/* * Copyright (C) 2011 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "DFGSpeculativeJIT.h" #if ENABLE(DFG_JIT) namespace JSC { namespace DFG { template GPRReg SpeculativeJIT::fillSpeculateIntInternal(NodeIndex nodeIndex, DataFormat& returnFormat) { Node& node = m_jit.graph()[nodeIndex]; VirtualRegister virtualRegister = node.virtualRegister(); GenerationInfo& info = m_generationInfo[virtualRegister]; switch (info.registerFormat()) { case DataFormatNone: { GPRReg gpr = allocate(); if (node.isConstant()) { m_gprs.retain(gpr, virtualRegister, SpillOrderConstant); if (isInt32Constant(nodeIndex)) { m_jit.move(MacroAssembler::Imm32(valueOfInt32Constant(nodeIndex)), gpr); info.fillInteger(gpr); returnFormat = DataFormatInteger; return gpr; } m_jit.move(constantAsJSValueAsImmPtr(nodeIndex), gpr); } else { DataFormat spillFormat = info.spillFormat(); ASSERT(spillFormat & DataFormatJS); m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled); if (spillFormat == DataFormatJSInteger) { // If we know this was spilled as an integer we can fill without checking. if (strict) { m_jit.load32(JITCompiler::addressFor(virtualRegister), gpr); info.fillInteger(gpr); returnFormat = DataFormatInteger; return gpr; } m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr); info.fillJSValue(gpr, DataFormatJSInteger); returnFormat = DataFormatJSInteger; return gpr; } m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr); } // Fill as JSValue, and fall through. info.fillJSValue(gpr, DataFormatJSInteger); m_gprs.unlock(gpr); } case DataFormatJS: { // Check the value is an integer. GPRReg gpr = info.gpr(); m_gprs.lock(gpr); speculationCheck(m_jit.branchPtr(MacroAssembler::Below, gpr, GPRInfo::tagTypeNumberRegister)); info.fillJSValue(gpr, DataFormatJSInteger); // If !strict we're done, return. if (!strict) { returnFormat = DataFormatJSInteger; return gpr; } // else fall through & handle as DataFormatJSInteger. m_gprs.unlock(gpr); } case DataFormatJSInteger: { // In a strict fill we need to strip off the value tag. if (strict) { GPRReg gpr = info.gpr(); GPRReg result; // If the register has already been locked we need to take a copy. // If not, we'll zero extend in place, so mark on the info that this is now type DataFormatInteger, not DataFormatJSInteger. if (m_gprs.isLocked(gpr)) result = allocate(); else { m_gprs.lock(gpr); info.fillInteger(gpr); result = gpr; } m_jit.zeroExtend32ToPtr(gpr, result); returnFormat = DataFormatInteger; return result; } GPRReg gpr = info.gpr(); m_gprs.lock(gpr); returnFormat = DataFormatJSInteger; return gpr; } case DataFormatInteger: { GPRReg gpr = info.gpr(); m_gprs.lock(gpr); returnFormat = DataFormatInteger; return gpr; } case DataFormatDouble: case DataFormatCell: case DataFormatJSDouble: case DataFormatJSCell: { terminateSpeculativeExecution(); returnFormat = DataFormatInteger; return allocate(); } } ASSERT_NOT_REACHED(); return InvalidGPRReg; } SpeculationCheck::SpeculationCheck(MacroAssembler::Jump check, SpeculativeJIT* jit, unsigned recoveryIndex) : m_check(check) , m_nodeIndex(jit->m_compileIndex) , m_recoveryIndex(recoveryIndex) { for (gpr_iterator iter = jit->m_gprs.begin(); iter != jit->m_gprs.end(); ++iter) { if (iter.name() != InvalidVirtualRegister) { GenerationInfo& info = jit->m_generationInfo[iter.name()]; m_gprInfo[iter.index()].nodeIndex = info.nodeIndex(); m_gprInfo[iter.index()].format = info.registerFormat(); } else m_gprInfo[iter.index()].nodeIndex = NoNode; } for (fpr_iterator iter = jit->m_fprs.begin(); iter != jit->m_fprs.end(); ++iter) { if (iter.name() != InvalidVirtualRegister) { GenerationInfo& info = jit->m_generationInfo[iter.name()]; ASSERT(info.registerFormat() == DataFormatDouble); m_fprInfo[iter.index()] = info.nodeIndex(); } else m_fprInfo[iter.index()] = NoNode; } } GPRReg SpeculativeJIT::fillSpeculateInt(NodeIndex nodeIndex, DataFormat& returnFormat) { return fillSpeculateIntInternal(nodeIndex, returnFormat); } GPRReg SpeculativeJIT::fillSpeculateIntStrict(NodeIndex nodeIndex) { DataFormat mustBeDataFormatInteger; GPRReg result = fillSpeculateIntInternal(nodeIndex, mustBeDataFormatInteger); ASSERT(mustBeDataFormatInteger == DataFormatInteger); return result; } GPRReg SpeculativeJIT::fillSpeculateCell(NodeIndex nodeIndex) { Node& node = m_jit.graph()[nodeIndex]; VirtualRegister virtualRegister = node.virtualRegister(); GenerationInfo& info = m_generationInfo[virtualRegister]; switch (info.registerFormat()) { case DataFormatNone: { GPRReg gpr = allocate(); if (node.isConstant()) { m_gprs.retain(gpr, virtualRegister, SpillOrderConstant); JSValue jsValue = constantAsJSValue(nodeIndex); if (jsValue.isCell()) { m_jit.move(MacroAssembler::TrustedImmPtr(jsValue.asCell()), gpr); info.fillJSValue(gpr, DataFormatJSCell); return gpr; } terminateSpeculativeExecution(); return gpr; } ASSERT(info.spillFormat() & DataFormatJS); m_gprs.retain(gpr, virtualRegister, SpillOrderSpilled); m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), gpr); if (info.spillFormat() != DataFormatJSCell) speculationCheck(m_jit.branchTestPtr(MacroAssembler::NonZero, gpr, GPRInfo::tagMaskRegister)); info.fillJSValue(gpr, DataFormatJSCell); return gpr; } case DataFormatCell: case DataFormatJSCell: { GPRReg gpr = info.gpr(); m_gprs.lock(gpr); return gpr; } case DataFormatJS: { GPRReg gpr = info.gpr(); m_gprs.lock(gpr); speculationCheck(m_jit.branchTestPtr(MacroAssembler::NonZero, gpr, GPRInfo::tagMaskRegister)); info.fillJSValue(gpr, DataFormatJSCell); return gpr; } case DataFormatJSInteger: case DataFormatInteger: case DataFormatJSDouble: case DataFormatDouble: { terminateSpeculativeExecution(); return allocate(); } } ASSERT_NOT_REACHED(); return InvalidGPRReg; } void SpeculativeJIT::compilePeepHoleBranch(Node& node, JITCompiler::RelationalCondition condition) { Node& branchNode = m_jit.graph()[m_compileIndex + 1]; BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(branchNode.takenBytecodeOffset()); BlockIndex notTaken = m_jit.graph().blockIndexForBytecodeOffset(branchNode.notTakenBytecodeOffset()); // The branch instruction will branch to the taken block. // If taken is next, switch taken with notTaken & invert the branch condition so we can fall through. if (taken == (m_block + 1)) { condition = JITCompiler::invert(condition); BlockIndex tmp = taken; taken = notTaken; notTaken = tmp; } int32_t imm; if (isJSConstantWithInt32Value(node.child1, imm)) { SpeculateIntegerOperand op2(this, node.child2); addBranch(m_jit.branch32(condition, JITCompiler::Imm32(imm), op2.gpr()), taken); } else if (isJSConstantWithInt32Value(node.child2, imm)) { SpeculateIntegerOperand op1(this, node.child1); addBranch(m_jit.branch32(condition, op1.gpr(), JITCompiler::Imm32(imm)), taken); } else { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); addBranch(m_jit.branch32(condition, op1.gpr(), op2.gpr()), taken); } // Check for fall through, otherwise we need to jump. if (notTaken != (m_block + 1)) addBranch(m_jit.jump(), notTaken); } void SpeculativeJIT::compile(Node& node) { NodeType op = node.op; switch (op) { case Int32Constant: case DoubleConstant: case JSConstant: initConstantInfo(m_compileIndex); break; case GetLocal: { GPRTemporary result(this); PredictedType prediction = m_jit.graph().getPrediction(node.local()); if (prediction == PredictInt32) { m_jit.load32(JITCompiler::payloadFor(node.local()), result.gpr()); // Like integerResult, but don't useChildren - our children are phi nodes, // and don't represent values within this dataflow with virtual registers. VirtualRegister virtualRegister = node.virtualRegister(); m_gprs.retain(result.gpr(), virtualRegister, SpillOrderInteger); m_generationInfo[virtualRegister].initInteger(m_compileIndex, node.refCount(), result.gpr()); } else { m_jit.loadPtr(JITCompiler::addressFor(node.local()), result.gpr()); // Like jsValueResult, but don't useChildren - our children are phi nodes, // and don't represent values within this dataflow with virtual registers. VirtualRegister virtualRegister = node.virtualRegister(); m_gprs.retain(result.gpr(), virtualRegister, SpillOrderJS); m_generationInfo[virtualRegister].initJSValue(m_compileIndex, node.refCount(), result.gpr(), (prediction == PredictArray) ? DataFormatJSCell : DataFormatJS); } break; } case SetLocal: { switch (m_jit.graph().getPrediction(node.local())) { case PredictInt32: { SpeculateIntegerOperand value(this, node.child1); m_jit.store32(value.gpr(), JITCompiler::payloadFor(node.local())); noResult(m_compileIndex); break; } case PredictArray: { SpeculateCellOperand cell(this, node.child1); m_jit.storePtr(cell.gpr(), JITCompiler::addressFor(node.local())); noResult(m_compileIndex); break; } default: { JSValueOperand value(this, node.child1); m_jit.storePtr(value.gpr(), JITCompiler::addressFor(node.local())); noResult(m_compileIndex); break; } } break; } case BitAnd: case BitOr: case BitXor: if (isInt32Constant(node.child1)) { SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op2); bitOp(op, valueOfInt32Constant(node.child1), op2.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex); } else if (isInt32Constant(node.child2)) { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); bitOp(op, valueOfInt32Constant(node.child2), op1.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex); } else { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); GPRReg reg1 = op1.gpr(); GPRReg reg2 = op2.gpr(); bitOp(op, reg1, reg2, result.gpr()); integerResult(result.gpr(), m_compileIndex); } break; case BitRShift: case BitLShift: case BitURShift: if (isInt32Constant(node.child2)) { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); shiftOp(op, op1.gpr(), valueOfInt32Constant(node.child2) & 0x1f, result.gpr()); integerResult(result.gpr(), m_compileIndex); } else { // Do not allow shift amount to be used as the result, MacroAssembler does not permit this. SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1); GPRReg reg1 = op1.gpr(); GPRReg reg2 = op2.gpr(); shiftOp(op, reg1, reg2, result.gpr()); integerResult(result.gpr(), m_compileIndex); } break; case UInt32ToNumber: { IntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); // Test the operand is positive. speculationCheck(m_jit.branch32(MacroAssembler::LessThan, op1.gpr(), TrustedImm32(0))); m_jit.move(op1.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex, op1.format()); break; } case NumberToInt32: { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); m_jit.move(op1.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex, op1.format()); break; } case Int32ToNumber: { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); m_jit.move(op1.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex, op1.format()); break; } case ValueToInt32: { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); m_jit.move(op1.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex, op1.format()); break; } case ValueToNumber: { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this, op1); m_jit.move(op1.gpr(), result.gpr()); integerResult(result.gpr(), m_compileIndex, op1.format()); break; } case ValueAdd: case ArithAdd: { int32_t imm1; if (isDoubleConstantWithInt32Value(node.child1, imm1)) { SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this); speculationCheck(m_jit.branchAdd32(MacroAssembler::Overflow, op2.gpr(), Imm32(imm1), result.gpr())); integerResult(result.gpr(), m_compileIndex); break; } int32_t imm2; if (isDoubleConstantWithInt32Value(node.child2, imm2)) { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this); speculationCheck(m_jit.branchAdd32(MacroAssembler::Overflow, op1.gpr(), Imm32(imm2), result.gpr())); integerResult(result.gpr(), m_compileIndex); break; } SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); GPRReg gpr1 = op1.gpr(); GPRReg gpr2 = op2.gpr(); GPRReg gprResult = result.gpr(); MacroAssembler::Jump check = m_jit.branchAdd32(MacroAssembler::Overflow, gpr1, gpr2, gprResult); if (gpr1 == gprResult) speculationCheck(check, SpeculationRecovery(SpeculativeAdd, gprResult, gpr2)); else if (gpr2 == gprResult) speculationCheck(check, SpeculationRecovery(SpeculativeAdd, gprResult, gpr1)); else speculationCheck(check); integerResult(gprResult, m_compileIndex); break; } case ArithSub: { int32_t imm2; if (isDoubleConstantWithInt32Value(node.child2, imm2)) { SpeculateIntegerOperand op1(this, node.child1); GPRTemporary result(this); speculationCheck(m_jit.branchSub32(MacroAssembler::Overflow, op1.gpr(), Imm32(imm2), result.gpr())); integerResult(result.gpr(), m_compileIndex); break; } SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this); speculationCheck(m_jit.branchSub32(MacroAssembler::Overflow, op1.gpr(), op2.gpr(), result.gpr())); integerResult(result.gpr(), m_compileIndex); break; } case ArithMul: { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this); GPRReg reg1 = op1.gpr(); GPRReg reg2 = op2.gpr(); speculationCheck(m_jit.branchMul32(MacroAssembler::Overflow, reg1, reg2, result.gpr())); MacroAssembler::Jump resultNonZero = m_jit.branchTest32(MacroAssembler::NonZero, result.gpr()); speculationCheck(m_jit.branch32(MacroAssembler::LessThan, reg1, TrustedImm32(0))); speculationCheck(m_jit.branch32(MacroAssembler::LessThan, reg2, TrustedImm32(0))); resultNonZero.link(&m_jit); integerResult(result.gpr(), m_compileIndex); break; } case ArithDiv: { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); op1.gpr(); op2.gpr(); terminateSpeculativeExecution(); integerResult(result.gpr(), m_compileIndex); break; } case ArithMod: { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); op1.gpr(); op2.gpr(); terminateSpeculativeExecution(); integerResult(result.gpr(), m_compileIndex); break; } case LogicalNot: { JSValueOperand value(this, node.child1); GPRTemporary result(this); // FIXME: We could reuse, but on speculation fail would need recovery to restore tag (akin to add). m_jit.move(value.gpr(), result.gpr()); m_jit.xorPtr(TrustedImm32(static_cast(ValueFalse)), result.gpr()); speculationCheck(m_jit.branchTestPtr(JITCompiler::NonZero, result.gpr(), TrustedImm32(static_cast(~1)))); m_jit.xorPtr(TrustedImm32(static_cast(ValueTrue)), result.gpr()); // If we add a DataFormatBool, we should use it here. jsValueResult(result.gpr(), m_compileIndex); break; } case CompareLess: { // Fused compare & branch. if (detectPeepHoleBranch()) { // detectPeepHoleBranch currently only permits the branch to be the very next node, // so can be no intervening nodes to also reference the compare. ASSERT(node.adjustedRefCount() == 1); compilePeepHoleBranch(node, JITCompiler::LessThan); use(node.child1); use(node.child2); ++m_compileIndex; return; } // Normal case, not fused to branch. SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); m_jit.compare32(JITCompiler::LessThan, op1.gpr(), op2.gpr(), result.gpr()); // If we add a DataFormatBool, we should use it here. m_jit.or32(TrustedImm32(ValueFalse), result.gpr()); jsValueResult(result.gpr(), m_compileIndex); break; } case CompareLessEq: { // Fused compare & branch. if (detectPeepHoleBranch()) { // detectPeepHoleBranch currently only permits the branch to be the very next node, // so can be no intervening nodes to also reference the compare. ASSERT(node.adjustedRefCount() == 1); compilePeepHoleBranch(node, JITCompiler::LessThanOrEqual); use(node.child1); use(node.child2); ++m_compileIndex; return; } // Normal case, not fused to branch. SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); m_jit.compare32(JITCompiler::LessThanOrEqual, op1.gpr(), op2.gpr(), result.gpr()); // If we add a DataFormatBool, we should use it here. m_jit.or32(TrustedImm32(ValueFalse), result.gpr()); jsValueResult(result.gpr(), m_compileIndex); break; } case CompareEq: { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); m_jit.compare32(JITCompiler::Equal, op1.gpr(), op2.gpr(), result.gpr()); // If we add a DataFormatBool, we should use it here. m_jit.or32(TrustedImm32(ValueFalse), result.gpr()); jsValueResult(result.gpr(), m_compileIndex); break; } case CompareStrictEq: { SpeculateIntegerOperand op1(this, node.child1); SpeculateIntegerOperand op2(this, node.child2); GPRTemporary result(this, op1, op2); m_jit.compare32(JITCompiler::Equal, op1.gpr(), op2.gpr(), result.gpr()); // If we add a DataFormatBool, we should use it here. m_jit.or32(TrustedImm32(ValueFalse), result.gpr()); jsValueResult(result.gpr(), m_compileIndex); break; } case GetByVal: { NodeIndex alias = node.child3; if (alias != NoNode) { // FIXME: result should be able to reuse child1, child2. Should have an 'UnusedOperand' type. JSValueOperand aliasedValue(this, node.child3); GPRTemporary result(this, aliasedValue); m_jit.move(aliasedValue.gpr(), result.gpr()); jsValueResult(result.gpr(), m_compileIndex); break; } SpeculateCellOperand base(this, node.child1); SpeculateStrictInt32Operand property(this, node.child2); GPRTemporary storage(this); GPRReg baseReg = base.gpr(); GPRReg propertyReg = property.gpr(); GPRReg storageReg = storage.gpr(); // Get the array storage. We haven't yet checked this is a JSArray, so this is only safe if // an access with offset JSArray::storageOffset() is valid for all JSCells! m_jit.loadPtr(MacroAssembler::Address(baseReg, JSArray::storageOffset()), storageReg); // Check that base is an array, and that property is contained within m_vector (< m_vectorLength). // If we have predicted the base to be type array, we can skip the check. Node& baseNode = m_jit.graph()[node.child1]; if (baseNode.op != GetLocal || m_jit.graph().getPrediction(baseNode.local()) != PredictArray) speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(baseReg), MacroAssembler::TrustedImmPtr(m_jit.globalData()->jsArrayVPtr))); speculationCheck(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(baseReg, JSArray::vectorLengthOffset()))); // FIXME: In cases where there are subsequent by_val accesses to the same base it might help to cache // the storage pointer - especially if there happens to be another register free right now. If we do so, // then we'll need to allocate a new temporary for result. GPRTemporary& result = storage; m_jit.loadPtr(MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0])), result.gpr()); speculationCheck(m_jit.branchTestPtr(MacroAssembler::Zero, result.gpr())); jsValueResult(result.gpr(), m_compileIndex); break; } case PutByVal: { SpeculateCellOperand base(this, node.child1); SpeculateStrictInt32Operand property(this, node.child2); JSValueOperand value(this, node.child3); GPRTemporary storage(this); // Map base, property & value into registers, allocate a register for storage. GPRReg baseReg = base.gpr(); GPRReg propertyReg = property.gpr(); GPRReg valueReg = value.gpr(); GPRReg storageReg = storage.gpr(); // Check that base is an array, and that property is contained within m_vector (< m_vectorLength). // If we have predicted the base to be type array, we can skip the check. Node& baseNode = m_jit.graph()[node.child1]; if (baseNode.op != GetLocal || m_jit.graph().getPrediction(baseNode.local()) != PredictArray) speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(baseReg), MacroAssembler::TrustedImmPtr(m_jit.globalData()->jsArrayVPtr))); speculationCheck(m_jit.branch32(MacroAssembler::AboveOrEqual, propertyReg, MacroAssembler::Address(baseReg, JSArray::vectorLengthOffset()))); // Get the array storage. m_jit.loadPtr(MacroAssembler::Address(baseReg, JSArray::storageOffset()), storageReg); // Check if we're writing to a hole; if so increment m_numValuesInVector. MacroAssembler::Jump notHoleValue = m_jit.branchTestPtr(MacroAssembler::NonZero, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0]))); m_jit.add32(TrustedImm32(1), MacroAssembler::Address(storageReg, OBJECT_OFFSETOF(ArrayStorage, m_numValuesInVector))); // If we're writing to a hole we might be growing the array; MacroAssembler::Jump lengthDoesNotNeedUpdate = m_jit.branch32(MacroAssembler::Below, propertyReg, MacroAssembler::Address(storageReg, OBJECT_OFFSETOF(ArrayStorage, m_length))); m_jit.add32(TrustedImm32(1), propertyReg); m_jit.store32(propertyReg, MacroAssembler::Address(storageReg, OBJECT_OFFSETOF(ArrayStorage, m_length))); m_jit.sub32(TrustedImm32(1), propertyReg); lengthDoesNotNeedUpdate.link(&m_jit); notHoleValue.link(&m_jit); // Store the value to the array. m_jit.storePtr(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0]))); noResult(m_compileIndex); break; } case PutByValAlias: { SpeculateCellOperand base(this, node.child1); SpeculateStrictInt32Operand property(this, node.child2); JSValueOperand value(this, node.child3); GPRTemporary storage(this, base); // storage may overwrite base. // Get the array storage. GPRReg storageReg = storage.gpr(); m_jit.loadPtr(MacroAssembler::Address(base.gpr(), JSArray::storageOffset()), storageReg); // Map property & value into registers. GPRReg propertyReg = property.gpr(); GPRReg valueReg = value.gpr(); // Store the value to the array. m_jit.storePtr(valueReg, MacroAssembler::BaseIndex(storageReg, propertyReg, MacroAssembler::ScalePtr, OBJECT_OFFSETOF(ArrayStorage, m_vector[0]))); noResult(m_compileIndex); break; } case DFG::Jump: { BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(node.takenBytecodeOffset()); if (taken != (m_block + 1)) addBranch(m_jit.jump(), taken); noResult(m_compileIndex); break; } case Branch: { JSValueOperand value(this, node.child1); GPRReg valueReg = value.gpr(); BlockIndex taken = m_jit.graph().blockIndexForBytecodeOffset(node.takenBytecodeOffset()); BlockIndex notTaken = m_jit.graph().blockIndexForBytecodeOffset(node.notTakenBytecodeOffset()); // Integers addBranch(m_jit.branchPtr(MacroAssembler::Equal, valueReg, MacroAssembler::ImmPtr(JSValue::encode(jsNumber(0)))), notTaken); MacroAssembler::Jump isNonZeroInteger = m_jit.branchPtr(MacroAssembler::AboveOrEqual, valueReg, GPRInfo::tagTypeNumberRegister); // Booleans addBranch(m_jit.branchPtr(MacroAssembler::Equal, valueReg, MacroAssembler::ImmPtr(JSValue::encode(jsBoolean(false)))), notTaken); speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, valueReg, MacroAssembler::ImmPtr(JSValue::encode(jsBoolean(true))))); if (taken == (m_block + 1)) isNonZeroInteger.link(&m_jit); else { addBranch(isNonZeroInteger, taken); addBranch(m_jit.jump(), taken); } noResult(m_compileIndex); break; } case Return: { ASSERT(GPRInfo::callFrameRegister != GPRInfo::regT1); ASSERT(GPRInfo::regT1 != GPRInfo::returnValueGPR); ASSERT(GPRInfo::returnValueGPR != GPRInfo::callFrameRegister); #if DFG_SUCCESS_STATS static SamplingCounter counter("SpeculativeJIT"); m_jit.emitCount(counter); #endif // Return the result in returnValueGPR. JSValueOperand op1(this, node.child1); m_jit.move(op1.gpr(), GPRInfo::returnValueGPR); // Grab the return address. m_jit.emitGetFromCallFrameHeaderPtr(RegisterFile::ReturnPC, GPRInfo::regT1); // Restore our caller's "r". m_jit.emitGetFromCallFrameHeaderPtr(RegisterFile::CallerFrame, GPRInfo::callFrameRegister); // Return. m_jit.restoreReturnAddressBeforeReturn(GPRInfo::regT1); m_jit.ret(); noResult(m_compileIndex); break; } case ConvertThis: { SpeculateCellOperand thisValue(this, node.child1); GPRTemporary temp(this); m_jit.loadPtr(JITCompiler::Address(thisValue.gpr(), JSCell::structureOffset()), temp.gpr()); speculationCheck(m_jit.branchTest8(JITCompiler::NonZero, JITCompiler::Address(temp.gpr(), Structure::typeInfoFlagsOffset()), JITCompiler::TrustedImm32(NeedsThisConversion))); cellResult(thisValue.gpr(), m_compileIndex); break; } case GetById: { JSValueOperand base(this, node.child1); GPRReg baseGPR = base.gpr(); flushRegisters(); GPRResult result(this); callOperation(operationGetById, result.gpr(), baseGPR, identifier(node.identifierNumber())); jsValueResult(result.gpr(), m_compileIndex); break; } case PutById: { JSValueOperand base(this, node.child1); JSValueOperand value(this, node.child2); GPRReg valueGPR = value.gpr(); GPRReg baseGPR = base.gpr(); flushRegisters(); callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByIdStrict : operationPutByIdNonStrict, valueGPR, baseGPR, identifier(node.identifierNumber())); noResult(m_compileIndex); break; } case PutByIdDirect: { JSValueOperand base(this, node.child1); JSValueOperand value(this, node.child2); GPRReg valueGPR = value.gpr(); GPRReg baseGPR = base.gpr(); flushRegisters(); callOperation(m_jit.codeBlock()->isStrictMode() ? operationPutByIdDirectStrict : operationPutByIdDirectNonStrict, valueGPR, baseGPR, identifier(node.identifierNumber())); noResult(m_compileIndex); break; } case GetGlobalVar: { GPRTemporary result(this); JSVariableObject* globalObject = m_jit.codeBlock()->globalObject(); m_jit.loadPtr(globalObject->addressOfRegisters(), result.gpr()); m_jit.loadPtr(JITCompiler::addressForGlobalVar(result.gpr(), node.varNumber()), result.gpr()); jsValueResult(result.gpr(), m_compileIndex); break; } case PutGlobalVar: { JSValueOperand value(this, node.child1); GPRTemporary temp(this); JSVariableObject* globalObject = m_jit.codeBlock()->globalObject(); m_jit.loadPtr(globalObject->addressOfRegisters(), temp.gpr()); m_jit.storePtr(value.gpr(), JITCompiler::addressForGlobalVar(temp.gpr(), node.varNumber())); noResult(m_compileIndex); break; } case Phi: ASSERT_NOT_REACHED(); } if (node.hasResult() && node.mustGenerate()) use(m_compileIndex); } void SpeculativeJIT::compile(BasicBlock& block) { ASSERT(m_compileIndex == block.begin); m_blockHeads[m_block] = m_jit.label(); #if DFG_JIT_BREAK_ON_EVERY_BLOCK m_jit.breakpoint(); #endif for (; m_compileIndex < block.end; ++m_compileIndex) { Node& node = m_jit.graph()[m_compileIndex]; if (!node.shouldGenerate()) continue; #if DFG_DEBUG_VERBOSE fprintf(stderr, "SpeculativeJIT generating Node @%d at JIT offset 0x%x\n", (int)m_compileIndex, m_jit.debugOffset()); #endif #if DFG_JIT_BREAK_ON_EVERY_NODE m_jit.breakpoint(); #endif checkConsistency(); compile(node); if (!m_compileOkay) return; checkConsistency(); } } // If we are making type predictions about our arguments then // we need to check that they are correct on function entry. void SpeculativeJIT::checkArgumentTypes() { ASSERT(!m_compileIndex); for (int i = 0; i < m_jit.codeBlock()->m_numParameters; ++i) { VirtualRegister virtualRegister = (VirtualRegister)(m_jit.codeBlock()->thisRegister() + i); switch (m_jit.graph().getPrediction(virtualRegister)) { case PredictInt32: speculationCheck(m_jit.branchPtr(MacroAssembler::Below, JITCompiler::addressFor(virtualRegister), GPRInfo::tagTypeNumberRegister)); break; case PredictArray: { GPRTemporary temp(this); m_jit.loadPtr(JITCompiler::addressFor(virtualRegister), temp.gpr()); speculationCheck(m_jit.branchTestPtr(MacroAssembler::NonZero, temp.gpr(), GPRInfo::tagMaskRegister)); speculationCheck(m_jit.branchPtr(MacroAssembler::NotEqual, MacroAssembler::Address(temp.gpr()), MacroAssembler::TrustedImmPtr(m_jit.globalData()->jsArrayVPtr))); break; } default: break; } } } // For any vars that we will be treating as numeric, write 0 to // the var on entry. Throughout the block we will only read/write // to the payload, by writing the tag now we prevent the GC from // misinterpreting values as pointers. void SpeculativeJIT::initializeVariableTypes() { ASSERT(!m_compileIndex); for (int var = 0; var < m_jit.codeBlock()->m_numVars; ++var) { if (m_jit.graph().getPrediction(var) == PredictInt32) m_jit.storePtr(GPRInfo::tagTypeNumberRegister, JITCompiler::addressFor((VirtualRegister)var)); } } bool SpeculativeJIT::compile() { checkArgumentTypes(); initializeVariableTypes(); ASSERT(!m_compileIndex); for (m_block = 0; m_block < m_jit.graph().m_blocks.size(); ++m_block) { compile(*m_jit.graph().m_blocks[m_block]); if (!m_compileOkay) return false; } linkBranches(); return true; } } } // namespace JSC::DFG #endif