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Abstract

As the number and variety of files stored and ac-
cessed by a typical user has dramatically increased,
existing file system structures have begun to fail as a
mechanism for managing all of the information con-
tained in those files. Many applications—email clients,
multimedia management applications, and desktop
search engines are examples—have been forced to de-
velop their own richer metadata infrastructures. While
effective, these solutions are generally non-standard,
non-portable, non-sharable across applications, users
or platforms, proprietary, and potentially inefficient. In
the interest of providing a rich, efficient, shared file
system metadata infrastructure, we have developed the
Linking File System (LiFS). Taking advantage of non-
volatile storage class memories, LiFS supports a wide
variety of user and application metadata needs while
efficiently supporting traditional file system operations.

1. Introduction

File system interfaces have changed relatively little
in the three decades since the UNIX file system was
first introduced. Metadata in standard file systems in-
cludes directory hierarchies and some fixed per-file at-
tributes including file name, permissions, size, and ac-
cess/modification times. While primitive, these inter-
faces have served well.

In the same time frame, demands on the storage sub-
system have increased both quantitatively and qualita-
tively. Storage systems have grown, the amount of stor-
age accessed by individual users has increased, and the
variety of data stored has grown dramatically. General-
purpose file systems are now used to store tremen-
dous volumes of text documents, web pages, applica-
tion programs, email files, calendars, contacts, music
files, movies, and many other types of data. Although
current file systems are relatively effective at reliably
storing the data, the increasing size and complexity of

the information stored has made management and re-
trieval of the information problematic. Simply stated,
with so much information, it is difficult to find what one
really wants. This problem has been addressed on the
web with the development of search engines, and it is
now often harder to find information on one’s own hard
drive than on the web.

To address this shortcoming, application develop-
ers have been forced to develop their own metadata
infrastructures. Email applications, digital photo al-
bums, digital music applications, desktop search appli-
cations, and many others have their own file system
metadata to enable the organizing, searching, brows-
ing, viewing/playing, annotating, and generally work-
ing with specific types of files. Many of these appli-
cations have special-purpose code for dealing with the
specific properties of the type of data they manage, but
they also include code that is not data-specific for or-
ganizing, annotating, browsing, etc. Because this code
was developed as part of an application, it rarely ad-
heres to any standard, is often not portable, it is difficult
to share between applications, users, or platforms, it is
typically owned by the company that developed it, and
it is potentially inefficient.

Key functions of the operating system are to effi-
ciently provide services that are used by a variety of
applications, to abstract away low-level details by pro-
viding a useful high-level API, and to facilitate sharing
of resources used by multiple users and applications.
The wide variety of applications developing their own
file system metadata infrastructure shows the need for
this infrastructure to be provided by the file system.
Recently, researchers (ourselves included) have taken
steps in that direction by including additional per-file
metadata in the form of〈key,value〉 pairs. While use-
ful, this is inadequate to support the needs of the wide
variety of applications described above.

We present the Linking File System (LiFS). In ad-
dition to the standard file system operations, LiFS pro-
vides searchable application-defined file attributes and
attributed links between files. File attributes are in the
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form of application-defined〈key,value〉 pairs. Links are
explicit relationships between files that can themselves
have attributes expressed as〈key,value〉 pairs to express
the nature of the relationship created by the link. These
simple additions dramatically change the nature of file
systems, enabling a wide variety of operations, provid-
ing a rich, shared metadata infrastructure, and allowing
applications to focus on managing application-specific
data instead of managing things that are best managed
by the file system.

In LiFS, all files may contain data and links to other
files. Thus, a traditional data file is one with contents
and no links, and a traditional directory is one with no
contents and directory containment links to other files.
Many more interesting examples are possible. For ex-
ample, a.c file can contain links to the.h files it in-
cludes. An executable can contain links to its source.c
files, the compiler used to generate it, and the library
files on which it depends. A document can contain a
link to the application used to edit and view it. With
respect to the application-specific infrastructures men-
tioned above, an email client, a digital photo album,
and a music player now all need only provide a GUI for
managing their specific type of data and manipulating
the attributes of and relationships among the files they
each manage, and the file system can take care of stor-
ing the attributes and relationships and efficiently sup-
porting their manipulation, search, and other actions.

LiFS is enabled by storage class memories—non-
volatile, byte-addressable RAM—by making the read-
ing, writing, indexing, and searching of such rich meta-
data fast and efficient. Our prototype is designed with
MRAM in mind, but is implemented in Linux using
standard DRAM. Our results demonstrate that the per-
formance of LiFS is comparable to, if not better than,
that of other Linux file systems, while providing far
richer metadata semantics. As a proof-of-concept we
have implemented a simple browser that functions al-
ternatively as a file system browser, an email browser,
a digital photo browser, or a music browser, depend-
ing upon the files and links contained in the file system
hierarchy it is exploring. The following sections exam-
ine some motivating examples in more detail, discuss
the LiFS design, present the details of our LiFS imple-
mentation, and show the performance of LiFS in various
scenarios.

2. Motivating Examples

Relational links and attributes are surprisingly use-
ful. In this section we will illustrate their utility in
finding and organizing information and in coping with
change in computing infrastructure. These areas are
of particular interest in the context of rapid growth of

personal and enterprise-level data and the emergence
of utility computing requiring scalable IT management
technologies.

2.1. Information Management

2.1.1. Searching Finding data on the vast World-
wide Web is often easier than finding the same content
on a local hard drive. The same search engine technol-
ogy that does well on the Internet typically performs
poorly when applied to enterprise-level file systems. To
our knowledge both of these statements are only based
on anecdotal albeit common evidence but can be plausi-
bly explained: web links convey relevance and semantic
information that turns out to be very useful for search-
ing and presenting search results [36]. However, tra-
ditional file systems only convey relationships among
files through the hierarchical directory system.

Hierarchical directories are actually a compromise
between the need of users to organize their data on one
hand and file system designers who aim to reduce the
cost of maintaining metadata on the other. This dearth
of relationships between files is the primary reason that
finding data in enterprise-wide file systems or even in
local file systems appears to be harder than on the Inter-
net.

There is in fact a wealth of explicit and implicit rela-
tionships among files. Because hierarchical directories
make it difficult to express explicit relationships, this
information often ends up being stored in application-
specific files and obscured by proprietary file formats.
There are also implicit relationships such as prove-
nance, application and data dependencies, as well as
contexts that may span applications; this information
is typically not recorded at all. However, maintaining
provenance and context relationships enables powerful
search capabilities. For example, two downloaded files
that are in some way related on the web,e. g., origi-
nating from the same web site, normally are stripped
from their context when stored on a local file system.
Provenance preserves their relationships and provides
important clues to context-sensitive searches.

The history of Internet search engines shows a pro-
gression of increasingly sophisticated ways of mining
relationships, extending successful searching even to
documents with content obscured by proprietary for-
mats. The introduction of rich relationships for files will
allow the successful use of advanced search technolo-
gies within personal or enterprise-wide file systems.

2.1.2. Repository Sharing Because applications
are often the sole maintainer of meaningful relation-
ships among files, repositories are often partitioned.
As a result, each repository can only be accessed by
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one application and relationships that span repositories
are hard to represent. A good example is the com-
mon fact that notes, email, calendar entries, and instant
message conversations each have their own application-
specific repositories with no mechanism to represent
relationships between, for example, an email and a
calendar entry. Some commercial personal informa-
tion systems such as Microsoft Outlook [31], and other
systems currently under development such as Chan-
dler [34] and Haystack [38] try to alleviate this prob-
lem by combining traditionally separate repositories
into one application-specific repository. However, this
approach only alleviates repository partitioning rather
than solving the problem.

Another disadvantage of maintaining relationships
on the application level is that it makes integration
among applications unnecessarily hard: To maintain
data relationships across applications, each application
has to know how to communicate with another appli-
cation’s API to access and manipulate data in the other
application’s repository. Some alleviation of thisn : m
scaling problem is offered by “glue” languages such as
Apple’s AppleScript [4] and more recent Automator [5],
which are designed to enable end users to automate
common tasks spanning multiple applications. How-
ever, the resulting scripts still interact with data repos-
itories via the API of applications and quickly become
obsolete due to API changes from new versions or sub-
stitutions of applications.

LiFS, on the other hand, provides a file-centric (as
opposed to application-centric) infrastructure that al-
lows applications to not only store files but to in-
sert relationship information directly into the file sys-
tem’s metadata. All applications that take advantage of
LiFS relational links and attributes automatically share
one repository and integration among applications only
needs to interact with the file system’s API.

2.1.3. Navigation Rich relationships between files
require more sophisticated navigation tools than a tra-
ditional file system browser. File system browsers are
specialized for traversing hierarchies but are ill-suited
for navigating non-hierarchical graph structures with
different kinds of links. Web browsers, on the other
hand, are designed to navigate hypertext graphs and
have developed mechanisms to handle a variety of link
types. For example, a web page can contain image
source links that are immediately resolved to inline im-
ages while anchors are not resolved but displayed as
clickable text. Other examples of link types are ref-
erences to frames, style sheets, or more complicated
Javascript constructs that allow asynchronous requests
for updates without reloading the web page, such as
those used by Google’s Gmail, Maps, and Suggest.

Recent web browser designs offer a high degree
of extensibility and the ability to render sophisticated
user interfaces. We believe that this evolution of web
browsers is not a coincidence but was both possible and
necessary because of the Web’s complex relational link-
ing structure. There is no one good way to display com-
plex structures. Instead, more or less specialized inter-
faces for interacting with these structures are adopted as
these complex structures become commonplace. We are
faced with a similar situation when designing file sys-
tem browsers once we introduce complex linking struc-
tures as in LiFS.

The need to render a wide variety of structures
has led to powerful architectures, culminating in
Mozilla [45], that offer a very flexible and fast lay-
out engine (Gecko [44]) and extensible component ar-
chitecture that loads the entire specification of a user
interface from files. This user interface specification
framework is referred to as XML User interface Lan-
guage (XUL [47]). It is powerful enough to fully spec-
ify the user interface of Firefox and Thunderbird, two
instances of Mozilla, one for browsing the web and one
for managing email. Furthermore, XUL’s sister eXten-
sible Bindings Language (XBL [46]), allows dynamic
modification of parts of the user interface.

Significant in the context of LiFS is the fact that
XUL presents a fully implemented framework that al-
lows the linking of file structures to specify how to dis-
play these structures. It is now conceivable to integrate
formerly segregated navigation and management activ-
ities regarding notes, email, instant messages, calen-
dar entries, and software development projects into one
“file system browser”.

Interestingly, the relationship between XUL compo-
nents (UI content, skin, and scripts) is specified in RDF
files [48]. These RDF files can be directly translated
into LiFS linking structures. Furthermore, XUL popu-
lates the user interface by specifying queries to one or
more RDF data sources. The Mozilla component ar-
chitecture allows the creation of new RDF data sources.
We are in the process of implementing a component that
provides LiFS linking structures and file attributes as
RDF data source.

In summary, by providing relational links we can
leverage file system navigation in LiFS with Web
browser technologies and use these technologies to
combine file system content in ways that were not pos-
sible before because of repository partitioning and ap-
plications that are hard to integrate.

2.2. Infrastructure Change Management

Infrastructure change can, and often does, destroy
the usefulness of data. However, infrastructures change
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all the time: software and hardware get upgraded or
replaced and a change as small as a single upgrade of
an application can render data useless. This process of
continual change is the primary reason for data obso-
lescence and the number one threat to digital preserva-
tion [11]. A special case of infrastructure change occurs
when data is migrated. In the following section we will
illustrate how relational links can make infrastructure
change more manageable.

2.2.1. ObsolescenceUsers often discover data ob-
solescence when it is too late. A typical example is
someone who has to amend the tax return for the year
2001 while filing for 2003 and has changed comput-
ing platforms sometime in 2002. While changing plat-
forms, the user copies the file for the 2001 tax return to
the new platform not realizing that each tax year and
each computing platform requires a separate applica-
tion. Two years later the user is unable to read the 2001
file because the retroactively purchased application for
2001 cannot access 2001 files generated on the old plat-
form. The user is left with trying to reconstruct the for-
mer infrastructure which might be more difficult than
recreating the 2001 file. Thus, the 2001 data was essen-
tially lost.

The example illustrates that even well within typical
record life cycles it is difficult to anticipate the conse-
quences of infrastructure changein timeunless the de-
pendencies of data are made explicit. One way to ad-
dress the rapid rate of change is to introduce another
application for managing the context of data by keeping
track of which application version created what data.
However, such an application would be as exposed to
obsolescence as any other application. File systems, on
the other hand, have historically enjoyed low obsoles-
cence and are therefore better suited to manage depen-
dencies over longer time periods.

In LiFS we can represent the dependencies in this
example with relational links. This allows the genera-
tion of a detailed list of consequencesbeforedeleting an
application or changing the infrastructure in other ways
that might cause damage.

2.2.2. Migration To continue with the tax return ex-
ample, recall that the key failure that led to obsolete
data was migrating tax data from one platform to an-
other without realizing (for two years) that not all de-
pendencies on the target platform were satisfied. To
solve this problem, the source platform has to commu-
nicate data dependencies to the target platform and the
target platform needs to figure out how to satisfy these
dependencies. This functionality is similar to popular
open source package managers which package recog-

nize what other packages need to be downloaded for a
given package in order for the software to function.

Import and export of LiFS metadata for communi-
cation of dependencies between file systems is still on-
going research. We anticipate that metadata will be ex-
ported as RDF, and that the import of RDF into meta-
data will involve a resolution process that either gen-
erates requests for missing files or generates alerts for
non-satisfiable dependencies.

3. File System Design

3.1. Basic Goals

We have designed LiFS with the goal of pro-
viding attributed relationships between files and en-
hanced metadata with no perceptible performance over-
head compared to traditional file systems. We as-
sume that the storage system LiFS runs on will in-
clude a high-bandwidth, higher latency component with
large amounts of storage (such as a hard disk), and a
lower bandwidth, low-latency component with a small
amount of storage proportional to the size of the larger
storage. This lower bandwidth, low-latency compo-
nent could be any type of byte addressable, non-volatile
memory such as magnetic RAM [12] or any other stor-
age class memory technology. The larger capacity,
higher latency storage is used to hold the user data
stored in the file system, while traditional and enhanced
metadata resides on the smaller, faster storage class
memory.

Three specific features of the file system that al-
low us to reach our design goals are named links be-
tween files, attributes on files, and attributes on links.
Attributes are composed of〈key,value〉 pairs such as
〈author, john〉. Files are named according to the name
of the link by which they are accessed. For instance if
there is a link namedbar from source filefoo, the tar-
get file is accessed asbar. Multiple links between two
files may exist as long as they are disambiguated by a
unique set of attributes. Multiple links are useful when
there are multiple users of on a system, and more than
one user or application wishes to have a link between
two files with their own set of attributes.

In LiFS, the concept of a set of links from a source
file replaces that of a directory. For example, if a file
work/document.txt links to a filepicture.jpeg, a user
can change directories towork/document.txt and find
picture.jpeg in the listing. Traditional directories are
emulated via zero byte files with links to all member
files. For backwards compatibility, a legacy application
may set a special STAT attribute on a file in order to
access that file as a directory, or vice versa.
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System call Function
rellink Create a new relational link be-

tween files
rmlink Remove a relational link between

files
setlinkattr Set attributes on an existing link be-

tween files
openlinkset Returns an identifier for a set of

links from a source file
readlinkset Fills in standard directory entry

structure with link name and at-
tributes for the next link in a set

Table 1: New file system calls

To offer this new functionality, we propose several
new system calls, shown in Table 1, to manipulate links
and attributes on links. The new system calls have a
syntax very similar to that of current calls to manipu-
late and get information about directories, links, and ex-
tended attributes. For file attributes, we implement the
standardgetxattr andsetxattr extended attribute calls.

3.2. In-Memory Data Structures

Traditional file system data structures are optimized
for accessing both data and metadata on a high-latency
disk. In contrast, we designed the file system data struc-
tures in LiFS to take advantage of low latency stor-
age class memories. Traditional inodes have been aug-
mented by link nodes (lnodes), attribute nodes (anodes)
and extent nodes (enodes). Because memory access is
very cheap, lnodes, anodes and enodes are arranged in
linked lists, allowing for trivial insertion and deletion.

Our file system uses a hash table which eliminates
duplicate storage of strings. The first time a string is
used in LiFS, it is added to the table. When an iden-
tical string is later used, a lookup returns a pointer to
the string in the string table. A reference count is kept
for each string so that unused strings do not remain in
memory. The string table is used to optimize string
comparisons and searches in the file system. Strings for
which there are entries in the string table can be tested
for equality with a pointer comparison rather than com-
paring string data. Additionally, if a string is not in the
string table we know that any search on that string in
the metadata will not be satisfied.

All data structures necessary for file system usage
are referenced from the supernode, shown in Figure 2.
The supernode is stored at the beginning of non-volatile
memory. The supernode references the string table, a
bitmap of allocated blocks, the inode table, and the first
free inode. The list of free inodes is embedded within
the inode table itself, with each free inode pointing to

supernode

 diskBitmap

 stringTable

 inodeTable

 freeList

lset

aset

eset

inode #0   inode #1   

 linkSet

 attribSet

 extentSet

inode #2   inode #3   inode #4   

inode table

Figure 2: Structure of the LiFS supernode

lset

 last

 first lnode

 src

 dest

 attribSet

lnode

 src

 dest

 attribSet

Figure 3: A set of links from a file in LiFS

aset

 last

 first anode

 key

 value

anode

 key

 value

"author" "chefsteve" "editor"

string table

Figure 4: A set of attributes in LiFS

the next. Each entry in the inode table stores traditional
metadata about a file such as mode and size as well as a
pointer to three linked lists: an lset, aset, and an eset.

Links in LiFS are maintained in an lnode structure.
As shown in Figure 3, anlset contains a linked list of
lnodes, each of which contains a source inode, destina-
tion inode and a set of attributes. The set of attributes is
a pointer to an attribute set, oraset, shown in Figure 4.
An aset contains a linked list of anodes, each of which
has a pointer to the string table entry for the key and
value of that attribute.

LiFS attempts to allocate disk space in extents—
sequential series of blocks. An extent set, oreset, shown
in Figure 5, contains a linked list of enodes, each of
which specifies the limits of a single extent. When LiFS
grows a file, it attempts to grow the last extent if possi-
ble. If this is not possible, LiFS allocates a new extent
and corresponding enode. Free space is found by scan-
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eset

 last

 first enode

 extent

enode

 extent

Figure 5: LiFS extent system for disk allocation

ning the bitmap of allocated blocks contained in the su-
pernode using first fit.

4. Implementation

The novel features of LiFS such as relational links
require modifications to the Linux Kernel. In Linux,
the VFS (Virtual File System) layer provides access to
file systems for user mode programs. We added both
kernel system calls and VFS functions as required for
our new functionality. All new system calls were based
on the syntax of similar existing operations.

Our development process was made easier by use
of FUSE (File system in User Space). FUSE is a
userspace library and Linux kernel module that directs
VFS calls to a userspace daemon. Implementing LiFS
in userspace through FUSE freed us from the complex-
ities of kernel development, albeit with considerable
overhead. We modified FUSE to match our changes to
the Linux VFS in order to support the new function-
ality in LiFS. Once again, the similarity in syntax and
function to existing interfaces aided in development. As
Figure 6 shows, LiFS resides in a userspace daemon that
communicates with the FUSE kernel module through a
file in the Linux proc file system. Both our new calls
and standard file system calls are passed to the kernel
via this channel.

For this paper we were not able to procure sufficient
quantities of a non-volatile, byte-writable storage class
memory; instead we used system DRAM. The major
consequence of this approach is that many operations
will run faster than they would in storage class memo-
ries. In the future, we will compensate for this speed
up with artificial delays. The ability to model slower
storage class memories using DRAM will allow us to
simulate the performance of LiFS across a wide variety
of non-volatile storage.

We assume that a storage class memory would be
mapped into an arbitrary segment of the system address
space. To imitate this mapping, we allocated several
hundred megabytes of system memory exclusively for
LiFS data structures. This memory is locked to prevent

client application user space daemon

Linux VFS

user space

kernel space

FUSE kernel module

Figure 6: The relationship between FUSE and the
FUSE/LiFS userspace daemon

it from being swapped out, based on the assumption that
LiFS will have enough storage class memory to hold
all the file system’s metadata. All memory within this
space is allocated using a custom allocator. The alloca-
tor allows relocation to arbitrary address spaces, antici-
pating the possibility that a storage class memory could
be mapped into a different part of the system memory
address space, perhaps after the system was rebooted
or the memory was moved to a new machine. Since
our metadata data structures are each a fixed size, we
exploit this characteristic by optimizing our custom al-
locator to preallocate several pools of different constant
size chunks. On memory allocation, a chunk of memory
is retrieved from a pool of the appropriate size. On deal-
location, the chunk is returned to its pool. This allows
for very quick turnaround times.

Lookup operations in LiFS require resolution over
all links as opposed to solely being resolved over direc-
tory structures. Consequently, lookups involve travers-
ing a series of inodes and lnodes beginning at the root
inode. Lookup is an iterative process which scans all
links originating at its current node. If a link matches
the corresponding part of the input pathname, then the
target of that link becomes the current node. If no
matching link is found, an error is returned.

We have implemented two optimizations to speed up
lookups. The first optimization checks that the current
path component is in the LiFS string table; if it is not
there then it can be safely concluded that the lookup will
not be successful. The second optimization is a lookup
cache which stores full pathname to inode number map-
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File System Create Files Read Files
LiFS with FUSE 1.043 0.720
ext2 with FUSE 1.445 1.012
XFS with FUSE 3.998 1.050

Table 7: Create and read time, in seconds, for 15,620
zero-byte files (k = 5, d = 5, n = 4). Times shown are
the arithmetic mean of five test runs.

pings. Because there is no need for persistence in this
cache, it is stored in DRAM as opposed to a storage
class memory which stores all other LiFS data struc-
tures. The lookup cache is filled on successful lookups.
Conversely, before the lookup operation begins, a re-
quest is made to the cache for the appropiate pathname
to inode mapping.

The core LiFS code has 3,400 lines of C code. Mod-
ifications to the FUSE kernel module and userspace li-
braries required additional code, but these changes were
necessitated by FUSE and would not be part of an in-
kernel implementation. The small size of our imple-
mentation may be attributed to the simplicity of stor-
ing all file metadata as in-memory data structures. That
the speed of such a simple implementation can compete
with more optimized file systems such as ext2 (5,500
lines of code) demonstrates the power of storing meta-
data in a fast byte writable memory.

The simplicity of our implementation and its speed
suggest the potential for significant performance im-
provements with additional optimization. We already
optimize performance and storage requirements using
the string table and other data structures which are not
feasible in traditional disk-based file systems. We also
plan to improve scalability of LiFS by replacing the
linked lists prevalent in our implementation with bal-
anced trees.

5. Results and Performance

LiFS was implemented and evaluated on a pair of
Sun workstations running the Linux kernel 2.6.9-ac11.
Each system was configured with an AMD Opteron 150
processor running at 2400 MHz and one gigabyte of
RAM. For testing, LiFS was compared with the XFS
and ext2 file system versions included with the Linux
kernel. Benchmark testing was automated using Python
version 2.3.4, gawk 3.1.3 and GCC 3.4.2. All of the
following tests are run on freshly created file systems
since the focus of this paper is on the performance of
in-memory data structures and not on disk sub-system
performance.

File System Create Files Read Files
LiFS with FUSE 12.195 2.027
ext2 with FUSE 2.613 1.679
XFS with FUSE 4.871 1.836

Table 8: Create and read time, in seconds, for 15,620
files (k = 5, d = 5, n = 4) of size 384 bytes. Times
shown are the arithmetic mean of five test runs.

5.1. Standard File System Operations

In order to compare the baseline performance of
LiFS, ext2 and XFS, we used a set of six standard file
system operations: creating directories, creating files,
reading files, setting extended attributes on files, retriev-
ing extended attributes from files and removing directo-
ries. Systematic tests of these operations on each file
system enabled a fair comparison between LiFS, ext2
and XFS. Each of our tests was run in kernel, through
FUSE, on RAM-disk and through FUSE on RAM-disk.
LiFS is currently not running in the kernel and XFS can-
not be created on a RAM-disk, thus these three scenar-
ios (LiFS in kernel, XFS on a RAM-disk, and XFS via
FUSE on a RAM-disk) were omitted. To compare these
file systems, we created completek-ary trees of depth
d, with n files per directory each containinga extended
attributes.

Table 7 shows LiFS performance for creating and
reading zero byte files. It is clear that LiFS is compet-
itive with ext2 through FUSE and XFS through FUSE
in both tests. Table 8 shows the same tests for files 384
bytes in size. These results show that LiFS is still com-
petitive with ext2 and XFS in the area of file reads but
falls behind in file creation. This is due to the extent
allocation scheme used in the current implementation
of LiFS. For each extent allocation, the current imple-
mentation searches the list of free blocks sequentially,
starting from the beginning. The results from these two
tests indicate that a significant performance gain can be
expected from an optimized extent allocation algorithm.

Figures 9(a) and 9(b) show the performance of LiFS,
ext2, and XFS creating and retrieving extended at-
tributes on 15,620 files (k = 5, d = 5, n = 4). Fig-
ure 9(a) shows the running time for two attributes set on
each file, while figure 9(b) shows the running times for
twenty attributes per file. In both cases, LiFS performs
better than ext2 and XFS through FUSE. When setting
twenty attributes per file, LiFS takes roughly 70% of
the time required by ext2 under FUSE, while requiring
about 73% of the time needed by ext2 to retrieve at-
tributes. These figures also show that the running times
for setting and getting file attributes scale well in LiFS
as compared to ext2 and XFS.

Directory tree creation performance was tested by
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(a) Setting and getting file attributes on 15,620 files (k = 5,
d = 5, n = 4, a = 2). The times are in seconds and averaged
over 5 runs. RD indicates file system on RAM-disk. Note
that the XFS runs to set attributes both took over 21 seconds;
the graph is cut off at 5 seconds to show details for the other
runs.
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(b) Setting and getting file attributes on 15,620 files (k = 5,
d = 5, n= 4, a= 20). The times are in seconds and averaged
over 5 runs. RD indicates file system on RAM-disk. Again,
XFS, both with and without FUSE, was much slower, requir-
ing over 109 seconds to complete the set attributes bench-
mark. The graph was cut off to show detail for the other file
systems.

Figure 9: Time required to set and retrieve at-
tributes in different file systems.

Number of Directories
File System 3,905 19,607 111,110
LiFS with FUSE 0.140 0.7882 4.292
ext2 with FUSE 0.226 1.2315 8.550
XFS with FUSE 0.710 3.3193 25.285

Table 10: Create time, in seconds, for directory trees
of various sizes. Times shown are the arithmetic
mean of five test runs.
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Figure 11: Running times of the 6 file system op-
erations for ext2 and LiFS through FUSE. Results
are averaged over 4 runs on a 111,110 directory tree
with 1 zero-byte file per directory (k = 10, d = 6,
n = 1).

generating directory trees for various values ofk and
d. Table 10 shows the results of the test, demonstrating
that LiFS is comparable to ext2 and XFS. The running
time of directory creation scales linearly with the num-
ber of directories. This result is comparable to ext2 and
XFS. In addition, LiFS is faster than both ext2 through
FUSE and XFS through FUSE.

Figure 11 shows the performance of ext2 and LiFS
under FUSE and FUSE+RAM-disk. We were unable to
create and mount an XFS file system on a RAM-disk,
thus XFS is omitted. Since the file system is recreated
for each test, the first iteration was working with a cold
cache. To avoid extreme shifts in our averages, we dis-
carded the first iteration and averaged over the remain-
ing four. The results displayed in Figure 11 were taken
from 4 runs of the 6 file system operations over 111,110
directories with 1 zero-byte file per directory (k = 10,
d = 6, n = 1). It is clear from the tests of ext2 that a
great deal of overhead is incurred when all of the op-
erations are performed on disk. Because the operations
performed in figure 11 use metadata exclusively, LiFS
performs better than ext2 on RAM-disk in all cases.

5.2. LiFS Specific Operations

Performance testing of the LiFS specific operations
focused on three operations: creating a link between
two files, creating attributes for links and removing
links. To test the performance of these operations, we
created a directory tree and constructed a random graph,
where the vertices are files and the edges are attributed
links. A directory tree is built in the same manner as in
our other tests. The links are then created using a ran-
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Attributes per Link
Operation 2 30
Create Links 1.073 1.054
Create Attributes 1.148 2.751
Remove Links 1.086 1.288

Table 12: Time in seconds to create 15,620 random
links over a directory tree (k = 5, d = 5, n = 4) with
2 and 30 attributes on each link.

dom number generator and a list of all of the files in the
directory tree.

We tested the performance of link and link attribute
creation on a directory tree having 15,620 files (k = 5,
d = 5, n = 4). After creating the tree, 15,620 links
are created between randomly selected files. Table 12
shows the time required to perform a variety of link op-
erations for different numbers of link attributes. The
running times shown in Table 12 are averaged over five
runs. Link creation is a separate operation from the at-
tribute creation and thus the average running time is not
affected by the number of attributes.

The time required to remove links, shown in Ta-
ble 12, demonstrates the results of a data-structure de-
sign choice in the version of LiFS used for testing.
When removing a link between two files, a〈key,value〉
pair is specified to unambiguously identify a link. This
is due to the fact that LiFS allows for multiple links to
be made between the same two files. The〈key,value〉
pairs are currently stored in a linked list data struc-
ture and thus attribute retrieval must, on average, search
through half of the link’s〈key,value〉 pairs. This results
in the increased time required to delete a link with 30
attributes versus a link with only 2 attributes.

5.3. SSH Compile Performance

To demonstrate the performance of LiFS in a prac-
tical scenario, we compiled OpenSSH version 4.1 us-
ing GCC 3.4.2. As Table 13 demonstrates, LiFS run-
ning through FUSE is competitive with other file sys-
tems in tests both with and without a RAM-disk. Com-
piling OpenSSH on a LiFS file system running though
FUSE took 24.28 seconds. Ext2 through FUSE took
23.40 seconds and XFS through FUSE required 23.49.
In a complex series of operations, such as compiling a
non-trivial source tree, completion time is not strictly
bounded by the file system. Our results show that in
such a scenario the extended capabilities of LiFS do not
incur an overhead that introduces a new bottleneck to
the system.

The OpenSSH compile times show a relatively minor
performance hit when running through FUSE. This is to
be expected, as compiling a source tree is not bound by

File System Avg(sec)
ext2 22.52
ext2 through FUSE 23.40
ext2 through FUSE on RAM-disk 23.95
LiFS through FUSE 24.28
LiFS through FUSE on RAM-disk 23.75
XFS 23.20
XFS through FUSE 23.49

Table 13: Compile times for OpenSSH 4.1 (in sec-
onds) on a variety of file systems. Times reflect the
arithmetic mean of five trial runs.

Operation ext2-FUSE ext2 Speedup
Create Tree 0.2262 0.080 2.828
Create Files 2.613 1.146 2.280
Read Files 1.679 0.474 3.542
Operation XFS-FUSE XFS Speedup
Create Tree 0.709 0.650 1.091
Create Files 4.872 4.282 1.138
Read Files 1.837 0.541 3.396

Table 14: Speedup ratios for selected operations
comparing file systems through FUSE versus the
same file system without a FUSE layer. Times shown
are are the arithmetic mean of five test runs.

disk performance. A more dramatic example of perfor-
mance gained by eliminating the FUSE layer is shown
in Table 14. Reading files without the FUSE layer was
over 3.3 times faster for both XFS and ext2. For file
and directory tree creation the ext2 file system showed
a much more dramatic performance gain compared to
XFS. It is therefore difficult to speculate on the exact
performance gain that can be expected by eliminating
the FUSE layer in LiFS. However, we can assume based
on our test results that the gain would be nontrivial.

Another source of potential performance increases
for LiFS involves the data structures utilized in the cur-
rent implementation. The version of LiFS utilized in
the testing presented here makes extensive use of linked
lists. This includes frequently accessed information
such as attribute lists. This will obviously incur a per-
formance penalty when accessing an attribute as, on av-
erage, half of the list must be traversed. This behavior is
demonstrated in the amount of time required to remove
a link as shown in Table 12. There is no design restric-
tion which prevents the use of balanced trees in place of
linked lists. Thus a performance increase would be ex-
pected by transitioning from linked list data structures
to balanced tree data structures.
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5.4. Discussion

We have shown that the running times for metadata-
based operations in LiFS are faster than ext2 and XFS,
while those requiring disk allocation are slower. These
results are to be expected because our metadata struc-
tures reside in memory and the disk-based data struc-
tures are not yet optimized. The LiFS-specific opera-
tions regarding link and link-attribute creation have also
shown to scale well and run in a reasonable amount of
time despite our unoptimized implementation. We have
shown that LiFS performs well in a real-world situation,
by comparing the running times of a OpenSSH build on
LiFS, ext2 and XFS. These results indicate that LiFS
can be used in place of most existing file systems with-
out incurring additional overhead. In this section we
have also discussed the overhead associated with FUSE.
We expect that an implementation of LiFS running in-
kernel with optimized disk allocation algorithms be sig-
nificantly faster than traditional file systems. In addi-
tion, the new operations introduced by LiFS should be
similar in speed to existing operations.

6. Related Work

The concepts we use in the current and previous de-
signs for LiFS borrow from various research areas rang-
ing from semantic file systems to databases and the
Web [2]. We first look at file systems with queryable
metadata, such as semantic file systems, and file sys-
tems designed to run in nonvolatile memory. We then
touch upon upcoming advanced commercial systems.
Finally we look at the Semantic Web and archiving, and
how they try to convey knowledge more accurately and
for the long term.

6.1. Semantic and Other Queryable File Sys-
tems

The Semantic File System [21] was originally de-
signed to provide flexible associative access to files.
File attributes, expressed as〈key,value〉 pairs, are ex-
tracted automatically with file type-specific transduc-
ers. A major feature of this work is the concept of
virtual directories, in which a user makes an attribute-
based query and the system creates a set of symbolic
links to the files in the result set, providing access that
crosses the directory hierarchy. A similar file system,
Sedar [29], is a peer-to-peer archival file system with
semantic retrieval. Sedar introduces the idea of seman-
tic hashing to facilitate semantic searching and reduce
storage and performance costs.

The Inversion File System [33] uses a database to
store both file data and metadata. The database also pro-

vides transaction protection, fine-grained time travel,
and instantaneous crash recovery. Each file is identi-
fied by a unique ID, but also has a name and directory
associated with it. Moreover, Gupta,et al. [22] cite the
difficulty of managing different but related sets of files
as motivation for their fan-out unification file system, in
which fan-out unification refers to merging two directo-
ries, and implicitly, entries in a directory are treated as
members of a set.

The Logic File System (LISFS) uses a database to
support queries for sets of files in the system [35].
Database tables are composed of mappings from key-
words to objects. The contents of a directory is the set of
objects that meets the criteria of the relation in a query.

Like the above mentioned file systems, the use of
attributes in LiFS allows a user to perform expressive
queries to locate files. However, these file systems all
use secondary storage for metadata, either with or with-
out a database, and must operate under such perfor-
mance constraints. Additionally, none contain a linking
mechanism that supports attributes, thus allowing inter-
file relationships that can express the structure of the
Web or establish data provenance and history.

6.2. In-Memory File Systems

Douglis, et al. compared various storage alterna-
tives for mobile computers and found that flash memory
exhibited low power consumption while still providing
good read and acceptable write performance [16]. Their
focus however was on power consumption and assumed
traditional file system functionality.

Conquest [50] utilizes persistent RAM for storage
of metadata and small files. Unlike HeRMES and
LiFS, which plan to utilize MRAM, Conquest has ex-
plored the use of battery-backed DRAM as its form
of persistent RAM. The eNVy system and the work of
Kawaguchiet al. explored the use of flash memory as a
primary non-volatile memory storage system [52, 24].
All of these these systems, however, present a tradi-
tional file system that lacks the advanced file system
features facilitated by utilizing persistent RAM. The
HeRMES system [32] proposed that magnetic RAM
(MRAM) be used to store file system metadata, and pro-
posed different metadata structures to take advantage of
MRAM; however, HeRMES was not implemented, so
many of the ideas remained untested.

File system on persistent memory presents a new set
of challenges compared to magnetic disk storage. To
this end much research has been performed to overcome
these challenges. David Lowell’s Rio Vista project pro-
vides atomicity for memory access operations in the
form of transactions [27] while the Journaling Flash File
System (JFFS) takes a slightly different approach with a
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log-structured file system for flash memory [51]. Edel,
et al.[17] noted that metadata overhead for a file system
is 1–2 percent and suggested the space requirements
could be reduced using various compression schemes
and algorithms, demonstrating that inode storage space
could be reduced by an order of magnitude. They also
found that there was no significant difference in perfor-
mance compared to non-compressed metadata.

Database performance has also been an area that
researchers have hoped to improve through persistent
memory. Molina and Salem have explored various ways
that memory residence optimization could improve data
access performance [20].

6.3. Advanced Commercial File Systems

WinFS is Microsoft’s in-development file system,
for which they have published a preliminary descrip-
tion of planned features1. WinFS appears to be a mar-
riage of a database for metadata and NTFS for file
stream performance. WinFS treats the contents of the
file system asItems that cover a full range of gran-
ularity from simple descriptions to collections such
as folders. The database backing allows SQL-type
queries, XPATH searches [14], and the use of Mi-
crosoft’s OPATH, a query language designed for a di-
rected acyclic graphs [39].

Apple Computer’s Spotlight is a metadata and con-
tent indexing system integrated into the HFS+ file sys-
tem [6]. As with WinFS, metadata is stored in a
database; Spotlight indexes file content and includes
the results in the database as well. Apple’s approach
could benefit from a LiFS-like linking mechanism with
metadata allowing relationships between content to be
expressed; Spotlight currently only allows indexing on
files, not the links between them. The Linux counterpart
of Spotlight is Beagle [1] which provides an API and a
plugin infrastructure for new file types and takes advan-
tage of Inotify [18], a file system event service recently
merged into the Linux kernel.

Sun Microsystem’s ZFS allows administrators to
configure individual file systems for users or applica-
tion, all allocated from a single pool of storage [3]. Like
ZFS, LiFS allows for the definition of unique and dy-
namic file systems per user or per application by virtue
of links with attributes. Thus, it is possible to create
file systems on demand utilizing either system. How-
ever, ZFS does not contain the rich metadata constructs
present in LiFS.

1This comes with the caveat that all is sub-
ject to change. Further information is available at
http://longhorn.msdn.microsoft.com/portal nav.htm

6.4. The Semantic Web

The original World Wide Web has expanded upon
the ability of traditional documents to convey knowl-
edge by adding links. Within the World Wide Web and
hypertext documents in general, links allow readers to
automatically traverse from one document to another
when the document refers to the other. The Semantic
Web expands upon this by allowing the links themselves
to contain information about that particular relationship
from one document to another. On top of that basic
framework, one may devise ontologies to further con-
vey knowledge in ways not possible through previous
means. [10].

To make the Semantic Web possible, authors at the
W3C have been developing various standards for its im-
plementations in a way analogous to the standardized
HTML and HTTP for the World Wide Web. The group
of Semantic Web standards fall into layers, with URI
and Unicode on the bottom, XML, name spaces, and
schemas making up the self-descriptive document layer
in the middle, and the RDF layer on top, which provides
a common framework for metadata across applications.
Atop the three bottom layers are additional layers for
ontology vocabularies, logic, proof, and trust [9, 25].
The ontology layer has room for different attempts to
devise languages in which to describe ontologies, such
as OIL [19].

We envision three potential expectations for the Se-
mantic Web. For humans, it may be a readily accessible
universal library. Moreover, and in line with the ideas of
its inventors, the Semantic Web has increased potential
for machine processing of its contents, and this intro-
duces the other two perspectives: the knowledge navi-
gator and the federated knowledge or database [30].

Whereas the Semantic Web allows for the addition of
richer metadata for the World Wide Web, it does so on a
global scale. LiFS allows for the same depth of knowl-
edge representation through its links and attributes. It
accomplishes this within the scale of the local file sys-
tem, which to many users, contains the data on which
the semantics of relationships matter most. Addition-
ally, the Semantic Web RDF format can be basically
broken into tuples of a subject, property, and object.
Links within LiFS likewise contain a source, attributes
and a target. Thus, we can express the same relation-
ships locally that are possible given the richness of the
Semantic Web. Based on their similarities, LiFS could
make an excellent file system or storage layer for Se-
mantic Web data.
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6.5. Digital Preservation

Digital objects do not survive unless one makes a
conscious effort to preserve them. This is in contrast to
artifacts such as books, papyrus, and cuneiform tablets
which exist until someone or something actively de-
stroys them. One reason for the ephemeral quality of
digital media is unreliable physical media: the shelf life
of magnetic tape, hard drives, and CD-Rs can be less
than a decade [13, 37, 7]. However, the loss of data
due to unreliable media pales in comparison to the loss
of data due to the rapid obsolescence caused by tech-
nological change. Moreover, digital objects are often
related to other digital objects that might change names
or disappear entirely [11]. There are now large national
and international efforts to address these issues; these
efforts aim to provide standards for an exhaustive list
of aspects for digital preservation in museums and li-
braries [49, 26, 43].

Trusted digital repositories [40] adhering to the now
dominant international standard of the OAIS Refer-
ence Model [15] are an important component of digital
preservation. Many systems have been explored which
utilize this model [42, 23, 41]. Common challenges of
these digital repositories are scalability, interoperability
with other repositories, and efficient workflow support
for the entry of large numbers of digital objects.

All these digital repositories are designed for use
on an institutional level. However, the combination of
unreliable storage and obsolescence unintentionally de-
stroys much of digital media long before it can be con-
sidered for digital libraries. Personal correspondence
and images that survived from earlier times form a sig-
nificant part of our cultural heritage [28]. Today, per-
sonal correspondence in the form of email and chats as
well as personal photos and movies are largely kept on
home computers that neither meet standards nor follow
practices of national digital libraries and are therefore
unlikely to survive.

The design of LiFS provides the infrastructure to
make digital preservation an integral part of file sys-
tems. Links and attributes can be used to explicitly rep-
resent the dependencies of digital objects on the soft-
ware infrastructure thereby preventing accidental obso-
lescence or at least alert users to obsolescence events
introduced by a particular change in the software in-
frastructure. Our hope is that this will make it easier for
users to maintain good digital preservation practices.

7. Future Work

Moving forward, we hope to improve LiFS’ per-
formance, storage overhead and availability. We plan

to replace many of the linked lists in our data struc-
tures with faster balanced trees, as well as implement
LiFS in the Linux kernel. It has been shown that in-
ode storage space could be reduced by an order of mag-
nitude without sacrificing performance by compressing
inodes [17]. We are planning to add such capabilities to
LiFS, and also to investigate how file compression can
be achieved efficiently. We are also looking at how we
can use fault tolerant data structures[8] to increase the
reliability and availability of LiFS. Implementing an on-
line file system consistency checker is another area we
are investigating in which availability can be improved.
Finally, we are investigating ways of providing LiFS
rich metadata structure and performanc without the use
of storage-class memories.

8. Conclusions

LiFS makes two important contributions. First, it
supports far richer file system metadata via file at-
tributes and attributed links between files. Second, it
provides a common, high-performance metadata store
for applications, further facilitating interactions be-
tween disparate applications through the file system.

LiFS’ three major advantages over other file sys-
tems are its performance, simplicity, and expressive-
ness. LiFS clearly demonstrates the performance ad-
vantages of storing metadata in a storage class mem-
ory. Our tests showed that LiFS is faster than ext2 and
XFS in it’s metadata performance, even when they are
running on a RAM-disk. However, our on-disk data
storage is currently not comparable to these file system.
We are planning to implement a more advanced extent
based approach, such as that used by XFS, which we
believe will produce significant performance improve-
ments. As previously mentioned, implementing LiFS
in the kernel without FUSE should also provide a fur-
ther performance boost. LiFS also offers a simplicity
not approachable by other file systems via our use of
simple data structures. This simplicity is evident in the
relatively small code base of LiFS compared to other
file systems. We believe that this results in fewer bugs
as a function of LiFS having fewer lines of code.

The most important reason for using LiFS, however,
is its ability to provide a rich environment for express-
ing inter-file relationships. Just as flat files and UNIX
pipes enabled the creation of small, targeted applica-
tions such asawk, eqn, andpic that could work to-
gether to perform complex tasks, we believe that the
addition of highly flexible attributed links to the file sys-
tem will enable many new domains for applications to
cooperate. Individual application developers can take
advantage of a common substrate that supports exten-
sive use of linking and attributes to all applications,
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allowing them to develop and enhance applications to
provide and manage an increasingly interlinked single
repository of data.
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