""" *************** VF2++ Algorithm *************** An implementation of the VF2++ algorithm for Graph Isomorphism testing. The simplest interface to use this module is to call: `vf2pp_is_isomorphic`: to check whether two graphs are isomorphic. `vf2pp_isomorphism`: to obtain the node mapping between two graphs, in case they are isomorphic. `vf2pp_all_isomorphisms`: to generate all possible mappings between two graphs, if isomorphic. Introduction ------------ The VF2++ algorithm, follows a similar logic to that of VF2, while also introducing new easy-to-check cutting rules and determining the optimal access order of nodes. It is also implemented in a non-recursive manner, which saves both time and space, when compared to its previous counterpart. The optimal node ordering is obtained after taking into consideration both the degree but also the label rarity of each node. This way we place the nodes that are more likely to match, first in the order, thus examining the most promising branches in the beginning. The rules also consider node labels, making it easier to prune unfruitful branches early in the process. Examples -------- Suppose G1 and G2 are Isomorphic Graphs. Verification is as follows: Without node labels: >>> import networkx as nx >>> G1 = nx.path_graph(4) >>> G2 = nx.path_graph(4) >>> nx.vf2pp_is_isomorphic(G1, G2, node_labels=None) True >>> nx.vf2pp_isomorphism(G1, G2, node_label=None) {1: 1, 2: 2, 0: 0, 3: 3} With node labels: >>> G1 = nx.path_graph(4) >>> G2 = nx.path_graph(4) >>> mapped = {1: 1, 2: 2, 3: 3, 0: 0} >>> nx.set_node_attributes(G1, dict(zip(G1, ["blue", "red", "green", "yellow"])), "label") >>> nx.set_node_attributes(G2, dict(zip([mapped[u] for u in G1], ["blue", "red", "green", "yellow"])), "label") >>> nx.vf2pp_is_isomorphic(G1, G2, node_labels="label") True >>> nx.vf2pp_isomorphism(G1, G2, node_label="label") {1: 1, 2: 2, 0: 0, 3: 3} """ import collections import networkx as nx from .vf2pp_helpers.candidates import _find_candidates from .vf2pp_helpers.feasibility import _feasibility from .vf2pp_helpers.node_ordering import _matching_order from .vf2pp_helpers.state import _restore_Tinout, _update_Tinout __all__ = ["vf2pp_isomorphism", "vf2pp_is_isomorphic", "vf2pp_all_isomorphisms"] _GraphParameters = collections.namedtuple( "_GraphParameters", [ "G1", "G2", "G1_labels", "G2_labels", "nodes_of_G1Labels", "nodes_of_G2Labels", "G2_nodes_of_degree", ], ) _StateParameters = collections.namedtuple( "_StateParameters", ["mapping", "reverse_mapping", "T1", "T1_tilde", "T2", "T2_tilde"], ) def vf2pp_isomorphism(G1, G2, node_label=None, default_label=None): """Return an isomorphic mapping between `G1` and `G2` if it exists. Parameters ---------- G1, G2 : NetworkX Graph or MultiGraph instances. The two graphs to check for isomorphism. node_label : str, optional The name of the node attribute to be used when comparing nodes. The default is `None`, meaning node attributes are not considered in the comparison. Any node that doesn't have the `node_labels` attribute uses `default_label` instead. default_label : scalar Default value to use when a node doesn't have an attribute named `node_label`. Default is `None`. Returns ------- dict or None Node mapping if the two graphs are isomorphic. None otherwise. """ try: mapping = next(vf2pp_all_isomorphisms(G1, G2, node_label, default_label)) return mapping except StopIteration: return None def vf2pp_is_isomorphic(G1, G2, node_labels=None, default_label=None): """Examines whether G1 and G2 are isomorphic. Parameters ---------- G1, G2 : NetworkX Graph or MultiGraph instances. The two graphs to check for isomorphism. node_label : str, optional The name of the node attribute to be used when comparing nodes. The default is `None`, meaning node attributes are not considered in the comparison. Any node that doesn't have the `node_labels` attribute uses `default_label` instead. default_label : scalar Default value to use when a node doesn't have an attribute named `node_label`. Default is `None`. Returns ------- bool True if the two graphs are isomorphic, False otherwise. """ if vf2pp_isomorphism(G1, G2, node_labels, default_label) is not None: return True return False def vf2pp_all_isomorphisms(G1, G2, node_labels=None, default_label=None): """Yields all the possible mappings between G1 and G2. Parameters ---------- G1, G2 : NetworkX Graph or MultiGraph instances. The two graphs to check for isomorphism. node_label : str, optional The name of the node attribute to be used when comparing nodes. The default is `None`, meaning node attributes are not considered in the comparison. Any node that doesn't have the `node_labels` attribute uses `default_label` instead. default_label : scalar Default value to use when a node doesn't have an attribute named `node_label`. Default is `None`. Yields ------ dict Isomorphic mapping between the nodes in `G1` and `G2`. """ if G1.number_of_nodes() == 0 or G2.number_of_nodes() == 0: return False # Check that both graphs have the same number of nodes and degree sequence if not nx.faster_could_be_isomorphic(G1, G2): return False # Initialize parameters and cache necessary information about degree and labels graph_params, state_params = _initialize_parameters( G1, G2, node_labels, default_label ) # Check if G1 and G2 have the same labels, and that number of nodes per label is equal between the two graphs if not _precheck_label_properties(graph_params): return False # Calculate the optimal node ordering node_order = _matching_order(graph_params) # Initialize the stack stack = [] candidates = iter(_find_candidates(node_order[0], graph_params, state_params)) stack.append((node_order[0], candidates)) mapping = state_params.mapping reverse_mapping = state_params.reverse_mapping # Index of the node from the order, currently being examined matching_node = 1 while stack: current_node, candidate_nodes = stack[-1] try: candidate = next(candidate_nodes) except StopIteration: # If no remaining candidates, return to a previous state, and follow another branch stack.pop() matching_node -= 1 if stack: # Pop the previously added u-v pair, and look for a different candidate _v for u popped_node1, _ = stack[-1] popped_node2 = mapping[popped_node1] mapping.pop(popped_node1) reverse_mapping.pop(popped_node2) _restore_Tinout(popped_node1, popped_node2, graph_params, state_params) continue if _feasibility(current_node, candidate, graph_params, state_params): # Terminate if mapping is extended to its full if len(mapping) == G2.number_of_nodes() - 1: cp_mapping = mapping.copy() cp_mapping[current_node] = candidate yield cp_mapping continue # Feasibility rules pass, so extend the mapping and update the parameters mapping[current_node] = candidate reverse_mapping[candidate] = current_node _update_Tinout(current_node, candidate, graph_params, state_params) # Append the next node and its candidates to the stack candidates = iter( _find_candidates(node_order[matching_node], graph_params, state_params) ) stack.append((node_order[matching_node], candidates)) matching_node += 1 def _precheck_label_properties(graph_params): G1, G2, G1_labels, G2_labels, nodes_of_G1Labels, nodes_of_G2Labels, _ = graph_params if any( label not in nodes_of_G1Labels or len(nodes_of_G1Labels[label]) != len(nodes) for label, nodes in nodes_of_G2Labels.items() ): return False return True def _initialize_parameters(G1, G2, node_labels=None, default_label=-1): """Initializes all the necessary parameters for VF2++ Parameters ---------- G1,G2: NetworkX Graph or MultiGraph instances. The two graphs to check for isomorphism or monomorphism G1_labels,G2_labels: dict The label of every node in G1 and G2 respectively Returns ------- graph_params: namedtuple Contains all the Graph-related parameters: G1,G2 G1_labels,G2_labels: dict state_params: namedtuple Contains all the State-related parameters: mapping: dict The mapping as extended so far. Maps nodes of G1 to nodes of G2 reverse_mapping: dict The reverse mapping as extended so far. Maps nodes from G2 to nodes of G1. It's basically "mapping" reversed T1, T2: set Ti contains uncovered neighbors of covered nodes from Gi, i.e. nodes that are not in the mapping, but are neighbors of nodes that are. T1_out, T2_out: set Ti_out contains all the nodes from Gi, that are neither in the mapping nor in Ti """ G1_labels = dict(G1.nodes(data=node_labels, default=default_label)) G2_labels = dict(G2.nodes(data=node_labels, default=default_label)) graph_params = _GraphParameters( G1, G2, G1_labels, G2_labels, nx.utils.groups(G1_labels), nx.utils.groups(G2_labels), nx.utils.groups({node: degree for node, degree in G2.degree()}), ) state_params = _StateParameters( dict(), dict(), set(), set(G1.nodes()), set(), set(G2.nodes()) ) return graph_params, state_params