/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Zorn's lemmas. Ported from Isabelle/HOL (written by Jacques D. Fleuriot, Tobias Nipkow, and Christian Sternagel). -/ import data.set.lattice noncomputable theory universes u open set classical local attribute [instance] decidable_inhabited local attribute [instance] prop_decidable namespace zorn section chain parameters {α : Type u} {r : α → α → Prop} local infix ` ≺ `:50 := r def chain (c : set α) := pairwise_on c (λx y, x ≺ y ∨ y ≺ x) theorem chain_insert {c : set α} {a : α} (hc : chain c) (ha : ∀b∈c, b ≠ a → a ≺ b ∨ b ≺ a) : chain (insert a c) := forall_insert_of_forall (assume x hx, forall_insert_of_forall (hc x hx) (assume hneq, (ha x hx hneq).symm)) (forall_insert_of_forall (assume x hx hneq, ha x hx $ assume h', hneq h'.symm) (assume h, (h rfl).rec _)) def super_chain (c₁ c₂ : set α) := chain c₂ ∧ c₁ ⊂ c₂ def is_max_chain (c : set α) := chain c ∧ ¬ (∃c', super_chain c c') def succ_chain (c : set α) := if h : ∃c', chain c ∧ super_chain c c' then some h else c theorem succ_spec {c : set α} (h : ∃c', chain c ∧ super_chain c c') : super_chain c (succ_chain c) := let ⟨c', hc'⟩ := h in have chain c ∧ super_chain c (some h), from @some_spec _ (λc', chain c ∧ super_chain c c') _, by simp [succ_chain, dif_pos, h, this.right] theorem chain_succ {c : set α} (hc : chain c) : chain (succ_chain c) := if h : ∃c', chain c ∧ super_chain c c' then (succ_spec h).left else by simp [succ_chain, dif_neg, h]; exact hc theorem super_of_not_max {c : set α} (hc₁ : chain c) (hc₂ : ¬ is_max_chain c) : super_chain c (succ_chain c) := begin simp [is_max_chain, not_and_iff, not_not_iff] at hc₂, exact have ∃c', super_chain c c', from hc₂.neg_resolve_left hc₁, let ⟨c', hc'⟩ := this in show super_chain c (succ_chain c), from succ_spec ⟨c', hc₁, hc'⟩ end theorem succ_increasing {c : set α} : c ⊆ succ_chain c := if h : ∃c', chain c ∧ super_chain c c' then have super_chain c (succ_chain c), from succ_spec h, this.right.left else by simp [succ_chain, dif_neg, h, subset.refl] inductive chain_closure : set α → Prop | succ : ∀{s}, chain_closure s → chain_closure (succ_chain s) | union : ∀{s}, (∀a∈s, chain_closure a) → chain_closure (⋃₀ s) theorem chain_closure_empty : chain_closure ∅ := have chain_closure (⋃₀ ∅), from chain_closure.union $ assume a h, h.rec _, by simp at this; assumption theorem chain_closure_closure : chain_closure (⋃₀ chain_closure) := chain_closure.union $ assume s hs, hs variables {c c₁ c₂ c₃ : set α} private lemma chain_closure_succ_total_aux (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h : ∀{c₃}, chain_closure c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ succ_chain c₃ ⊆ c₂) : c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁ := begin induction hc₁, case _root_.zorn.chain_closure.succ c₃ hc₃ ih { cases ih with ih ih, { have h := h hc₃ ih, cases h with h h, { exact or.inr (h ▸ subset.refl _) }, { exact or.inl h } }, { exact or.inr (subset.trans ih succ_increasing) } }, case _root_.zorn.chain_closure.union s hs ih { refine (or_of_not_implies' $ λ hn, sUnion_subset $ λ a ha, _), apply (ih a ha).resolve_right, apply mt (λ h, _) hn, exact subset.trans h (subset_sUnion_of_mem ha) } end private lemma chain_closure_succ_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h : c₁ ⊆ c₂) : c₂ = c₁ ∨ succ_chain c₁ ⊆ c₂ := begin induction hc₂ generalizing c₁ hc₁ h, case _root_.zorn.chain_closure.succ c₂ hc₂ ih { have h₁ : c₁ ⊆ c₂ ∨ @succ_chain α r c₂ ⊆ c₁ := (chain_closure_succ_total_aux hc₁ hc₂ $ assume c₁, ih), cases h₁ with h₁ h₁, { have h₂ := ih hc₁ h₁, cases h₂ with h₂ h₂, { exact (or.inr $ h₂ ▸ subset.refl _) }, { exact (or.inr $ subset.trans h₂ succ_increasing) } }, { exact (or.inl $ subset.antisymm h₁ h) } }, case _root_.zorn.chain_closure.union s hs ih { apply or.imp (assume h', subset.antisymm h' h) id, apply classical.by_contradiction, simp [not_or_iff, sUnion_subset_iff, classical.not_forall_iff, not_implies_iff], intro h, cases h with h₁ h₂, cases h₂ with c₃ h₂, cases h₂ with h₂ hc₃, have h := chain_closure_succ_total_aux hc₁ (hs c₃ hc₃) (assume c₄, ih _ hc₃), cases h with h h, { have h' := ih c₃ hc₃ hc₁ h, cases h' with h' h', { exact (h₂ $ h' ▸ subset.refl _) }, { exact (h₁ $ subset.trans h' $ subset_sUnion_of_mem hc₃) } }, { exact (h₂ $ subset.trans succ_increasing h) } } end theorem chain_closure_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) : c₁ ⊆ c₂ ∨ c₂ ⊆ c₁ := have c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁, from chain_closure_succ_total_aux hc₁ hc₂ $ assume c₃ hc₃, chain_closure_succ_total hc₃ hc₂, or.imp_right (assume : succ_chain c₂ ⊆ c₁, subset.trans succ_increasing this) this theorem chain_closure_succ_fixpoint (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h_eq : succ_chain c₂ = c₂) : c₁ ⊆ c₂ := begin induction hc₁, case _root_.zorn.chain_closure.succ c₁ hc₁ h { exact or.elim (chain_closure_succ_total hc₁ hc₂ h) (assume h, h ▸ h_eq.symm ▸ subset.refl c₂) id }, case _root_.zorn.chain_closure.union s hs ih { exact (sUnion_subset $ assume c₁ hc₁, ih c₁ hc₁) } end theorem chain_closure_succ_fixpoint_iff (hc : chain_closure c) : succ_chain c = c ↔ c = ⋃₀ chain_closure := ⟨assume h, subset.antisymm (subset_sUnion_of_mem hc) (chain_closure_succ_fixpoint chain_closure_closure hc h), assume : c = ⋃₀{c : set α | chain_closure c}, subset.antisymm (calc succ_chain c ⊆ ⋃₀{c : set α | chain_closure c} : subset_sUnion_of_mem $ chain_closure.succ hc ... = c : this.symm) succ_increasing⟩ theorem chain_chain_closure (hc : chain_closure c) : chain c := begin induction hc, case _root_.zorn.chain_closure.succ c hc h { exact chain_succ h }, case _root_.zorn.chain_closure.union s hs h { have h : ∀c∈s, zorn.chain c := h, exact assume c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq, have t₁ ⊆ t₂ ∨ t₂ ⊆ t₁, from chain_closure_total (hs _ ht₁) (hs _ ht₂), or.elim this (assume : t₁ ⊆ t₂, h t₂ ht₂ c₁ (this hc₁) c₂ hc₂ hneq) (assume : t₂ ⊆ t₁, h t₁ ht₁ c₁ hc₁ c₂ (this hc₂) hneq) } end def max_chain := ⋃₀ chain_closure /-- Hausdorff's maximality principle There exists a maximal totally ordered subset of `α`. Note that we do not require `α` to be partially ordered by `r`. -/ theorem max_chain_spec : is_max_chain max_chain := classical.by_contradiction $ assume : ¬ is_max_chain (⋃₀ chain_closure), have super_chain (⋃₀ chain_closure) (succ_chain (⋃₀ chain_closure)), from super_of_not_max (chain_chain_closure chain_closure_closure) this, let ⟨h₁, h₂, (h₃ : (⋃₀ chain_closure) ≠ succ_chain (⋃₀ chain_closure))⟩ := this in have succ_chain (⋃₀ chain_closure) = (⋃₀ chain_closure), from (chain_closure_succ_fixpoint_iff chain_closure_closure).mpr rfl, h₃ this.symm /-- Zorn's lemma If every chain has an upper bound, then there is a maximal element -/ theorem zorn (h : ∀c, chain c → ∃ub, ∀a∈c, a ≺ ub) (trans : ∀{a b c}, a ≺ b → b ≺ c → a ≺ c) : ∃m, ∀a, m ≺ a → a ≺ m := have ∃ub, ∀a∈max_chain, a ≺ ub, from h _ $ max_chain_spec.left, let ⟨ub, (hub : ∀a∈max_chain, a ≺ ub)⟩ := this in ⟨ub, assume a ha, have chain (insert a max_chain), from chain_insert max_chain_spec.left $ assume b hb _, or.inr $ trans (hub b hb) ha, have a ∈ max_chain, from classical.by_contradiction $ assume h : a ∉ max_chain, max_chain_spec.right $ ⟨insert a max_chain, this, ssubset_insert h⟩, hub a this⟩ end chain theorem zorn_weak_order {α : Type u} [weak_order α] (h : ∀c:set α, @chain α (≤) c → ∃ub, ∀a∈c, a ≤ ub) : ∃m:α, ∀a, m ≤ a → a = m := let ⟨m, hm⟩ := @zorn α (≤) h (assume a b c, le_trans) in ⟨m, assume a ha, le_antisymm (hm a ha) ha⟩ end zorn