(* from Isabelle2013-2 src/HOL/Power.thy; BSD license *) (* Title: HOL/Power.thy Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1997 University of Cambridge *) header {* Exponentiation *} theory Power imports Num begin subsection {* Powers for Arbitrary Monoids *} class power = one + times begin primrec power :: "'a \ nat \ 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" notation (latex output) power ("(_\<^bsup>_\<^esup>)" [1000] 1000) notation (HTML output) power ("(_\<^bsup>_\<^esup>)" [1000] 1000) text {* Special syntax for squares. *} abbreviation (xsymbols) power2 :: "'a \ 'a" ("(_\<^sup>2)" [1000] 999) where "x\<^sup>2 \ x ^ 2" notation (latex output) power2 ("(_\<^sup>2)" [1000] 999) notation (HTML output) power2 ("(_\<^sup>2)" [1000] 999) end context monoid_mult begin subclass power . lemma power_one [simp]: "1 ^ n = 1" by (induct n) simp_all lemma power_one_right [simp]: "a ^ 1 = a" by simp lemma power_commutes: "a ^ n * a = a * a ^ n" by (induct n) (simp_all add: mult_assoc) lemma power_Suc2: "a ^ Suc n = a ^ n * a" by (simp add: power_commutes) lemma power_add: "a ^ (m + n) = a ^ m * a ^ n" by (induct m) (simp_all add: algebra_simps) lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n" by (induct n) (simp_all add: power_add) lemma power2_eq_square: "a\<^sup>2 = a * a" by (simp add: numeral_2_eq_2) lemma power3_eq_cube: "a ^ 3 = a * a * a" by (simp add: numeral_3_eq_3 mult_assoc) lemma power_even_eq: "a ^ (2 * n) = (a ^ n)\<^sup>2" by (subst mult_commute) (simp add: power_mult) lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)\<^sup>2" by (simp add: power_even_eq) lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" unfolding numeral_Bit0 power_add Let_def .. lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right unfolding power_Suc power_add Let_def mult_assoc .. lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)" proof (induct "f x" arbitrary: f) case 0 then show ?case by (simp add: fun_eq_iff) next case (Suc n) def g \ "\x. f x - 1" with Suc have "n = g x" by simp with Suc have "times x ^^ g x = times (x ^ g x)" by simp moreover from Suc g_def have "f x = g x + 1" by simp ultimately show ?case by (simp add: power_add funpow_add fun_eq_iff mult_assoc) qed end context comm_monoid_mult begin lemma power_mult_distrib: "(a * b) ^ n = (a ^ n) * (b ^ n)" by (induct n) (simp_all add: mult_ac) end context semiring_numeral begin lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" by (simp only: sqr_conv_mult numeral_mult) lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" by (induct l, simp_all only: numeral_class.numeral.simps pow.simps numeral_sqr numeral_mult power_add power_one_right) lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" by (rule numeral_pow [symmetric]) end context semiring_1 begin lemma of_nat_power: "of_nat (m ^ n) = of_nat m ^ n" by (induct n) (simp_all add: of_nat_mult) lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0" by (simp add: numeral_eq_Suc) lemma zero_power2: "0\<^sup>2 = 0" (* delete? *) by (rule power_zero_numeral) lemma one_power2: "1\<^sup>2 = 1" (* delete? *) by (rule power_one) end context comm_semiring_1 begin text {* The divides relation *} lemma le_imp_power_dvd: assumes "m \ n" shows "a ^ m dvd a ^ n" proof have "a ^ n = a ^ (m + (n - m))" using `m \ n` by simp also have "\ = a ^ m * a ^ (n - m)" by (rule power_add) finally show "a ^ n = a ^ m * a ^ (n - m)" . qed lemma power_le_dvd: "a ^ n dvd b \ m \ n \ a ^ m dvd b" by (rule dvd_trans [OF le_imp_power_dvd]) lemma dvd_power_same: "x dvd y \ x ^ n dvd y ^ n" by (induct n) (auto simp add: mult_dvd_mono) lemma dvd_power_le: "x dvd y \ m \ n \ x ^ n dvd y ^ m" by (rule power_le_dvd [OF dvd_power_same]) lemma dvd_power [simp]: assumes "n > (0::nat) \ x = 1" shows "x dvd (x ^ n)" using assms proof assume "0 < n" then have "x ^ n = x ^ Suc (n - 1)" by simp then show "x dvd (x ^ n)" by simp next assume "x = 1" then show "x dvd (x ^ n)" by simp qed end context ring_1 begin lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp del: power_Suc add: power_Suc2 mult_assoc) qed lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" by (induct k, simp_all only: numeral_class.numeral.simps power_add power_one_right mult_minus_left mult_minus_right minus_minus) lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) lemma power_neg_numeral_Bit0 [simp]: "neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))" by (simp only: neg_numeral_def power_minus_Bit0 power_numeral) lemma power_neg_numeral_Bit1 [simp]: "neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))" by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps) lemma power2_minus [simp]: "(- a)\<^sup>2 = a\<^sup>2" by (rule power_minus_Bit0) lemma power_minus1_even [simp]: "-1 ^ (2*n) = 1" proof (induct n) case 0 show ?case by simp next case (Suc n) then show ?case by (simp add: power_add power2_eq_square) qed lemma power_minus1_odd: "-1 ^ Suc (2*n) = -1" by simp lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)" by (simp add: power_minus [of a]) end context ring_1_no_zero_divisors begin lemma field_power_not_zero: "a \ 0 \ a ^ n \ 0" by (induct n) auto lemma zero_eq_power2 [simp]: "a\<^sup>2 = 0 \ a = 0" unfolding power2_eq_square by simp lemma power2_eq_1_iff: "a\<^sup>2 = 1 \ a = 1 \ a = - 1" unfolding power2_eq_square by (rule square_eq_1_iff) end context idom begin lemma power2_eq_iff: "x\<^sup>2 = y\<^sup>2 \ x = y \ x = - y" unfolding power2_eq_square by (rule square_eq_iff) end context division_ring begin text {* FIXME reorient or rename to @{text nonzero_inverse_power} *} lemma nonzero_power_inverse: "a \ 0 \ inverse (a ^ n) = (inverse a) ^ n" by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) end context field begin lemma nonzero_power_divide: "b \ 0 \ (a / b) ^ n = a ^ n / b ^ n" by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) end subsection {* Exponentiation on ordered types *} context linordered_ring (* TODO: move *) begin lemma sum_squares_ge_zero: "0 \ x * x + y * y" by (intro add_nonneg_nonneg zero_le_square) lemma not_sum_squares_lt_zero: "\ x * x + y * y < 0" by (simp add: not_less sum_squares_ge_zero) end context linordered_semidom begin lemma zero_less_power [simp]: "0 < a \ 0 < a ^ n" by (induct n) (simp_all add: mult_pos_pos) lemma zero_le_power [simp]: "0 \ a \ 0 \ a ^ n" by (induct n) (simp_all add: mult_nonneg_nonneg) lemma power_mono: "a \ b \ 0 \ a \ a ^ n \ b ^ n" by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) lemma one_le_power [simp]: "1 \ a \ 1 \ a ^ n" using power_mono [of 1 a n] by simp lemma power_le_one: "\0 \ a; a \ 1\ \ a ^ n \ 1" using power_mono [of a 1 n] by simp lemma power_gt1_lemma: assumes gt1: "1 < a" shows "1 < a * a ^ n" proof - from gt1 have "0 \ a" by (fact order_trans [OF zero_le_one less_imp_le]) have "1 * 1 < a * 1" using gt1 by simp also have "\ \ a * a ^ n" using gt1 by (simp only: mult_mono `0 \ a` one_le_power order_less_imp_le zero_le_one order_refl) finally show ?thesis by simp qed lemma power_gt1: "1 < a \ 1 < a ^ Suc n" by (simp add: power_gt1_lemma) lemma one_less_power [simp]: "1 < a \ 0 < n \ 1 < a ^ n" by (cases n) (simp_all add: power_gt1_lemma) lemma power_le_imp_le_exp: assumes gt1: "1 < a" shows "a ^ m \ a ^ n \ m \ n" proof (induct m arbitrary: n) case 0 show ?case by simp next case (Suc m) show ?case proof (cases n) case 0 with Suc.prems Suc.hyps have "a * a ^ m \ 1" by simp with gt1 show ?thesis by (force simp only: power_gt1_lemma not_less [symmetric]) next case (Suc n) with Suc.prems Suc.hyps show ?thesis by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1]) qed qed text{*Surely we can strengthen this? It holds for @{text "0 a ^ m = a ^ n \ m = n" by (force simp add: order_antisym power_le_imp_le_exp) text{*Can relax the first premise to @{term "0 a ^ m < a ^ n \ m < n" by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] power_le_imp_le_exp) lemma power_strict_mono [rule_format]: "a < b \ 0 \ a \ 0 < n \ a ^ n < b ^ n" by (induct n) (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) text{*Lemma for @{text power_strict_decreasing}*} lemma power_Suc_less: "0 < a \ a < 1 \ a * a ^ n < a ^ n" by (induct n) (auto simp add: mult_strict_left_mono) lemma power_strict_decreasing [rule_format]: "n < N \ 0 < a \ a < 1 \ a ^ N < a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_Suc_less less_Suc_eq) apply (subgoal_tac "a * a^N < 1 * a^n") apply simp apply (rule mult_strict_mono) apply auto done qed text{*Proof resembles that of @{text power_strict_decreasing}*} lemma power_decreasing [rule_format]: "n \ N \ 0 \ a \ a \ 1 \ a ^ N \ a ^ n" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "a * a^N \ 1 * a^n", simp) apply (rule mult_mono) apply auto done qed lemma power_Suc_less_one: "0 < a \ a < 1 \ a ^ Suc n < 1" using power_strict_decreasing [of 0 "Suc n" a] by simp text{*Proof again resembles that of @{text power_strict_decreasing}*} lemma power_increasing [rule_format]: "n \ N \ 1 \ a \ a ^ n \ a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: le_Suc_eq) apply (subgoal_tac "1 * a^n \ a * a^N", simp) apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) done qed text{*Lemma for @{text power_strict_increasing}*} lemma power_less_power_Suc: "1 < a \ a ^ n < a * a ^ n" by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) lemma power_strict_increasing [rule_format]: "n < N \ 1 < a \ a ^ n < a ^ N" proof (induct N) case 0 then show ?case by simp next case (Suc N) then show ?case apply (auto simp add: power_less_power_Suc less_Suc_eq) apply (subgoal_tac "1 * a^n < a * a^N", simp) apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) done qed lemma power_increasing_iff [simp]: "1 < b \ b ^ x \ b ^ y \ x \ y" by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) lemma power_strict_increasing_iff [simp]: "1 < b \ b ^ x < b ^ y \ x < y" by (blast intro: power_less_imp_less_exp power_strict_increasing) lemma power_le_imp_le_base: assumes le: "a ^ Suc n \ b ^ Suc n" and ynonneg: "0 \ b" shows "a \ b" proof (rule ccontr) assume "~ a \ b" then have "b < a" by (simp only: linorder_not_le) then have "b ^ Suc n < a ^ Suc n" by (simp only: assms power_strict_mono) from le and this show False by (simp add: linorder_not_less [symmetric]) qed lemma power_less_imp_less_base: assumes less: "a ^ n < b ^ n" assumes nonneg: "0 \ b" shows "a < b" proof (rule contrapos_pp [OF less]) assume "~ a < b" hence "b \ a" by (simp only: linorder_not_less) hence "b ^ n \ a ^ n" using nonneg by (rule power_mono) thus "\ a ^ n < b ^ n" by (simp only: linorder_not_less) qed lemma power_inject_base: "a ^ Suc n = b ^ Suc n \ 0 \ a \ 0 \ b \ a = b" by (blast intro: power_le_imp_le_base antisym eq_refl sym) lemma power_eq_imp_eq_base: "a ^ n = b ^ n \ 0 \ a \ 0 \ b \ 0 < n \ a = b" by (cases n) (simp_all del: power_Suc, rule power_inject_base) lemma power2_le_imp_le: "x\<^sup>2 \ y\<^sup>2 \ 0 \ y \ x \ y" unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) lemma power2_less_imp_less: "x\<^sup>2 < y\<^sup>2 \ 0 \ y \ x < y" by (rule power_less_imp_less_base) lemma power2_eq_imp_eq: "x\<^sup>2 = y\<^sup>2 \ 0 \ x \ 0 \ y \ x = y" unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp end context linordered_ring_strict begin lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 \ x = 0 \ y = 0" by (simp add: add_nonneg_eq_0_iff) lemma sum_squares_le_zero_iff: "x * x + y * y \ 0 \ x = 0 \ y = 0" by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) lemma sum_squares_gt_zero_iff: "0 < x * x + y * y \ x \ 0 \ y \ 0" by (simp add: not_le [symmetric] sum_squares_le_zero_iff) end context linordered_idom begin lemma power_abs: "abs (a ^ n) = abs a ^ n" by (induct n) (auto simp add: abs_mult) lemma abs_power_minus [simp]: "abs ((-a) ^ n) = abs (a ^ n)" by (simp add: power_abs) lemma zero_less_power_abs_iff [simp, no_atp]: "0 < abs a ^ n \ a \ 0 \ n = 0" proof (induct n) case 0 show ?case by simp next case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) qed lemma zero_le_power_abs [simp]: "0 \ abs a ^ n" by (rule zero_le_power [OF abs_ge_zero]) lemma zero_le_power2 [simp]: "0 \ a\<^sup>2" by (simp add: power2_eq_square) lemma zero_less_power2 [simp]: "0 < a\<^sup>2 \ a \ 0" by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) lemma power2_less_0 [simp]: "\ a\<^sup>2 < 0" by (force simp add: power2_eq_square mult_less_0_iff) lemma abs_power2 [simp]: "abs (a\<^sup>2) = a\<^sup>2" by (simp add: power2_eq_square abs_mult abs_mult_self) lemma power2_abs [simp]: "(abs a)\<^sup>2 = a\<^sup>2" by (simp add: power2_eq_square abs_mult_self) lemma odd_power_less_zero: "a < 0 \ a ^ Suc (2*n) < 0" proof (induct n) case 0 then show ?case by simp next case (Suc n) have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" by (simp add: mult_ac power_add power2_eq_square) thus ?case by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) qed lemma odd_0_le_power_imp_0_le: "0 \ a ^ Suc (2*n) \ 0 \ a" using odd_power_less_zero [of a n] by (force simp add: linorder_not_less [symmetric]) lemma zero_le_even_power'[simp]: "0 \ a ^ (2*n)" proof (induct n) case 0 show ?case by simp next case (Suc n) have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" by (simp add: mult_ac power_add power2_eq_square) thus ?case by (simp add: Suc zero_le_mult_iff) qed lemma sum_power2_ge_zero: "0 \ x\<^sup>2 + y\<^sup>2" by (intro add_nonneg_nonneg zero_le_power2) lemma not_sum_power2_lt_zero: "\ x\<^sup>2 + y\<^sup>2 < 0" unfolding not_less by (rule sum_power2_ge_zero) lemma sum_power2_eq_zero_iff: "x\<^sup>2 + y\<^sup>2 = 0 \ x = 0 \ y = 0" unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) lemma sum_power2_le_zero_iff: "x\<^sup>2 + y\<^sup>2 \ 0 \ x = 0 \ y = 0" by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) lemma sum_power2_gt_zero_iff: "0 < x\<^sup>2 + y\<^sup>2 \ x \ 0 \ y \ 0" unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) end subsection {* Miscellaneous rules *} lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" unfolding One_nat_def by (cases m) simp_all lemma power2_sum: fixes x y :: "'a::comm_semiring_1" shows "(x + y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 + 2 * x * y" by (simp add: algebra_simps power2_eq_square mult_2_right) lemma power2_diff: fixes x y :: "'a::comm_ring_1" shows "(x - y)\<^sup>2 = x\<^sup>2 + y\<^sup>2 - 2 * x * y" by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute) lemma power_0_Suc [simp]: "(0::'a::{power, semiring_0}) ^ Suc n = 0" by simp text{*It looks plausible as a simprule, but its effect can be strange.*} lemma power_0_left: "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))" by (induct n) simp_all lemma power_eq_0_iff [simp]: "a ^ n = 0 \ a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \ n \ 0" by (induct n) (auto simp add: no_zero_divisors elim: contrapos_pp) lemma (in field) power_diff: assumes nz: "a \ 0" shows "n \ m \ a ^ (m - n) = a ^ m / a ^ n" by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) text{*Perhaps these should be simprules.*} lemma power_inverse: fixes a :: "'a::division_ring_inverse_zero" shows "inverse (a ^ n) = inverse a ^ n" apply (cases "a = 0") apply (simp add: power_0_left) apply (simp add: nonzero_power_inverse) done (* TODO: reorient or rename to inverse_power *) lemma power_one_over: "1 / (a::'a::{field_inverse_zero, power}) ^ n = (1 / a) ^ n" by (simp add: divide_inverse) (rule power_inverse) lemma power_divide: "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" apply (cases "b = 0") apply (simp add: power_0_left) apply (rule nonzero_power_divide) apply assumption done text {* Simprules for comparisons where common factors can be cancelled. *} lemmas zero_compare_simps = add_strict_increasing add_strict_increasing2 add_increasing zero_le_mult_iff zero_le_divide_iff zero_less_mult_iff zero_less_divide_iff mult_le_0_iff divide_le_0_iff mult_less_0_iff divide_less_0_iff zero_le_power2 power2_less_0 subsection {* Exponentiation for the Natural Numbers *} lemma nat_one_le_power [simp]: "Suc 0 \ i \ Suc 0 \ i ^ n" by (rule one_le_power [of i n, unfolded One_nat_def]) lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 \ x > (0::nat) \ n = 0" by (induct n) auto lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 \ m = 0 \ x = Suc 0" by (induct m) auto lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0" by simp text{*Valid for the naturals, but what if @{text"0nat)" assumes less: "i ^ m < i ^ n" shows "m < n" proof (cases "i = 1") case True with less power_one [where 'a = nat] show ?thesis by simp next case False with nonneg have "1 < i" by auto from power_strict_increasing_iff [OF this] less show ?thesis .. qed lemma power_dvd_imp_le: "i ^ m dvd i ^ n \ (1::nat) < i \ m \ n" apply (rule power_le_imp_le_exp, assumption) apply (erule dvd_imp_le, simp) done lemma power2_nat_le_eq_le: fixes m n :: nat shows "m\<^sup>2 \ n\<^sup>2 \ m \ n" by (auto intro: power2_le_imp_le power_mono) lemma power2_nat_le_imp_le: fixes m n :: nat assumes "m\<^sup>2 \ n" shows "m \ n" using assms by (cases m) (simp_all add: power2_eq_square) subsection {* Code generator tweak *} lemma power_power_power [code]: "power = power.power (1::'a::{power}) (op *)" unfolding power_def power.power_def .. declare power.power.simps [code] code_identifier code_module Power \ (SML) Arith and (OCaml) Arith and (Haskell) Arith end