#!/usr/bin/python # -*- coding: utf-8 -*- # # Urwid LCD display module # Copyright (C) 2010 Ian Ward # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Urwid web site: http://excess.org/urwid/ from display_common import BaseScreen import time class LCDScreen(BaseScreen): def set_terminal_properties(self, colors=None, bright_is_bold=None, has_underline=None): pass def set_mouse_tracking(self, enable=True): pass def set_input_timeouts(self, *args): pass def reset_default_terminal_palette(self, *args): pass def draw_screen(self, (cols, rows), r ): pass def clear(self): pass def get_cols_rows(self): return self.DISPLAY_SIZE class CFLCDScreen(LCDScreen): """ Common methods for Crystal Fontz LCD displays """ KEYS = [None, # no key with code 0 'up_press', 'down_press', 'left_press', 'right_press', 'enter_press', 'exit_press', 'up_release', 'down_release', 'left_release', 'right_release', 'enter_release', 'exit_release', 'ul_press', 'ur_press', 'll_press', 'lr_press', 'ul_release', 'ur_release', 'll_release', 'lr_release'] CMD_PING = 0 CMD_VERSION = 1 CMD_CLEAR = 6 CMD_CGRAM = 9 CMD_CURSOR_POSITION = 11 # data = [col, row] CMD_CURSOR_STYLE = 12 # data = [style (0-4)] CMD_LCD_CONTRAST = 13 # data = [contrast (0-255)] CMD_BACKLIGHT = 14 # data = [power (0-100)] CMD_LCD_DATA = 31 # data = [col, row] + text CMD_GPO = 34 # data = [pin(0-12), value(0-100)] # sent from device CMD_KEY_ACTIVITY = 0x80 CMD_ACK = 0x40 # in high two bits ie. & 0xc0 CURSOR_NONE = 0 CURSOR_BLINKING_BLOCK = 1 CURSOR_UNDERSCORE = 2 CURSOR_BLINKING_BLOCK_UNDERSCORE = 3 CURSOR_INVERTING_BLINKING_BLOCK = 4 MAX_PACKET_DATA_LENGTH = 22 colors = 1 has_underline = False def __init__(self, device_path, baud): """ device_path -- eg. '/dev/ttyUSB0' baud -- baud rate """ super(CFLCDScreen, self).__init__() self.device_path = device_path from serial import Serial self._device = Serial(device_path, baud, timeout=0) self._unprocessed = "" @classmethod def get_crc(cls, buf): # This seed makes the output of this shift based algorithm match # the table based algorithm. The center 16 bits of the 32-bit # "newCRC" are used for the CRC. The MSB of the lower byte is used # to see what bit was shifted out of the center 16 bit CRC # accumulator ("carry flag analog"); newCRC = 0x00F32100 for byte in buf: # Push this byte’s bits through a software # implementation of a hardware shift & xor. for bit_count in range(8): # Shift the CRC accumulator newCRC >>= 1 # The new MSB of the CRC accumulator comes # from the LSB of the current data byte. if ord(byte) & (0x01 << bit_count): newCRC |= 0x00800000 # If the low bit of the current CRC accumulator was set # before the shift, then we need to XOR the accumulator # with the polynomial (center 16 bits of 0x00840800) if newCRC & 0x00000080: newCRC ^= 0x00840800 # All the data has been done. Do 16 more bits of 0 data. for bit_count in range(16): # Shift the CRC accumulator newCRC >>= 1 # If the low bit of the current CRC accumulator was set # before the shift we need to XOR the accumulator with # 0x00840800. if newCRC & 0x00000080: newCRC ^= 0x00840800 # Return the center 16 bits, making this CRC match the one’s # complement that is sent in the packet. return ((~newCRC)>>8) & 0xffff def _send_packet(self, command, data): """ low-level packet sending. Following the protocol requires waiting for ack packet between sending each packet to the device. """ buf = chr(command) + chr(len(data)) + data crc = self.get_crc(buf) buf = buf + chr(crc & 0xff) + chr(crc >> 8) self._device.write(buf) def _read_packet(self): """ low-level packet reading. returns (command/report code, data) or None This method stored data read and tries to resync when bad data is received. """ # pull in any new data available self._unprocessed = self._unprocessed + self._device.read() while True: try: command, data, unprocessed = self._parse_data(self._unprocessed) self._unprocessed = unprocessed return command, data except self.MoreDataRequired: return except self.InvalidPacket: # throw out a byte and try to parse again self._unprocessed = self._unprocessed[1:] class InvalidPacket(Exception): pass class MoreDataRequired(Exception): pass @classmethod def _parse_data(cls, data): """ Try to read a packet from the start of data, returning (command/report code, packet_data, remaining_data) or raising InvalidPacket or MoreDataRequired """ if len(data) < 2: raise cls.MoreDataRequired command = ord(data[0]) plen = ord(data[1]) if plen > cls.MAX_PACKET_DATA_LENGTH: raise cls.InvalidPacket("length value too large") if len(data) < plen + 4: raise cls.MoreDataRequired crc = cls.get_crc(data[:2 + plen]) pcrc = ord(data[2 + plen]) + (ord(data[3 + plen]) << 8 ) if crc != pcrc: raise cls.InvalidPacket("CRC doesn't match") return (command, data[2:2 + plen], data[4 + plen:]) class KeyRepeatSimulator(object): """ Provide simulated repeat key events when given press and release events. If two or more keys are pressed disable repeating until all keys are released. """ def __init__(self, repeat_delay, repeat_next): """ repeat_delay -- seconds to wait before starting to repeat keys repeat_next -- time between each repeated key """ self.repeat_delay = repeat_delay self.repeat_next = repeat_next self.pressed = {} self.multiple_pressed = False def press(self, key): if self.pressed: self.multiple_pressed = True self.pressed[key] = time.time() def release(self, key): if key not in self.pressed: return # ignore extra release events del self.pressed[key] if not self.pressed: self.multiple_pressed = False def next_event(self): """ Return (remaining, key) where remaining is the number of seconds (float) until the key repeat event should be sent, or None if no events are pending. """ if len(self.pressed) != 1 or self.multiple_pressed: return for key in self.pressed: return max(0, self.pressed[key] + self.repeat_delay - time.time()), key def sent_event(self): """ Cakk this method when you have sent a key repeat event so the timer will be reset for the next event """ if len(self.pressed) != 1: return # ignore event that shouldn't have been sent for key in self.pressed: self.pressed[key] = ( time.time() - self.repeat_delay + self.repeat_next) return class CF635Screen(CFLCDScreen): u""" Crystal Fontz 635 display 20x4 character display + cursor no foreground/background colors or settings supported see CGROM for list of close unicode matches to characters available 6 button input up, down, left, right, enter (check mark), exit (cross) """ DISPLAY_SIZE = (20, 4) # ① through ⑧ are programmable CGRAM (chars 0-7, repeated at 8-15) # double arrows (⇑⇓) appear as double arrowheads (chars 18, 19) # ⑴ resembles a bell # ⑵ resembles a filled-in "Y" # ⑶ is the letters "Pt" together # partial blocks (▇▆▄▃▁) are actually shorter versions of (▉▋▌▍▏) # both groups are intended to draw horizontal bars with pixel # precision, use ▇*[▆▄▃▁]? for a thin bar or ▉*[▋▌▍▏]? for a thick bar CGROM = ( u"①②③④⑤⑥⑦⑧①②③④⑤⑥⑦⑧" u"►◄⇑⇓«»↖↗↙↘▲▼↲^ˇ█" u" !\"#¤%&'()*+,-./" u"0123456789:;<=>?" u"¡ABCDEFGHIJKLMNO" u"PQRSTUVWXYZÄÖÑܧ" u"¿abcdefghijklmno" u"pqrstuvwxyzäöñüà" u"⁰¹²³⁴⁵⁶⁷⁸⁹½¼±≥≤μ" u"♪♫⑴♥♦⑵⌜⌟“”()αɛδ∞" u"@£$¥èéùìòÇᴾØøʳÅå" u"⌂¢ΦτλΩπΨΣθΞ♈ÆæßÉ" u"ΓΛΠϒ_ÈÊêçğŞşİι~◊" u"▇▆▄▃▁ƒ▉▋▌▍▏⑶◽▪↑→" u"↓←ÁÍÓÚÝáíóúýÔôŮů" u"ČĔŘŠŽčĕřšž[\]{|}") cursor_style = CFLCDScreen.CURSOR_INVERTING_BLINKING_BLOCK def __init__(self, device_path, baud=115200, repeat_delay=0.5, repeat_next=0.125, key_map=['up', 'down', 'left', 'right', 'enter', 'esc']): """ device_path -- eg. '/dev/ttyUSB0' baud -- baud rate repeat_delay -- seconds to wait before starting to repeat keys repeat_next -- time between each repeated key key_map -- the keys to send for this device's buttons """ super(CF635Screen, self).__init__(device_path, baud) self.repeat_delay = repeat_delay self.repeat_next = repeat_next self.key_repeat = KeyRepeatSimulator(repeat_delay, repeat_next) self.key_map = key_map self._last_command = None self._last_command_time = 0 self._command_queue = [] self._screen_buf = None self._previous_canvas = None self._update_cursor = False def get_input_descriptors(self): """ return the fd from our serial device so we get called on input and responses """ return [self._device.fd] def get_input_nonblocking(self): """ Return a (next_input_timeout, keys_pressed, raw_keycodes) tuple. The protocol for our device requires waiting for acks between each command, so this method responds to those as well as key press and release events. Key repeat events are simulated here as the device doesn't send any for us. raw_keycodes are the bytes of messages we received, which might not seem to have any correspondence to keys_pressed. """ input = [] raw_input = [] timeout = None while True: packet = self._read_packet() if not packet: break command, data = packet if command == self.CMD_KEY_ACTIVITY and data: d0 = ord(data[0]) if 1 <= d0 <= 12: release = d0 > 6 keycode = d0 - (release * 6) - 1 key = self.key_map[keycode] if release: self.key_repeat.release(key) else: input.append(key) self.key_repeat.press(key) raw_input.append(d0) elif command & 0xc0 == 0x40: # "ACK" if command & 0x3f == self._last_command: self._send_next_command() next_repeat = self.key_repeat.next_event() if next_repeat: timeout, key = next_repeat if not timeout: input.append(key) self.key_repeat.sent_event() timeout = None return timeout, input, [] def _send_next_command(self): """ send out the next command in the queue """ if not self._command_queue: self._last_command = None return command, data = self._command_queue.pop(0) self._send_packet(command, data) self._last_command = command # record command for ACK self._last_command_time = time.time() def queue_command(self, command, data): self._command_queue.append((command, data)) # not waiting? send away! if self._last_command is None: self._send_next_command() def draw_screen(self, size, canvas): assert size == self.DISPLAY_SIZE if self._screen_buf: osb = self._screen_buf else: osb = [] sb = [] y = 0 for row in canvas.content(): text = [] for a, cs, run in row: text.append(run) if not osb or osb[y] != text: self.queue_command(self.CMD_LCD_DATA, chr(0) + chr(y) + "".join(text)) sb.append(text) y += 1 if (self._previous_canvas and self._previous_canvas.cursor == canvas.cursor and (not self._update_cursor or not canvas.cursor)): pass elif canvas.cursor is None: self.queue_command(self.CMD_CURSOR_STYLE, chr(self.CURSOR_NONE)) else: x, y = canvas.cursor self.queue_command(self.CMD_CURSOR_POSITION, chr(x) + chr(y)) self.queue_command(self.CMD_CURSOR_STYLE, chr(self.cursor_style)) self._update_cursor = False self._screen_buf = sb self._previous_canvas = canvas def program_cgram(self, index, data): """ Program character data. Characters available as chr(0) through chr(7), and repeated as chr(8) through chr(15). index -- 0 to 7 index of character to program data -- list of 8, 6-bit integer values top to bottom with MSB on the left side of the character. """ assert 0 <= index <= 7 assert len(data) == 8 self.queue_command(self.CMD_CGRAM, chr(index) + "".join([chr(x) for x in data])) def set_cursor_style(self, style): """ style -- CURSOR_BLINKING_BLOCK, CURSOR_UNDERSCORE, CURSOR_BLINKING_BLOCK_UNDERSCORE or CURSOR_INVERTING_BLINKING_BLOCK """ assert 1 <= style <= 4 self.cursor_style = style self._update_cursor = True def set_backlight(self, value): """ Set backlight brightness value -- 0 to 100 """ assert 0 <= value <= 100 self.queue_command(self.CMD_BACKLIGHT, chr(value)) def set_lcd_contrast(self, value): """ value -- 0 to 255 """ assert 0 <= value <= 255 self.queue_command(self.CMD_LCD_CONTRAST, chr(value)) def set_led_pin(self, led, rg, value): """ led -- 0 to 3 rg -- 0 for red, 1 for green value -- 0 to 100 """ assert 0 <= led <= 3 assert rg in (0, 1) assert 0 <= value <= 100 self.queue_command(self.CMD_GPO, chr(12 - 2 * led - rg) + chr(value))