# Subset of test.support from CPython 3.5, just what we need to run asyncio # test suite. The code is copied from CPython 3.5 to not depend on the test # module because it is rarely installed. # Ignore symbol TEST_HOME_DIR: test_events works without it import functools import gc import os import platform import re import socket import subprocess import sys import time # A constant likely larger than the underlying OS pipe buffer size, to # make writes blocking. # Windows limit seems to be around 512 B, and many Unix kernels have a # 64 KiB pipe buffer size or 16 * PAGE_SIZE: take a few megs to be sure. # (see issue #17835 for a discussion of this number). PIPE_MAX_SIZE = 4 * 1024 * 1024 + 1 def strip_python_stderr(stderr): """Strip the stderr of a Python process from potential debug output emitted by the interpreter. This will typically be run on the result of the communicate() method of a subprocess.Popen object. """ stderr = re.sub(br"\[\d+ refs, \d+ blocks\]\r?\n?", b"", stderr).strip() return stderr # Executing the interpreter in a subprocess def _assert_python(expected_success, *args, **env_vars): if '__isolated' in env_vars: isolated = env_vars.pop('__isolated') else: isolated = not env_vars cmd_line = [sys.executable, '-X', 'faulthandler'] if isolated and sys.version_info >= (3, 4): # isolated mode: ignore Python environment variables, ignore user # site-packages, and don't add the current directory to sys.path cmd_line.append('-I') elif not env_vars: # ignore Python environment variables cmd_line.append('-E') # Need to preserve the original environment, for in-place testing of # shared library builds. env = os.environ.copy() # But a special flag that can be set to override -- in this case, the # caller is responsible to pass the full environment. if env_vars.pop('__cleanenv', None): env = {} env.update(env_vars) cmd_line.extend(args) p = subprocess.Popen(cmd_line, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) try: out, err = p.communicate() finally: subprocess._cleanup() p.stdout.close() p.stderr.close() rc = p.returncode err = strip_python_stderr(err) if (rc and expected_success) or (not rc and not expected_success): raise AssertionError( "Process return code is %d, " "stderr follows:\n%s" % (rc, err.decode('ascii', 'ignore'))) return rc, out, err def assert_python_ok(*args, **env_vars): """ Assert that running the interpreter with `args` and optional environment variables `env_vars` succeeds (rc == 0) and return a (return code, stdout, stderr) tuple. If the __cleanenv keyword is set, env_vars is used a fresh environment. Python is started in isolated mode (command line option -I), except if the __isolated keyword is set to False. """ return _assert_python(True, *args, **env_vars) is_jython = sys.platform.startswith('java') def gc_collect(): """Force as many objects as possible to be collected. In non-CPython implementations of Python, this is needed because timely deallocation is not guaranteed by the garbage collector. (Even in CPython this can be the case in case of reference cycles.) This means that __del__ methods may be called later than expected and weakrefs may remain alive for longer than expected. This function tries its best to force all garbage objects to disappear. """ gc.collect() if is_jython: time.sleep(0.1) gc.collect() gc.collect() HOST = "127.0.0.1" HOSTv6 = "::1" def _is_ipv6_enabled(): """Check whether IPv6 is enabled on this host.""" if socket.has_ipv6: sock = None try: sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) sock.bind((HOSTv6, 0)) return True except OSError: pass finally: if sock: sock.close() return False IPV6_ENABLED = _is_ipv6_enabled() def find_unused_port(family=socket.AF_INET, socktype=socket.SOCK_STREAM): """Returns an unused port that should be suitable for binding. This is achieved by creating a temporary socket with the same family and type as the 'sock' parameter (default is AF_INET, SOCK_STREAM), and binding it to the specified host address (defaults to 0.0.0.0) with the port set to 0, eliciting an unused ephemeral port from the OS. The temporary socket is then closed and deleted, and the ephemeral port is returned. Either this method or bind_port() should be used for any tests where a server socket needs to be bound to a particular port for the duration of the test. Which one to use depends on whether the calling code is creating a python socket, or if an unused port needs to be provided in a constructor or passed to an external program (i.e. the -accept argument to openssl's s_server mode). Always prefer bind_port() over find_unused_port() where possible. Hard coded ports should *NEVER* be used. As soon as a server socket is bound to a hard coded port, the ability to run multiple instances of the test simultaneously on the same host is compromised, which makes the test a ticking time bomb in a buildbot environment. On Unix buildbots, this may simply manifest as a failed test, which can be recovered from without intervention in most cases, but on Windows, the entire python process can completely and utterly wedge, requiring someone to log in to the buildbot and manually kill the affected process. (This is easy to reproduce on Windows, unfortunately, and can be traced to the SO_REUSEADDR socket option having different semantics on Windows versus Unix/Linux. On Unix, you can't have two AF_INET SOCK_STREAM sockets bind, listen and then accept connections on identical host/ports. An EADDRINUSE OSError will be raised at some point (depending on the platform and the order bind and listen were called on each socket). However, on Windows, if SO_REUSEADDR is set on the sockets, no EADDRINUSE will ever be raised when attempting to bind two identical host/ports. When accept() is called on each socket, the second caller's process will steal the port from the first caller, leaving them both in an awkwardly wedged state where they'll no longer respond to any signals or graceful kills, and must be forcibly killed via OpenProcess()/TerminateProcess(). The solution on Windows is to use the SO_EXCLUSIVEADDRUSE socket option instead of SO_REUSEADDR, which effectively affords the same semantics as SO_REUSEADDR on Unix. Given the propensity of Unix developers in the Open Source world compared to Windows ones, this is a common mistake. A quick look over OpenSSL's 0.9.8g source shows that they use SO_REUSEADDR when openssl.exe is called with the 's_server' option, for example. See http://bugs.python.org/issue2550 for more info. The following site also has a very thorough description about the implications of both REUSEADDR and EXCLUSIVEADDRUSE on Windows: http://msdn2.microsoft.com/en-us/library/ms740621(VS.85).aspx) XXX: although this approach is a vast improvement on previous attempts to elicit unused ports, it rests heavily on the assumption that the ephemeral port returned to us by the OS won't immediately be dished back out to some other process when we close and delete our temporary socket but before our calling code has a chance to bind the returned port. We can deal with this issue if/when we come across it. """ tempsock = socket.socket(family, socktype) port = bind_port(tempsock) tempsock.close() del tempsock return port def bind_port(sock, host=HOST): """Bind the socket to a free port and return the port number. Relies on ephemeral ports in order to ensure we are using an unbound port. This is important as many tests may be running simultaneously, especially in a buildbot environment. This method raises an exception if the sock.family is AF_INET and sock.type is SOCK_STREAM, *and* the socket has SO_REUSEADDR or SO_REUSEPORT set on it. Tests should *never* set these socket options for TCP/IP sockets. The only case for setting these options is testing multicasting via multiple UDP sockets. Additionally, if the SO_EXCLUSIVEADDRUSE socket option is available (i.e. on Windows), it will be set on the socket. This will prevent anyone else from bind()'ing to our host/port for the duration of the test. """ if sock.family == socket.AF_INET and sock.type == socket.SOCK_STREAM: if hasattr(socket, 'SO_REUSEADDR'): if sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR) == 1: raise TestFailed("tests should never set the SO_REUSEADDR " "socket option on TCP/IP sockets!") if hasattr(socket, 'SO_REUSEPORT'): try: reuse = sock.getsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT) if reuse == 1: raise TestFailed("tests should never set the SO_REUSEPORT " "socket option on TCP/IP sockets!") except OSError: # Python's socket module was compiled using modern headers # thus defining SO_REUSEPORT but this process is running # under an older kernel that does not support SO_REUSEPORT. pass if hasattr(socket, 'SO_EXCLUSIVEADDRUSE'): sock.setsockopt(socket.SOL_SOCKET, socket.SO_EXCLUSIVEADDRUSE, 1) sock.bind((host, 0)) port = sock.getsockname()[1] return port def requires_mac_ver(*min_version): """Decorator raising SkipTest if the OS is Mac OS X and the OS X version if less than min_version. For example, @requires_mac_ver(10, 5) raises SkipTest if the OS X version is lesser than 10.5. """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): if sys.platform == 'darwin': version_txt = platform.mac_ver()[0] try: version = tuple(map(int, version_txt.split('.'))) except ValueError: pass else: if version < min_version: min_version_txt = '.'.join(map(str, min_version)) raise unittest.SkipTest( "Mac OS X %s or higher required, not %s" % (min_version_txt, version_txt)) return func(*args, **kw) wrapper.min_version = min_version return wrapper return decorator def _requires_unix_version(sysname, min_version): """Decorator raising SkipTest if the OS is `sysname` and the version is less than `min_version`. For example, @_requires_unix_version('FreeBSD', (7, 2)) raises SkipTest if the FreeBSD version is less than 7.2. """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): if platform.system() == sysname: version_txt = platform.release().split('-', 1)[0] try: version = tuple(map(int, version_txt.split('.'))) except ValueError: pass else: if version < min_version: min_version_txt = '.'.join(map(str, min_version)) raise unittest.SkipTest( "%s version %s or higher required, not %s" % (sysname, min_version_txt, version_txt)) return func(*args, **kw) wrapper.min_version = min_version return wrapper return decorator def requires_freebsd_version(*min_version): """Decorator raising SkipTest if the OS is FreeBSD and the FreeBSD version is less than `min_version`. For example, @requires_freebsd_version(7, 2) raises SkipTest if the FreeBSD version is less than 7.2. """ return _requires_unix_version('FreeBSD', min_version) # Use test.support if available try: from test.support import * except ImportError: pass # Use test.script_helper if available try: from test.script_helper import assert_python_ok except ImportError: pass