/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of Qt Creator. ** ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3 as published by the Free Software ** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-3.0.html. ** ****************************************************************************/ #ifndef ALGORITHM_H #define ALGORITHM_H #include // for Q_REQUIRED_RESULT #include #include #include #include namespace Utils { ////////////////// // anyOf ///////////////// // anyOf taking a member function pointer template bool anyOf(const T &container, R (S::*predicate)() const) { return std::any_of(container.begin(), container.end(), std::mem_fn(predicate)); } template bool anyOf(const T &container, F predicate) { return std::any_of(container.begin(), container.end(), predicate); } template int count(const T &container, F predicate) { return std::count_if(container.begin(), container.end(), predicate); } ////////////////// // allOf ///////////////// template bool allOf(const T &container, F predicate) { return std::all_of(container.begin(), container.end(), predicate); } ////////////////// // erase ///////////////// template void erase(QList &container, F predicate) { container.erase(std::remove_if(container.begin(), container.end(), predicate), container.end()); } ////////////////// // contains ///////////////// template bool contains(const T &container, F function) { typename T::const_iterator end = container.end(); typename T::const_iterator begin = container.begin(); typename T::const_iterator it = std::find_if(begin, end, function); return it != end; } ////////////////// // findOr ///////////////// template typename T::value_type findOr(const T &container, typename T::value_type other, F function) { typename T::const_iterator end = container.end(); typename T::const_iterator begin = container.begin(); typename T::const_iterator it = std::find_if(begin, end, function); if (it == end) return other; return *it; } template typename T::value_type findOr(const T &container, typename T::value_type other, R (S::*function)() const) { return findOr(container, other, std::mem_fn(function)); } template int indexOf(const T &container, F function) { typename T::const_iterator end = container.end(); typename T::const_iterator begin = container.begin(); typename T::const_iterator it = std::find_if(begin, end, function); if (it == end) return -1; return it - begin; } template typename T::value_type findOrDefault(const T &container, F function) { return findOr(container, typename T::value_type(), function); } template typename T::value_type findOrDefault(const T &container, R (S::*function)() const) { return findOr(container, typename T::value_type(), function); } ////////////////// // find helpers ////////////////// template auto equal(R (S::*function)() const, T value) -> decltype(std::bind(std::equal_to(), value, std::bind(function, std::placeholders::_1))) { // This should use std::equal_to<> instead of std::eqaul_to, // but that's not supported everywhere yet, since it is C++14 return std::bind(std::equal_to(), value, std::bind(function, std::placeholders::_1)); } template auto equal(R S::*member, T value) -> decltype(std::bind(std::equal_to(), value, std::bind(member, std::placeholders::_1))) { return std::bind(std::equal_to(), value, std::bind(member, std::placeholders::_1)); } ////////////////// // transform ///////////////// namespace { ///////////////// // helper code for transform to use back_inserter and thus push_back for everything // and insert for QSet<> // // QSetInsertIterator, straight from the standard for insert_iterator // just without the additional parameter to insert template class QSetInsertIterator : public std::iterator { protected: Container *container; public: typedef Container container_type; explicit QSetInsertIterator (Container &x) : container(&x) {} QSetInsertIterator &operator=(const typename Container::value_type &value) { container->insert(value); return *this; } QSetInsertIterator &operator= (typename Container::value_type &&value) { container->insert(std::move(value)); return *this; } QSetInsertIterator&operator*() { return *this; } QSetInsertIterator &operator++() { return *this; } QSetInsertIterator operator++(int) { return *this; } }; // inserter helper function, returns a std::back_inserter for most containers // and is overloaded for QSet<> to return a QSetInsertIterator template inline std::back_insert_iterator inserter(C &container) { return std::back_inserter(container); } template inline QSetInsertIterator> inserter(QSet &container) { return QSetInsertIterator>(container); } // decay_t is C++14, so provide it here, remove once we require C++14 template using decay_t = typename std::decay::type; // abstraction to treat Container and QStringList similarly template struct ContainerType { }; // specialization for qt container T_Container template class T_Container, typename T_Type> struct ContainerType> { typedef T_Type ElementType; template struct WithElementType { typedef T_Container type; }; template class C = T_Container> struct ResultOfTransform { typedef C::type>> type; }; template struct ResultOfTransformPMF { typedef typename WithElementType>::type type; }; }; // specialization for QStringList template<> struct ContainerType : ContainerType> { }; } // actual implementation of transform template // input container type struct TransformImpl { template Q_REQUIRED_RESULT static C call(const SC &container, F function) { C result; std::transform(container.begin(), container.end(), inserter(result), function); return result; } template Q_REQUIRED_RESULT static C call(const SC &container, R (S::*p)() const) { return call(container, std::mem_fn(p)); } }; // same container type for input and output, e.g. transforming a QList into QList // or QStringList -> QList<> template Q_REQUIRED_RESULT auto transform(const C &container, F function) -> typename ContainerType::template ResultOfTransform::type { return TransformImpl< typename ContainerType::template ResultOfTransform::type, C >::call(container, function); } // same container type for member function pointer template Q_REQUIRED_RESULT auto transform(const C &container, R (S::*p)() const) ->typename ContainerType::template ResultOfTransformPMF::type { return TransformImpl< typename ContainerType::template ResultOfTransformPMF::type, C >::call(container, p); } // different container types for input and output, e.g. transforming a QList into a QSet template class C, // result container type typename SC, // input container type typename F> // function type Q_REQUIRED_RESULT auto transform(const SC &container, F function) -> typename ContainerType::template ResultOfTransform::type { return TransformImpl< typename ContainerType::template ResultOfTransform::type, SC >::call(container, function); } // different container types for input and output, e.g. transforming a QList into a QSet // for member function pointers template class C, // result container type typename SC, // input container type typename R, typename S> Q_REQUIRED_RESULT auto transform(const SC &container, R (S::*p)() const) -> C> { return TransformImpl< C>, SC >::call(container, p); } ////////////////// // filtered ///////////////// template Q_REQUIRED_RESULT C filtered(const C &container, F predicate) { C out; std::copy_if(container.begin(), container.end(), inserter(out), predicate); return out; } template Q_REQUIRED_RESULT C filtered(const C &container, R (S::*predicate)() const) { C out; std::copy_if(container.begin(), container.end(), inserter(out), std::mem_fn(predicate)); return out; } ////////////////// // partition ///////////////// // Recommended usage: // C hit; // C miss; // std::tie(hit, miss) = Utils::partition(container, predicate); template Q_REQUIRED_RESULT std::tuple partition(const C &container, F predicate) { C hit; C miss; auto hitIns = inserter(hit); auto missIns = inserter(miss); foreach (auto i, container) { if (predicate(i)) hitIns = i; else missIns = i; } return std::make_tuple(hit, miss); } template Q_REQUIRED_RESULT std::tuple partition(const C &container, R (S::*predicate)() const) { return partition(container, std::mem_fn(predicate)); } ////////////////// // filteredUnique ///////////////// template Q_REQUIRED_RESULT C filteredUnique(const C &container) { C result; auto ins = inserter(result); QSet seen; int setSize = 0; auto endIt = container.end(); for (auto it = container.begin(); it != endIt; ++it) { seen.insert(*it); if (setSize == seen.size()) // unchanged size => was already seen continue; ++setSize; ins = *it; } return result; } ////////////////// // sort ///////////////// template inline void sort(Container &c) { std::sort(c.begin(), c.end()); } template inline void sort(Container &c, Predicate p) { std::sort(c.begin(), c.end(), p); } } #endif // ALGORITHM_H