sampler_window_position_] = weight; sampler_window_position_ = (sampler_window_position_ + 1) & (kSamplerWindowSize - 1); } void RuntimeProfiler::OptimizeNow() { HandleScope scope(isolate_); // Run through the JavaScript frames and collect them. If we already // have a sample of the function, we mark it for optimizations // (eagerly or lazily). JSFunction* samples[kSamplerFrameCount]; int sample_count = 0; int frame_count = 0; int frame_count_limit = FLAG_watch_ic_patching ? FLAG_frame_count : kSamplerFrameCount; for (JavaScriptFrameIterator it(isolate_); frame_count++ < frame_count_limit && !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); JSFunction* function = JSFunction::cast(frame->function()); if (!FLAG_watch_ic_patching) { // Adjust threshold each time we have processed // a certain number of ticks. if (sampler_ticks_until_threshold_adjustment_ > 0) { sampler_ticks_until_threshold_adjustment_--; if (sampler_ticks_until_threshold_adjustment_ <= 0) { // If the threshold is not already at the minimum // modify and reset the ticks until next adjustment. if (sampler_threshold_ > kSamplerThresholdMin) { sampler_threshold_ -= kSamplerThresholdDelta; sampler_ticks_until_threshold_adjustment_ = kSamplerTicksBetweenThresholdAdjustment; } } } } Code* shared_code = function->shared()->code(); if (shared_code->kind() != Code::FUNCTION) continue; if (function->IsMarkedForLazyRecompilation()) { int nesting = shared_code->allow_osr_at_loop_nesting_level(); if (nesting == 0) AttemptOnStackReplacement(function); int new_nesting = Min(nesting + 1, Code::kMaxLoopNestingMarker); shared_code->set_allow_osr_at_loop_nesting_level(new_nesting); } // Do not record non-optimizable functions. if (!function->IsOptimizable()) continue; if (function->shared()->optimization_disabled()) continue; // Only record top-level code on top of the execution stack and // avoid optimizing excessively large scripts since top-level code // will be executed only once. const int kMaxToplevelSourceSize = 10 * 1024; if (function->shared()->is_toplevel() && (frame_count > 1 || function->shared()->SourceSize() > kMaxToplevelSourceSize)) { continue; } if (FLAG_watch_ic_patching) { int ticks = shared_code->profiler_ticks(); if (ticks >= kProfilerTicksBeforeOptimization) { int typeinfo, total, percentage; GetICCounts(function, &typeinfo, &total, &percentage); if (percentage >= FLAG_type_info_threshold) { // If this particular function hasn't had any ICs patched for enough // ticks, optimize it now. Optimize(function, "hot and stable"); } else if (ticks >= kTicksWhenNotEnoughTypeInfo) { Optimize(function, "not much type info but very hot"); } else { shared_code->set_profiler_ticks(ticks + 1); if (FLAG_trace_opt_verbose) { PrintF("[not yet optimizing "); function->PrintName(); PrintF(", not enough type info: %d/%d (%d%%)]\n", typeinfo, total, percentage); } } } else if (!any_ic_changed_ && shared_code->instruction_size() < kMaxSizeEarlyOpt) { // If no IC was patched since the last tick and this function is very // small, optimistically optimize it now. Optimize(function, "small function"); } else { shared_code->set_profiler_ticks(ticks + 1); } } else { // !FLAG_watch_ic_patching samples[sample_count++] = function; int function_size = function->shared()->SourceSize(); int threshold_size_factor = (function_size > kSizeLimit) ? sampler_threshold_size_factor_ : 1; int threshold = sampler_threshold_ * threshold_size_factor; if (LookupSample(function) >= threshold) { Optimize(function, "sampler window lookup"); } } } if (FLAG_watch_ic_patching) { any_ic_changed_ = false; } else { // !FLAG_watch_ic_patching // Add the collected functions as samples. It's important not to do // this as part of collecting them because this will interfere with // the sample lookup in case of recursive functions. for (int i = 0; i < sample_count; i++) { AddSample(samples[i], kSamplerFrameWeight[i]); } } } void RuntimeProfiler::NotifyTick() { if (FLAG_count_based_interrupts) return; isolate_->stack_guard()->RequestRuntimeProfilerTick(); } void RuntimeProfiler::SetUp() { ASSERT(has_been_globally_set_up_); if (!FLAG_watch_ic_patching) { ClearSampleBuffer(); } // If the ticker hasn't already started, make sure to do so to get // the ticks for the runtime profiler. if (IsEnabled()) isolate_->logger()->EnsureTickerStarted(); } void RuntimeProfiler::Reset() { if (!FLAG_watch_ic_patching) { sampler_threshold_ = kSamplerThresholdInit; sampler_threshold_size_factor_ = kSamplerThresholdSizeFactorInit; sampler_ticks_until_threshold_adjustment_ = kSamplerTicksBetweenThresholdAdjustment; } } void RuntimeProfiler::TearDown() { // Nothing to do. } int RuntimeProfiler::SamplerWindowSize() { return kSamplerWindowSize; } // Update the pointers in the sampler window after a GC. void RuntimeProfiler::UpdateSamplesAfterScavenge() { for (int i = 0; i < kSamplerWindowSize; i++) { Object* function = sampler_window_[i]; if (function != NULL && isolate_->heap()->InNewSpace(function)) { MapWord map_word = HeapObject::cast(function)->map_word(); if (map_word.IsForwardingAddress()) { sampler_window_[i] = map_word.ToForwardingAddress(); } else { sampler_window_[i] = NULL; } } } } void RuntimeProfiler::HandleWakeUp(Isolate* isolate) { // The profiler thread must still be waiting. ASSERT(NoBarrier_Load(&state_) >= 0); // In IsolateEnteredJS we have already incremented the counter and // undid the decrement done by the profiler thread. Increment again // to get the right count of active isolates. NoBarrier_AtomicIncrement(&state_, 1); semaphore.Pointer()->Signal(); } bool RuntimeProfiler::IsSomeIsolateInJS() { return NoBarrier_Load(&state_) > 0; } bool RuntimeProfiler::WaitForSomeIsolateToEnterJS() { Atomic32 old_state = NoBarrier_CompareAndSwap(&state_, 0, -1); ASSERT(old_state >= -1); if (old_state != 0) return false; semaphore.Pointer()->Wait(); return true; } void RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(Thread* thread) { // Do a fake increment. If the profiler is waiting on the semaphore, // the returned state is 0, which can be left as an initial state in // case profiling is restarted later. If the profiler is not // waiting, the increment will prevent it from waiting, but has to // be undone after the profiler is stopped. Atomic32 new_state = NoBarrier_AtomicIncrement(&state_, 1); ASSERT(new_state >= 0); if (new_state == 0) { // The profiler thread is waiting. Wake it up. It must check for // stop conditions before attempting to wait again. semaphore.Pointer()->Signal(); } thread->Join(); // The profiler thread is now stopped. Undo the increment in case it // was not waiting. if (new_state != 0) { NoBarrier_AtomicIncrement(&state_, -1); } } void RuntimeProfiler::RemoveDeadSamples() { for (int i = 0; i < kSamplerWindowSize; i++) { Object* function = sampler_window_[i]; if (function != NULL && !Marking::MarkBitFrom(HeapObject::cast(function)).Get()) { sampler_window_[i] = NULL; } } } void RuntimeProfiler::UpdateSamplesAfterCompact(ObjectVisitor* visitor) { for (int i = 0; i < kSamplerWindowSize; i++) { visitor->VisitPointer(&sampler_window_[i]); } } bool RuntimeProfilerRateLimiter::SuspendIfNecessary() { if (!RuntimeProfiler::IsSomeIsolateInJS()) { return RuntimeProfiler::WaitForSomeIsolateToEnterJS(); } return false; } } } // namespace v8::internal