/**************************************************************************** ** ** Copyright (C) 2015 Jolla Ltd, author: ** Contact: http://www.qt-project.org/legal ** ** This file is part of the Qt Graphical Effects module of the Qt Toolkit. ** ** $QT_BEGIN_LICENSE:LGPL21$ ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see http://www.qt.io/terms-conditions. For further ** information use the contact form at http://www.qt.io/contact-us. ** ** GNU Lesser General Public License Usage ** Alternatively, this file may be used under the terms of the GNU Lesser ** General Public License version 2.1 or version 3 as published by the Free ** Software Foundation and appearing in the file LICENSE.LGPLv21 and ** LICENSE.LGPLv3 included in the packaging of this file. Please review the ** following information to ensure the GNU Lesser General Public License ** requirements will be met: https://www.gnu.org/licenses/lgpl.html and ** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ** ** As a special exception, The Qt Company gives you certain additional ** rights. These rights are described in The Qt Company LGPL Exception ** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ** ** $QT_END_LICENSE$ ** ****************************************************************************/ #include "qgfxshaderbuilder_p.h" #include #include #include #include #include #include #ifndef GL_MAX_VARYING_COMPONENTS #define GL_MAX_VARYING_COMPONENTS 0x8B4B #endif #ifndef GL_MAX_VARYING_FLOATS #define GL_MAX_VARYING_FLOATS 0x8DFC #endif QGfxShaderBuilder::QGfxShaderBuilder() { // The following code makes the assumption that an OpenGL context the GUI // thread will get the same capabilities as the render thread's OpenGL // context. Not 100% accurate, but it works... QOpenGLContext context; context.create(); QOffscreenSurface surface; // In very odd cases, we can get incompatible configs here unless we pass the // GL context's format on to the offscreen format. surface.setFormat(context.format()); surface.create(); if (context.makeCurrent(&surface)) { QOpenGLFunctions *gl = context.functions(); if (context.isOpenGLES()) { gl->glGetIntegerv(GL_MAX_VARYING_VECTORS, &m_maxBlurSamples); } else if (context.format().majorVersion() >= 3) { int components; gl->glGetIntegerv(GL_MAX_VARYING_COMPONENTS, &components); m_maxBlurSamples = components / 2.0; } else { int floats; gl->glGetIntegerv(GL_MAX_VARYING_FLOATS, &floats); m_maxBlurSamples = floats / 2.0; } context.doneCurrent(); } else { qDebug() << "failed to acquire GL context to resolve capabilities, using defaults.."; m_maxBlurSamples = 8; // minimum number of varyings in the ES 2.0 spec. } } /* The algorithm works like this.. For every two pixels we want to sample we take one sample between those two pixels and rely on linear interpoliation to get both values at the cost of one texture sample. The sample point is calculated based on the gaussian weights at the two texels. I've included the table here for future reference: Requested Effective Actual Actual Samples Radius/Kernel Samples Radius(*) ------------------------------------------------- 0 0 / 1x1 1 0 1 0 / 1x1 1 0 2 1 / 3x3 2 0 3 1 / 3x3 2 0 4 2 / 5x5 3 1 5 2 / 5x5 3 1 6 3 / 7x7 4 1 7 3 / 7x7 4 1 8 4 / 9x9 5 2 9 4 / 9x9 5 2 10 5 / 11x11 6 2 11 5 / 11x11 6 2 12 6 / 13x13 7 3 13 6 / 13x13 7 3 ... ... ... ... When ActualSamples is an 'odd' nunber, sample center pixel separately: EffectiveRadius: 4 EffectiveKernel: 9x9 ActualSamples: 5 -4 -3 -2 -1 0 +1 +2 +3 +4 | | | | | | | | | | \ / \ / | \ / \ / tL2 tL1 tC tR1 tR2 When ActualSamples is an 'even' number, sample 3 center pixels with two samples: EffectiveRadius: 3 EffectiveKernel: 7x7 ActualSamples: 4 -3 -2 -1 0 +1 +2 +3 | | | | | | | | \ / \ / | \ / tL1 tL0 tR0 tR2 From this table we have the following formulas: EffectiveRadius = RequestedSamples / 2; EffectiveKernel = EffectiveRadius * 2 + 1 ActualSamples = 1 + RequstedSamples / 2; ActualRadius = RequestedSamples / 4; (*) ActualRadius excludes the pixel pair sampled in the center for even 'actual sample' counts */ static qreal qgfx_gaussian(qreal x, qreal d) { return qExp(- x * x / (2 * d * d)); } struct QGfxGaussSample { QByteArray name; qreal pos; qreal weight; inline void set(const QByteArray &n, qreal p, qreal w) { name = n; pos = p; weight = w; } }; static void qgfx_declareBlurVaryings(QByteArray &shader, QGfxGaussSample *s, int samples) { for (int i=0; i m_maxBlurSamples || masked) { QByteArray fragShader; if (masked) fragShader += "uniform mediump sampler2D mask;\n"; fragShader += "uniform highp sampler2D source;\n" "uniform lowp float qt_Opacity;\n" "uniform mediump float spread;\n" "uniform highp vec2 step;\n"; if (alphaOnly) { fragShader += "uniform lowp vec4 color;\n" "uniform lowp float thickness;\n"; } fragShader += "\n" "varying highp vec2 qt_TexCoord0;\n" "\n" "void main() {\n"; if (alphaOnly) fragShader += " mediump float result = 0.0;\n"; else fragShader += " mediump vec4 result = vec4(0);\n"; fragShader += " highp vec2 pixelStep = step * spread;\n"; if (masked) fragShader += " pixelStep *= texture2D(mask, qt_TexCoord0).a;\n"; float wSum = 0; for (int r=-requestedRadius; r<=requestedRadius; ++r) { float w = qgfx_gaussian(r, deviation); wSum += w; fragShader += " result += float("; fragShader += QByteArray::number(w); fragShader += ") * texture2D(source, qt_TexCoord0 + pixelStep * float("; fragShader += QByteArray::number(r); fragShader += "))"; if (alphaOnly) fragShader += ".a"; fragShader += ";\n"; } fragShader += " const mediump float wSum = "; fragShader += QByteArray::number(wSum); fragShader += ";\n" " gl_FragColor = "; if (alphaOnly) fragShader += "mix(vec4(0), color, clamp((result / wSum) / thickness, 0.0, 1.0)) * qt_Opacity;\n"; else fragShader += "(qt_Opacity / wSum) * result;\n"; fragShader += "}\n"; result[QStringLiteral("fragmentShader")] = fragShader; result[QStringLiteral("vertexShader")] = "attribute highp vec4 qt_Vertex;\n" "attribute highp vec2 qt_MultiTexCoord0;\n" "uniform highp mat4 qt_Matrix;\n" "varying highp vec2 qt_TexCoord0;\n" "void main() {\n" " gl_Position = qt_Matrix * qt_Vertex;\n" " qt_TexCoord0 = qt_MultiTexCoord0;\n" "}\n"; return result; } QVarLengthArray p(samples); qgfx_buildGaussSamplePoints(p.data(), samples, radius, deviation); result[QStringLiteral("fragmentShader")] = qgfx_gaussianFragmentShader(p.data(), samples, alphaOnly); result[QStringLiteral("vertexShader")] = qgfx_gaussianVertexShader(p.data(), samples); return result; }