/**************************************************************************** ** ** Copyright (C) 2016 The Qt Company Ltd. ** Contact: https://www.qt.io/licensing/ ** ** This file is part of Qt Creator. ** ** Commercial License Usage ** Licensees holding valid commercial Qt licenses may use this file in ** accordance with the commercial license agreement provided with the ** Software or, alternatively, in accordance with the terms contained in ** a written agreement between you and The Qt Company. For licensing terms ** and conditions see https://www.qt.io/terms-conditions. For further ** information use the contact form at https://www.qt.io/contact-us. ** ** GNU General Public License Usage ** Alternatively, this file may be used under the terms of the GNU ** General Public License version 3 as published by the Free Software ** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT ** included in the packaging of this file. Please review the following ** information to ensure the GNU General Public License requirements will ** be met: https://www.gnu.org/licenses/gpl-3.0.html. ** ****************************************************************************/ #pragma once #include "predicates.h" #include // for Q_REQUIRED_RESULT #include #include #include #include #include namespace Utils { ////////////////// // anyOf ///////////////// template bool anyOf(const T &container, F predicate) { return std::any_of(std::begin(container), std::end(container), predicate); } // anyOf taking a member function pointer template bool anyOf(const T &container, R (S::*predicate)() const) { return std::any_of(std::begin(container), std::end(container), std::mem_fn(predicate)); } // anyOf taking a member pointer template bool anyOf(const T &container, R S::*member) { return std::any_of(std::begin(container), std::end(container), std::mem_fn(member)); } ////////////////// // count ///////////////// template int count(const T &container, F predicate) { return std::count_if(std::begin(container), std::end(container), predicate); } ////////////////// // allOf ///////////////// template bool allOf(const T &container, F predicate) { return std::all_of(std::begin(container), std::end(container), predicate); } ////////////////// // erase ///////////////// template void erase(T &container, F predicate) { container.erase(std::remove_if(std::begin(container), std::end(container), predicate), std::end(container)); } ////////////////// // contains ///////////////// template bool contains(const T &container, F function) { return anyOf(container, function); } // Contains for normal pointers in std::vector template class C, typename T, typename... Args> bool contains(const C &container, typename T::element_type *other) { return anyOf(container, [other](const typename C::value_type &value) { return value.get() == other; }); } template bool contains(const T &container, R (S::*function)() const) { return anyOf(container, function); } template class C, typename T, typename R, typename S, typename... Args> bool contains(const C &container, R (S::*function)() const) { return anyOf(container, function); } ////////////////// // findOr ///////////////// // Containers containing std::unique_ptr: template class C, typename T, typename D, typename F, typename... Args> Q_REQUIRED_RESULT T *findOr(const C, Args...> &container, T *other, F function) { auto end = std::end(container); auto it = std::find_if(std::begin(container), end, function); return (it == end) ? other : it->get(); } template class C, typename T, typename D, typename R, typename S, typename... Args> Q_REQUIRED_RESULT T *findOr(const C, Args...> &container, T *other, R (S::*function)() const) { return findOr(container, other, std::mem_fn(function)); } template class C, typename... Args, typename T, typename D, typename R, typename S> Q_REQUIRED_RESULT T *findOr(const C, Args...> &container, T *other, R S::*member) { return findOr(container, other, std::mem_fn(member)); } template Q_REQUIRED_RESULT typename C::value_type findOr(const C &container, typename C::value_type other, F function) { typename C::const_iterator begin = std::begin(container); typename C::const_iterator end = std::end(container); typename C::const_iterator it = std::find_if(begin, end, function); return it == end ? other : *it; } template Q_REQUIRED_RESULT typename T::value_type findOr(const T &container, typename T::value_type other, R (S::*function)() const) { return findOr(container, other, std::mem_fn(function)); } template Q_REQUIRED_RESULT typename T::value_type findOr(const T &container, typename T::value_type other, R S::*member) { return findOr(container, other, std::mem_fn(member)); } ////////////////// // findOrDefault ////////////////// // Containers containing std::unique_ptr: template class C, typename T, typename D, typename F, typename... Args> Q_REQUIRED_RESULT T *findOrDefault(const C, Args...> &container, F function) { return findOr(container, static_cast(nullptr), function); } template class C, typename T, typename D, typename R, typename S, typename... Args> Q_REQUIRED_RESULT T *findOrDefault(const C, Args...> &container, R (S::*function)() const) { return findOr(container, static_cast(nullptr), std::mem_fn(function)); } template class C, typename T, typename D, typename R, typename S, typename... Args> Q_REQUIRED_RESULT T *findOrDefault(const C, Args...> &container, R S::*member) { return findOr(container, static_cast(nullptr), std::mem_fn(member)); } // Default implementation: template Q_REQUIRED_RESULT typename C::value_type findOrDefault(const C &container, F function) { return findOr(container, typename C::value_type(), function); } template Q_REQUIRED_RESULT typename C::value_type findOrDefault(const C &container, R (S::*function)() const) { return findOr(container, typename C::value_type(), std::mem_fn(function)); } template Q_REQUIRED_RESULT typename C::value_type findOrDefault(const C &container, R S::*member) { return findOr(container, typename C::value_type(), std::mem_fn(member)); } ////////////////// // index of: ////////////////// template Q_REQUIRED_RESULT int indexOf(const C& container, F function) { typename C::const_iterator begin = std::begin(container); typename C::const_iterator end = std::end(container); typename C::const_iterator it = std::find_if(begin, end, function); return it == end ? -1 : std::distance(begin, it); } ////////////////// // max element ////////////////// template typename T::value_type maxElementOr(const T &container, typename T::value_type other) { typename T::const_iterator begin = std::begin(container); typename T::const_iterator end = std::end(container); typename T::const_iterator it = std::max_element(begin, end); if (it == end) return other; return *it; } ////////////////// // transform ///////////////// namespace { ///////////////// // helper code for transform to use back_inserter and thus push_back for everything // and insert for QSet<> // // QSetInsertIterator, straight from the standard for insert_iterator // just without the additional parameter to insert template class QSetInsertIterator : public std::iterator { protected: Container *container; public: typedef Container container_type; explicit QSetInsertIterator (Container &x) : container(&x) {} QSetInsertIterator &operator=(const typename Container::value_type &value) { container->insert(value); return *this; } QSetInsertIterator &operator= (typename Container::value_type &&value) { container->insert(std::move(value)); return *this; } QSetInsertIterator&operator*() { return *this; } QSetInsertIterator &operator++() { return *this; } QSetInsertIterator operator++(int) { return *this; } }; // inserter helper function, returns a std::back_inserter for most containers // and is overloaded for QSet<> to return a QSetInsertIterator template inline std::back_insert_iterator inserter(C &container) { return std::back_inserter(container); } template inline QSetInsertIterator> inserter(QSet &container) { return QSetInsertIterator>(container); } } // anonymous // -------------------------------------------------------------------- // Different containers for input and output: // -------------------------------------------------------------------- // different container types for input and output, e.g. transforming a QList into a QSet // function without result type deduction: template class SC, // input container type typename F, // function type typename... SCArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, F function) { ResultContainer result; result.reserve(container.size()); std::transform(std::begin(container), std::end(container), inserter(result), function); return result; } // function with result type deduction: template class C, // result container type template class SC, // input container type typename F, // function type typename... SCArgs, // Arguments to SC typename Value = typename SC::value_type, typename ResultContainer = C>>> Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, F function) { return transform(container, function); } template class C, // result container type template class SC, // input container type typename F, // function type typename... SCArgs, // Arguments to SC typename Value = typename SC::value_type, typename Result = std::decay_t>, typename ResultContainer = C>> Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, F function) { return transform(container, function); } // member function without result type deduction: template class C, // result container type template class SC, // input container type typename R, typename S, typename... SCArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, R (S::*p)() const) { return transform(container, std::mem_fn(p)); } // member function with result type deduction: template class SC, // input container type typename R, typename S, typename... SCArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, R (S::*p)() const) { return transform(container, std::mem_fn(p)); } // member without result type deduction: template class SC, // input container typename R, typename S, typename... SCArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, R S::*p) { return transform(container, std::mem_fn(p)); } // member with result type deduction: template class C, // result container template class SC, // input container typename R, typename S, typename... SCArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const SC &container, R S::*p) { return transform(container, std::mem_fn(p)); } // different container types for input and output, e.g. transforming a QList into a QSet // function: template class C, // container type typename F, // function type typename... CArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const C &container, F function) { return transform(container, function); } // member function: template class C, // container type typename R, typename S, typename... CArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const C &container, R (S::*p)() const) { return transform(container, std::mem_fn(p)); } // members: template class C, // container typename R, typename S, typename... CArgs> // Arguments to SC Q_REQUIRED_RESULT decltype(auto) transform(const C &container, R S::*p) { return transform(container, std::mem_fn(p)); } // Specialization for QStringList: template class C = QList, // result container typename F> // Arguments to C Q_REQUIRED_RESULT decltype(auto) transform(const QStringList &container, F function) { return transform(static_cast>(container), function); } // member function: template class C = QList, // result container type typename R, typename S> Q_REQUIRED_RESULT decltype(auto) transform(const QStringList &container, R (S::*p)() const) { return transform(static_cast>(container), std::mem_fn(p)); } // members: template class C = QList, // result container typename R, typename S> Q_REQUIRED_RESULT decltype(auto) transform(const QStringList &container, R S::*p) { return transform(static_cast>(container), std::mem_fn(p)); } ////////////////// // filtered ///////////////// template Q_REQUIRED_RESULT C filtered(const C &container, F predicate) { C out; std::copy_if(std::begin(container), std::end(container), inserter(out), predicate); return out; } template Q_REQUIRED_RESULT C filtered(const C &container, R (S::*predicate)() const) { C out; std::copy_if(std::begin(container), std::end(container), inserter(out), std::mem_fn(predicate)); return out; } ////////////////// // partition ///////////////// // Recommended usage: // C hit; // C miss; // std::tie(hit, miss) = Utils::partition(container, predicate); template Q_REQUIRED_RESULT std::tuple partition(const C &container, F predicate) { C hit; C miss; auto hitIns = inserter(hit); auto missIns = inserter(miss); for (auto i : container) { if (predicate(i)) hitIns = i; else missIns = i; } return std::make_tuple(hit, miss); } template Q_REQUIRED_RESULT std::tuple partition(const C &container, R (S::*predicate)() const) { return partition(container, std::mem_fn(predicate)); } ////////////////// // filteredUnique ///////////////// template Q_REQUIRED_RESULT C filteredUnique(const C &container) { C result; auto ins = inserter(result); QSet seen; int setSize = 0; auto endIt = std::end(container); for (auto it = std::begin(container); it != endIt; ++it) { seen.insert(*it); if (setSize == seen.size()) // unchanged size => was already seen continue; ++setSize; ins = *it; } return result; } ////////////////// // qobject_container_cast ///////////////// template class Container, typename Base> Container qobject_container_cast(const Container &container) { Container result; auto ins = inserter(result); for (Base val : container) { if (T target = qobject_cast(val)) ins = target; } return result; } ////////////////// // sort ///////////////// template inline void sort(Container &container) { std::sort(std::begin(container), std::end(container)); } template inline void sort(Container &container, Predicate p) { std::sort(std::begin(container), std::end(container), p); } // pointer to member template inline void sort(Container &container, R S::*member) { auto f = std::mem_fn(member); using const_ref = typename Container::const_reference; std::sort(std::begin(container), std::end(container), [&f](const_ref a, const_ref b) { return f(a) < f(b); }); } // pointer to member function template inline void sort(Container &container, R (S::*function)() const) { auto f = std::mem_fn(function); using const_ref = typename Container::const_reference; std::sort(std::begin(container), std::end(container), [&f](const_ref a, const_ref b) { return f(a) < f(b); }); } ////////////////// // reverseForeach ///////////////// template inline void reverseForeach(const Container &c, const Op &operation) { auto rend = c.rend(); for (auto it = c.rbegin(); it != rend; ++it) operation(*it); } }