From ba8fcbe2ba0a26cd52dfa9bf40dd2e945e5b298f Mon Sep 17 00:00:00 2001 From: mattip Date: Tue, 2 Nov 2021 11:30:32 +0200 Subject: change from_dlpack to _dlpack, remove unused header --- numpy/array_api/__init__.py | 4 ++-- numpy/array_api/_creation_functions.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) (limited to 'numpy/array_api') diff --git a/numpy/array_api/__init__.py b/numpy/array_api/__init__.py index d8b29057e..89f5e9cba 100644 --- a/numpy/array_api/__init__.py +++ b/numpy/array_api/__init__.py @@ -136,7 +136,7 @@ from ._creation_functions import ( empty, empty_like, eye, - from_dlpack, + _from_dlpack, full, full_like, linspace, @@ -155,7 +155,7 @@ __all__ += [ "empty", "empty_like", "eye", - "from_dlpack", + "_from_dlpack", "full", "full_like", "linspace", diff --git a/numpy/array_api/_creation_functions.py b/numpy/array_api/_creation_functions.py index e36807468..c3644ac2c 100644 --- a/numpy/array_api/_creation_functions.py +++ b/numpy/array_api/_creation_functions.py @@ -151,7 +151,7 @@ def eye( return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype)) -def from_dlpack(x: object, /) -> Array: +def _from_dlpack(x: object, /) -> Array: # Note: dlpack support is not yet implemented on Array raise NotImplementedError("DLPack support is not yet implemented") -- cgit v1.2.1 From bc087bb2b3104547b097e03e669fb5fa77b16f05 Mon Sep 17 00:00:00 2001 From: Amit Kumar Date: Wed, 3 Nov 2021 11:09:28 +0000 Subject: TST: Add a test for device property in `array_api` namespace (#20271) --- numpy/array_api/tests/test_array_object.py | 11 +++++++++++ 1 file changed, 11 insertions(+) (limited to 'numpy/array_api') diff --git a/numpy/array_api/tests/test_array_object.py b/numpy/array_api/tests/test_array_object.py index 7959f92b4..fb42cf621 100644 --- a/numpy/array_api/tests/test_array_object.py +++ b/numpy/array_api/tests/test_array_object.py @@ -285,3 +285,14 @@ def test_python_scalar_construtors(): assert_raises(TypeError, lambda: operator.index(b)) assert_raises(TypeError, lambda: operator.index(f)) + + +def test_device_property(): + a = ones((3, 4)) + assert a.device == 'cpu' + + assert np.array_equal(a.to_device('cpu'), a) + assert_raises(ValueError, lambda: a.to_device('gpu')) + + assert np.array_equal(asarray(a, device='cpu'), a) + assert_raises(ValueError, lambda: asarray(a, device='gpu')) -- cgit v1.2.1 From ff2e2a1e7eea29d925063b13922e096d14331222 Mon Sep 17 00:00:00 2001 From: Aaron Meurer Date: Fri, 12 Nov 2021 08:07:23 -0700 Subject: MAINT: A few updates to the array_api (#20066) * Allow casting in the array API asarray() * Restrict multidimensional indexing in the array API namespace The spec has recently been updated to only require multiaxis (i.e., tuple) indices in the case where every axis is indexed, meaning there are either as many indices as axes or the index has an ellipsis. * Fix type promotion for numpy.array_api.where where does value-based promotion for 0-dimensional arrays, so we use the same trick as in the Array operators to avoid this. * Print empty array_api arrays using empty() Printing behavior isn't required by the spec. This is just to make things easier to understand, especially with the array API test suite. * Fix an incorrect slice bounds guard in the array API * Disallow multiple different dtypes in the input to np.array_api.meshgrid * Remove DLPack support from numpy.array_api.asarray() from_dlpack() should be used to create arrays using DLPack. * Remove __len__ from the array API array object * Add astype() to numpy.array_api * Update the unique_* functions in numpy.array_api unique() in the array API was replaced with three separate functions, unique_all(), unique_inverse(), and unique_values(), in order to avoid polymorphic return types. Additionally, it should be noted that these functions to not currently conform to the spec with respect to NaN behavior. The spec requires multiple NaNs to be returned, but np.unique() returns a single NaN. Since this is currently an open issue in NumPy to possibly revert, I have not yet worked around this. See https://github.com/numpy/numpy/issues/20326. * Add the stream argument to the array API to_device method This does nothing in NumPy, and is just present so that the signature is valid according to the spec. * Use the NamedTuple classes for the type signatures * Add unique_counts to the array API namespace * Remove some unused imports * Update the array_api indexing restrictions The "multiaxis indexing must index every axis explicitly or use an ellipsis" was supposed to include any type of index, not just tuple indices. * Use a simpler type annotation for the array API to_device method * Fix a test failure in the array_api submodule The array_api cannot use the NumPy testing functions because array_api arrays do not mix with NumPy arrays, and also NumPy testing functions may use APIs that aren't supported in the array API. * Add dlpack support to the array_api submodule --- numpy/array_api/__init__.py | 10 +-- numpy/array_api/_array_object.py | 48 ++++++++----- numpy/array_api/_creation_functions.py | 19 +++-- numpy/array_api/_data_type_functions.py | 7 ++ numpy/array_api/_searching_functions.py | 1 + numpy/array_api/_set_functions.py | 89 ++++++++++++++++++++---- numpy/array_api/tests/test_array_object.py | 21 +++--- numpy/array_api/tests/test_creation_functions.py | 10 +++ 8 files changed, 156 insertions(+), 49 deletions(-) (limited to 'numpy/array_api') diff --git a/numpy/array_api/__init__.py b/numpy/array_api/__init__.py index 89f5e9cba..36e3f3ed5 100644 --- a/numpy/array_api/__init__.py +++ b/numpy/array_api/__init__.py @@ -136,7 +136,7 @@ from ._creation_functions import ( empty, empty_like, eye, - _from_dlpack, + from_dlpack, full, full_like, linspace, @@ -155,7 +155,7 @@ __all__ += [ "empty", "empty_like", "eye", - "_from_dlpack", + "from_dlpack", "full", "full_like", "linspace", @@ -169,6 +169,7 @@ __all__ += [ ] from ._data_type_functions import ( + astype, broadcast_arrays, broadcast_to, can_cast, @@ -178,6 +179,7 @@ from ._data_type_functions import ( ) __all__ += [ + "astype", "broadcast_arrays", "broadcast_to", "can_cast", @@ -358,9 +360,9 @@ from ._searching_functions import argmax, argmin, nonzero, where __all__ += ["argmax", "argmin", "nonzero", "where"] -from ._set_functions import unique +from ._set_functions import unique_all, unique_counts, unique_inverse, unique_values -__all__ += ["unique"] +__all__ += ["unique_all", "unique_counts", "unique_inverse", "unique_values"] from ._sorting_functions import argsort, sort diff --git a/numpy/array_api/_array_object.py b/numpy/array_api/_array_object.py index ef66c5efd..dc74bb8c5 100644 --- a/numpy/array_api/_array_object.py +++ b/numpy/array_api/_array_object.py @@ -32,7 +32,7 @@ from ._dtypes import ( from typing import TYPE_CHECKING, Optional, Tuple, Union, Any if TYPE_CHECKING: - from ._typing import PyCapsule, Device, Dtype + from ._typing import Any, PyCapsule, Device, Dtype import numpy as np @@ -99,9 +99,13 @@ class Array: """ Performs the operation __repr__. """ - prefix = "Array(" suffix = f", dtype={self.dtype.name})" - mid = np.array2string(self._array, separator=', ', prefix=prefix, suffix=suffix) + if 0 in self.shape: + prefix = "empty(" + mid = str(self.shape) + else: + prefix = "Array(" + mid = np.array2string(self._array, separator=', ', prefix=prefix, suffix=suffix) return prefix + mid + suffix # These are various helper functions to make the array behavior match the @@ -244,6 +248,10 @@ class Array: The following cases are allowed by NumPy, but not specified by the array API specification: + - Indices to not include an implicit ellipsis at the end. That is, + every axis of an array must be explicitly indexed or an ellipsis + included. + - The start and stop of a slice may not be out of bounds. In particular, for a slice ``i:j:k`` on an axis of size ``n``, only the following are allowed: @@ -270,6 +278,10 @@ class Array: return key if shape == (): return key + if len(shape) > 1: + raise IndexError( + "Multidimensional arrays must include an index for every axis or use an ellipsis" + ) size = shape[0] # Ensure invalid slice entries are passed through. if key.start is not None: @@ -277,7 +289,7 @@ class Array: operator.index(key.start) except TypeError: return key - if not (-size <= key.start <= max(0, size - 1)): + if not (-size <= key.start <= size): raise IndexError( "Slices with out-of-bounds start are not allowed in the array API namespace" ) @@ -322,6 +334,10 @@ class Array: zip(key[:ellipsis_i:-1], shape[:ellipsis_i:-1]) ): Array._validate_index(idx, (size,)) + if n_ellipsis == 0 and len(key) < len(shape): + raise IndexError( + "Multidimensional arrays must include an index for every axis or use an ellipsis" + ) return key elif isinstance(key, bool): return key @@ -339,7 +355,12 @@ class Array: "newaxis indices are not allowed in the array API namespace" ) try: - return operator.index(key) + key = operator.index(key) + if shape is not None and len(shape) > 1: + raise IndexError( + "Multidimensional arrays must include an index for every axis or use an ellipsis" + ) + return key except TypeError: # Note: This also omits boolean arrays that are not already in # Array() form, like a list of booleans. @@ -403,16 +424,14 @@ class Array: """ Performs the operation __dlpack__. """ - res = self._array.__dlpack__(stream=stream) - return self.__class__._new(res) + return self._array.__dlpack__(stream=stream) def __dlpack_device__(self: Array, /) -> Tuple[IntEnum, int]: """ Performs the operation __dlpack_device__. """ # Note: device support is required for this - res = self._array.__dlpack_device__() - return self.__class__._new(res) + return self._array.__dlpack_device__() def __eq__(self: Array, other: Union[int, float, bool, Array], /) -> Array: """ @@ -527,13 +546,6 @@ class Array: res = self._array.__le__(other._array) return self.__class__._new(res) - # Note: __len__ may end up being removed from the array API spec. - def __len__(self, /) -> int: - """ - Performs the operation __len__. - """ - return self._array.__len__() - def __lshift__(self: Array, other: Union[int, Array], /) -> Array: """ Performs the operation __lshift__. @@ -995,7 +1007,9 @@ class Array: res = self._array.__rxor__(other._array) return self.__class__._new(res) - def to_device(self: Array, device: Device, /) -> Array: + def to_device(self: Array, device: Device, /, stream: None = None) -> Array: + if stream is not None: + raise ValueError("The stream argument to to_device() is not supported") if device == 'cpu': return self raise ValueError(f"Unsupported device {device!r}") diff --git a/numpy/array_api/_creation_functions.py b/numpy/array_api/_creation_functions.py index c3644ac2c..23beec444 100644 --- a/numpy/array_api/_creation_functions.py +++ b/numpy/array_api/_creation_functions.py @@ -9,7 +9,6 @@ if TYPE_CHECKING: Device, Dtype, NestedSequence, - SupportsDLPack, SupportsBufferProtocol, ) from collections.abc import Sequence @@ -36,7 +35,6 @@ def asarray( int, float, NestedSequence[bool | int | float], - SupportsDLPack, SupportsBufferProtocol, ], /, @@ -60,7 +58,9 @@ def asarray( if copy is False: # Note: copy=False is not yet implemented in np.asarray raise NotImplementedError("copy=False is not yet implemented") - if isinstance(obj, Array) and (dtype is None or obj.dtype == dtype): + if isinstance(obj, Array): + if dtype is not None and obj.dtype != dtype: + copy = True if copy is True: return Array._new(np.array(obj._array, copy=True, dtype=dtype)) return obj @@ -151,9 +151,10 @@ def eye( return Array._new(np.eye(n_rows, M=n_cols, k=k, dtype=dtype)) -def _from_dlpack(x: object, /) -> Array: - # Note: dlpack support is not yet implemented on Array - raise NotImplementedError("DLPack support is not yet implemented") +def from_dlpack(x: object, /) -> Array: + from ._array_object import Array + + return Array._new(np._from_dlpack(x)) def full( @@ -240,6 +241,12 @@ def meshgrid(*arrays: Array, indexing: str = "xy") -> List[Array]: """ from ._array_object import Array + # Note: unlike np.meshgrid, only inputs with all the same dtype are + # allowed + + if len({a.dtype for a in arrays}) > 1: + raise ValueError("meshgrid inputs must all have the same dtype") + return [ Array._new(array) for array in np.meshgrid(*[a._array for a in arrays], indexing=indexing) diff --git a/numpy/array_api/_data_type_functions.py b/numpy/array_api/_data_type_functions.py index 7ccbe9469..e4d6db61b 100644 --- a/numpy/array_api/_data_type_functions.py +++ b/numpy/array_api/_data_type_functions.py @@ -13,6 +13,13 @@ if TYPE_CHECKING: import numpy as np +# Note: astype is a function, not an array method as in NumPy. +def astype(x: Array, dtype: Dtype, /, *, copy: bool = True) -> Array: + if not copy and dtype == x.dtype: + return x + return Array._new(x._array.astype(dtype=dtype, copy=copy)) + + def broadcast_arrays(*arrays: Array) -> List[Array]: """ Array API compatible wrapper for :py:func:`np.broadcast_arrays `. diff --git a/numpy/array_api/_searching_functions.py b/numpy/array_api/_searching_functions.py index 3dcef61c3..40f5a4d2e 100644 --- a/numpy/array_api/_searching_functions.py +++ b/numpy/array_api/_searching_functions.py @@ -43,4 +43,5 @@ def where(condition: Array, x1: Array, x2: Array, /) -> Array: """ # Call result type here just to raise on disallowed type combinations _result_type(x1.dtype, x2.dtype) + x1, x2 = Array._normalize_two_args(x1, x2) return Array._new(np.where(condition._array, x1._array, x2._array)) diff --git a/numpy/array_api/_set_functions.py b/numpy/array_api/_set_functions.py index 357f238f5..05ee7e555 100644 --- a/numpy/array_api/_set_functions.py +++ b/numpy/array_api/_set_functions.py @@ -2,19 +2,82 @@ from __future__ import annotations from ._array_object import Array -from typing import Tuple, Union +from typing import NamedTuple import numpy as np +# Note: np.unique() is split into four functions in the array API: +# unique_all, unique_counts, unique_inverse, and unique_values (this is done +# to remove polymorphic return types). -def unique( - x: Array, - /, - *, - return_counts: bool = False, - return_index: bool = False, - return_inverse: bool = False, -) -> Union[Array, Tuple[Array, ...]]: +# Note: The various unique() functions are supposed to return multiple NaNs. +# This does not match the NumPy behavior, however, this is currently left as a +# TODO in this implementation as this behavior may be reverted in np.unique(). +# See https://github.com/numpy/numpy/issues/20326. + +# Note: The functions here return a namedtuple (np.unique() returns a normal +# tuple). + +class UniqueAllResult(NamedTuple): + values: Array + indices: Array + inverse_indices: Array + counts: Array + + +class UniqueCountsResult(NamedTuple): + values: Array + counts: Array + + +class UniqueInverseResult(NamedTuple): + values: Array + inverse_indices: Array + + +def unique_all(x: Array, /) -> UniqueAllResult: + """ + Array API compatible wrapper for :py:func:`np.unique `. + + See its docstring for more information. + """ + res = np.unique( + x._array, + return_counts=True, + return_index=True, + return_inverse=True, + ) + + return UniqueAllResult(*[Array._new(i) for i in res]) + + +def unique_counts(x: Array, /) -> UniqueCountsResult: + res = np.unique( + x._array, + return_counts=True, + return_index=False, + return_inverse=False, + ) + + return UniqueCountsResult(*[Array._new(i) for i in res]) + + +def unique_inverse(x: Array, /) -> UniqueInverseResult: + """ + Array API compatible wrapper for :py:func:`np.unique `. + + See its docstring for more information. + """ + res = np.unique( + x._array, + return_counts=False, + return_index=False, + return_inverse=True, + ) + return UniqueInverseResult(*[Array._new(i) for i in res]) + + +def unique_values(x: Array, /) -> Array: """ Array API compatible wrapper for :py:func:`np.unique `. @@ -22,10 +85,8 @@ def unique( """ res = np.unique( x._array, - return_counts=return_counts, - return_index=return_index, - return_inverse=return_inverse, + return_counts=False, + return_index=False, + return_inverse=False, ) - if isinstance(res, tuple): - return tuple(Array._new(i) for i in res) return Array._new(res) diff --git a/numpy/array_api/tests/test_array_object.py b/numpy/array_api/tests/test_array_object.py index fb42cf621..12479d765 100644 --- a/numpy/array_api/tests/test_array_object.py +++ b/numpy/array_api/tests/test_array_object.py @@ -3,7 +3,7 @@ import operator from numpy.testing import assert_raises import numpy as np -from .. import ones, asarray, result_type +from .. import ones, asarray, result_type, all, equal from .._dtypes import ( _all_dtypes, _boolean_dtypes, @@ -39,18 +39,18 @@ def test_validate_index(): assert_raises(IndexError, lambda: a[:-4]) assert_raises(IndexError, lambda: a[:3:-1]) assert_raises(IndexError, lambda: a[:-5:-1]) - assert_raises(IndexError, lambda: a[3:]) + assert_raises(IndexError, lambda: a[4:]) assert_raises(IndexError, lambda: a[-4:]) - assert_raises(IndexError, lambda: a[3::-1]) + assert_raises(IndexError, lambda: a[4::-1]) assert_raises(IndexError, lambda: a[-4::-1]) assert_raises(IndexError, lambda: a[...,:5]) assert_raises(IndexError, lambda: a[...,:-5]) - assert_raises(IndexError, lambda: a[...,:4:-1]) + assert_raises(IndexError, lambda: a[...,:5:-1]) assert_raises(IndexError, lambda: a[...,:-6:-1]) - assert_raises(IndexError, lambda: a[...,4:]) + assert_raises(IndexError, lambda: a[...,5:]) assert_raises(IndexError, lambda: a[...,-5:]) - assert_raises(IndexError, lambda: a[...,4::-1]) + assert_raises(IndexError, lambda: a[...,5::-1]) assert_raises(IndexError, lambda: a[...,-5::-1]) # Boolean indices cannot be part of a larger tuple index @@ -74,6 +74,11 @@ def test_validate_index(): assert_raises(IndexError, lambda: a[None, ...]) assert_raises(IndexError, lambda: a[..., None]) + # Multiaxis indices must contain exactly as many indices as dimensions + assert_raises(IndexError, lambda: a[()]) + assert_raises(IndexError, lambda: a[0,]) + assert_raises(IndexError, lambda: a[0]) + assert_raises(IndexError, lambda: a[:]) def test_operators(): # For every operator, we test that it works for the required type @@ -291,8 +296,8 @@ def test_device_property(): a = ones((3, 4)) assert a.device == 'cpu' - assert np.array_equal(a.to_device('cpu'), a) + assert all(equal(a.to_device('cpu'), a)) assert_raises(ValueError, lambda: a.to_device('gpu')) - assert np.array_equal(asarray(a, device='cpu'), a) + assert all(equal(asarray(a, device='cpu'), a)) assert_raises(ValueError, lambda: asarray(a, device='gpu')) diff --git a/numpy/array_api/tests/test_creation_functions.py b/numpy/array_api/tests/test_creation_functions.py index 7b633eaf1..ebbb6aab3 100644 --- a/numpy/array_api/tests/test_creation_functions.py +++ b/numpy/array_api/tests/test_creation_functions.py @@ -11,11 +11,13 @@ from .._creation_functions import ( full, full_like, linspace, + meshgrid, ones, ones_like, zeros, zeros_like, ) +from .._dtypes import float32, float64 from .._array_object import Array @@ -124,3 +126,11 @@ def test_zeros_like_errors(): assert_raises(ValueError, lambda: zeros_like(asarray(1), device="gpu")) assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype=int)) assert_raises(ValueError, lambda: zeros_like(asarray(1), dtype="i")) + +def test_meshgrid_dtype_errors(): + # Doesn't raise + meshgrid() + meshgrid(asarray([1.], dtype=float32)) + meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float32)) + + assert_raises(ValueError, lambda: meshgrid(asarray([1.], dtype=float32), asarray([1.], dtype=float64))) -- cgit v1.2.1