# postgresql/array.py # Copyright (C) 2005-2015 the SQLAlchemy authors and contributors # # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php from .base import ischema_names from ...sql import expression, operators from ... import types as sqltypes try: from uuid import UUID as _python_UUID except ImportError: _python_UUID = None class Any(expression.ColumnElement): """Represent the clause ``left operator ANY (right)``. ``right`` must be an array expression. .. seealso:: :class:`.postgresql.ARRAY` :meth:`.postgresql.ARRAY.Comparator.any` - ARRAY-bound method """ __visit_name__ = 'any' def __init__(self, left, right, operator=operators.eq): self.type = sqltypes.Boolean() self.left = expression._literal_as_binds(left) self.right = right self.operator = operator class All(expression.ColumnElement): """Represent the clause ``left operator ALL (right)``. ``right`` must be an array expression. .. seealso:: :class:`.postgresql.ARRAY` :meth:`.postgresql.ARRAY.Comparator.all` - ARRAY-bound method """ __visit_name__ = 'all' def __init__(self, left, right, operator=operators.eq): self.type = sqltypes.Boolean() self.left = expression._literal_as_binds(left) self.right = right self.operator = operator class array(expression.Tuple): """A Postgresql ARRAY literal. This is used to produce ARRAY literals in SQL expressions, e.g.:: from sqlalchemy.dialects.postgresql import array from sqlalchemy.dialects import postgresql from sqlalchemy import select, func stmt = select([ array([1,2]) + array([3,4,5]) ]) print stmt.compile(dialect=postgresql.dialect()) Produces the SQL:: SELECT ARRAY[%(param_1)s, %(param_2)s] || ARRAY[%(param_3)s, %(param_4)s, %(param_5)s]) AS anon_1 An instance of :class:`.array` will always have the datatype :class:`.ARRAY`. The "inner" type of the array is inferred from the values present, unless the ``type_`` keyword argument is passed:: array(['foo', 'bar'], type_=CHAR) .. versionadded:: 0.8 Added the :class:`~.postgresql.array` literal type. See also: :class:`.postgresql.ARRAY` """ __visit_name__ = 'array' def __init__(self, clauses, **kw): super(array, self).__init__(*clauses, **kw) self.type = ARRAY(self.type) def _bind_param(self, operator, obj): return array([ expression.BindParameter(None, o, _compared_to_operator=operator, _compared_to_type=self.type, unique=True) for o in obj ]) def self_group(self, against=None): return self CONTAINS = operators.custom_op("@>", precedence=5) CONTAINED_BY = operators.custom_op("<@", precedence=5) OVERLAP = operators.custom_op("&&", precedence=5) class ARRAY(sqltypes.Indexable, sqltypes.Concatenable, sqltypes.TypeEngine): """Postgresql ARRAY type. Represents values as Python lists. An :class:`.ARRAY` type is constructed given the "type" of element:: mytable = Table("mytable", metadata, Column("data", ARRAY(Integer)) ) The above type represents an N-dimensional array, meaning Postgresql will interpret values with any number of dimensions automatically. To produce an INSERT construct that passes in a 1-dimensional array of integers:: connection.execute( mytable.insert(), data=[1,2,3] ) The :class:`.ARRAY` type can be constructed given a fixed number of dimensions:: mytable = Table("mytable", metadata, Column("data", ARRAY(Integer, dimensions=2)) ) This has the effect of the :class:`.ARRAY` type specifying that number of bracketed blocks when a :class:`.Table` is used in a CREATE TABLE statement, or when the type is used within a :func:`.expression.cast` construct; it also causes the bind parameter and result set processing of the type to optimize itself to expect exactly that number of dimensions. Note that Postgresql itself still allows N dimensions with such a type. SQL expressions of type :class:`.ARRAY` have support for "index" and "slice" behavior. The Python ``[]`` operator works normally here, given integer indexes or slices. Note that Postgresql arrays default to 1-based indexing. The operator produces binary expression constructs which will produce the appropriate SQL, both for SELECT statements:: select([mytable.c.data[5], mytable.c.data[2:7]]) as well as UPDATE statements when the :meth:`.Update.values` method is used:: mytable.update().values({ mytable.c.data[5]: 7, mytable.c.data[2:7]: [1, 2, 3] }) Multi-dimensional array index support is provided automatically based on either the value specified for the :paramref:`.ARRAY.dimensions` parameter. E.g. an :class:`.ARRAY` with dimensions set to 2 would return an expression of type :class:`.ARRAY` for a single index operation:: type = ARRAY(Integer, dimensions=2) expr = column('x', type) # expr is of type ARRAY(Integer, dimensions=2) expr = column('x', type)[5] # expr is of type ARRAY(Integer, dimensions=1) An index expression from ``expr`` above would then return an expression of type Integer:: sub_expr = expr[10] # expr is of type Integer .. versionadded:: 1.1 support for index operations on multi-dimensional :class:`.postgresql.ARRAY` objects is added. :class:`.ARRAY` provides special methods for containment operations, e.g.:: mytable.c.data.contains([1, 2]) For a full list of special methods see :class:`.ARRAY.Comparator`. .. versionadded:: 0.8 Added support for index and slice operations to the :class:`.ARRAY` type, including support for UPDATE statements, and special array containment operations. The :class:`.ARRAY` type may not be supported on all DBAPIs. It is known to work on psycopg2 and not pg8000. Additionally, the :class:`.ARRAY` type does not work directly in conjunction with the :class:`.ENUM` type. For a workaround, see the special type at :ref:`postgresql_array_of_enum`. See also: :class:`.postgresql.array` - produce a literal array value. """ __visit_name__ = 'ARRAY' class Comparator( sqltypes.Indexable.Comparator, sqltypes.Concatenable.Comparator): """Define comparison operations for :class:`.ARRAY`.""" def _setup_getitem(self, index): if isinstance(index, slice): return_type = self.type elif self.type.dimensions is None or self.type.dimensions == 1: return_type = self.type.item_type else: adapt_kw = {'dimensions': self.type.dimensions - 1} return_type = self.type.adapt(self.type.__class__, **adapt_kw) return operators.getitem, index, return_type def any(self, other, operator=operators.eq): """Return ``other operator ANY (array)`` clause. Argument places are switched, because ANY requires array expression to be on the right hand-side. E.g.:: from sqlalchemy.sql import operators conn.execute( select([table.c.data]).where( table.c.data.any(7, operator=operators.lt) ) ) :param other: expression to be compared :param operator: an operator object from the :mod:`sqlalchemy.sql.operators` package, defaults to :func:`.operators.eq`. .. seealso:: :class:`.postgresql.Any` :meth:`.postgresql.ARRAY.Comparator.all` """ return Any(other, self.expr, operator=operator) def all(self, other, operator=operators.eq): """Return ``other operator ALL (array)`` clause. Argument places are switched, because ALL requires array expression to be on the right hand-side. E.g.:: from sqlalchemy.sql import operators conn.execute( select([table.c.data]).where( table.c.data.all(7, operator=operators.lt) ) ) :param other: expression to be compared :param operator: an operator object from the :mod:`sqlalchemy.sql.operators` package, defaults to :func:`.operators.eq`. .. seealso:: :class:`.postgresql.All` :meth:`.postgresql.ARRAY.Comparator.any` """ return All(other, self.expr, operator=operator) def contains(self, other, **kwargs): """Boolean expression. Test if elements are a superset of the elements of the argument array expression. """ return self.operate(CONTAINS, other, result_type=sqltypes.Boolean) def contained_by(self, other): """Boolean expression. Test if elements are a proper subset of the elements of the argument array expression. """ return self.operate( CONTAINED_BY, other, result_type=sqltypes.Boolean) def overlap(self, other): """Boolean expression. Test if array has elements in common with an argument array expression. """ return self.operate(OVERLAP, other, result_type=sqltypes.Boolean) comparator_factory = Comparator def __init__(self, item_type, as_tuple=False, dimensions=None, zero_indexes=False): """Construct an ARRAY. E.g.:: Column('myarray', ARRAY(Integer)) Arguments are: :param item_type: The data type of items of this array. Note that dimensionality is irrelevant here, so multi-dimensional arrays like ``INTEGER[][]``, are constructed as ``ARRAY(Integer)``, not as ``ARRAY(ARRAY(Integer))`` or such. :param as_tuple=False: Specify whether return results should be converted to tuples from lists. DBAPIs such as psycopg2 return lists by default. When tuples are returned, the results are hashable. :param dimensions: if non-None, the ARRAY will assume a fixed number of dimensions. This will cause the DDL emitted for this ARRAY to include the exact number of bracket clauses ``[]``, and will also optimize the performance of the type overall. Note that PG arrays are always implicitly "non-dimensioned", meaning they can store any number of dimensions no matter how they were declared. :param zero_indexes=False: when True, index values will be converted between Python zero-based and Postgresql one-based indexes, e.g. a value of one will be added to all index values before passing to the database. .. versionadded:: 0.9.5 """ if isinstance(item_type, ARRAY): raise ValueError("Do not nest ARRAY types; ARRAY(basetype) " "handles multi-dimensional arrays of basetype") if isinstance(item_type, type): item_type = item_type() self.item_type = item_type self.as_tuple = as_tuple self.dimensions = dimensions self.zero_indexes = zero_indexes @property def hashable(self): return self.as_tuple @property def python_type(self): return list def compare_values(self, x, y): return x == y def _proc_array(self, arr, itemproc, dim, collection): if dim is None: arr = list(arr) if dim == 1 or dim is None and ( # this has to be (list, tuple), or at least # not hasattr('__iter__'), since Py3K strings # etc. have __iter__ not arr or not isinstance(arr[0], (list, tuple))): if itemproc: return collection(itemproc(x) for x in arr) else: return collection(arr) else: return collection( self._proc_array( x, itemproc, dim - 1 if dim is not None else None, collection) for x in arr ) def bind_processor(self, dialect): item_proc = self.item_type.dialect_impl(dialect).\ bind_processor(dialect) def process(value): if value is None: return value else: return self._proc_array( value, item_proc, self.dimensions, list) return process def result_processor(self, dialect, coltype): item_proc = self.item_type.dialect_impl(dialect).\ result_processor(dialect, coltype) def process(value): if value is None: return value else: return self._proc_array( value, item_proc, self.dimensions, tuple if self.as_tuple else list) return process ischema_names['_array'] = ARRAY