/*** This file is part of PulseAudio. Copyright 2013 Collabora Ltd. Author: Arun Raghavan PulseAudio is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. PulseAudio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with PulseAudio; if not, see . ***/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include "lo-test-util.h" /* Keep the frequency high so RMS over ranges of a few ms remains relatively * high as well */ #define TONE_HZ 4410 static void nop_free_cb(void *p) { } static void underflow_cb(struct pa_stream *s, void *userdata) { pa_log_warn("Underflow\n"); } static void overflow_cb(struct pa_stream *s, void *userdata) { pa_log_warn("Overlow\n"); } /* * We run a simple volume calibration so that we know we can detect the signal * being played back. We start with the playback stream at 100% volume, and * capture at 0. * * First, we then play a sine wave and increase the capture volume till the * signal is clearly received. * * Next, we play back silence and make sure that the level is low enough to * distinguish from when playback is happening. * * Finally, we hand off to the real read/write callbacks to run the actual * test. */ enum { CALIBRATION_ONE, CALIBRATION_ZERO, CALIBRATION_DONE, }; static int cal_state = CALIBRATION_ONE; static void calibrate_write_cb(pa_stream *s, size_t nbytes, void *userdata) { pa_lo_test_context *ctx = (pa_lo_test_context *) userdata; int i, nsamp = nbytes / ctx->fs; float tmp[nsamp][2]; static int count = 0; /* Write out a sine tone */ for (i = 0; i < nsamp; i++) tmp[i][0] = tmp[i][1] = cal_state == CALIBRATION_ONE ? sinf(count++ * TONE_HZ * 2 * M_PI / ctx->sample_spec.rate) : 0.0f; pa_assert_se(pa_stream_write(s, &tmp, nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE) == 0); if (cal_state == CALIBRATION_DONE) pa_stream_set_write_callback(s, ctx->write_cb, ctx); } static void calibrate_read_cb(pa_stream *s, size_t nbytes, void *userdata) { pa_lo_test_context *ctx = (pa_lo_test_context *) userdata; static double v = 0; static int skip = 0, confirm; pa_cvolume vol; pa_operation *o; int nsamp; float *in; size_t l; pa_assert_se(pa_stream_peek(s, (const void **)&in, &l) == 0); nsamp = l / ctx->fs; /* For each state or volume step change, throw out a few samples so we know * we're seeing the changed samples. */ if (skip++ < 100) goto out; else skip = 0; switch (cal_state) { case CALIBRATION_ONE: /* Try to detect the sine wave. RMS is 0.5, */ if (pa_rms(in, nsamp) < 0.40f) { confirm = 0; v += 0.02f; if (v > 1.0) { pa_log_error("Capture signal too weak at 100%% volume (%g). Giving up.\n", pa_rms(in, nsamp)); pa_assert_not_reached(); } pa_cvolume_set(&vol, ctx->sample_spec.channels, v * PA_VOLUME_NORM); o = pa_context_set_source_output_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL); pa_assert(o != NULL); pa_operation_unref(o); } else { /* Make sure the signal strength is steadily above our threshold */ if (++confirm > 5) { #if 0 pa_log_debug(stderr, "Capture volume = %g (%g)\n", v, pa_rms(in, nsamp)); #endif cal_state = CALIBRATION_ZERO; } } break; case CALIBRATION_ZERO: /* Now make sure silence doesn't trigger a false positive because * of noise. */ if (pa_rms(in, nsamp) > 0.1f) { fprintf(stderr, "Too much noise on capture (%g). Giving up.\n", pa_rms(in, nsamp)); pa_assert_not_reached(); } cal_state = CALIBRATION_DONE; pa_stream_set_read_callback(s, ctx->read_cb, ctx); break; default: break; } out: pa_stream_drop(s); } /* This routine is called whenever the stream state changes */ static void stream_state_callback(pa_stream *s, void *userdata) { pa_lo_test_context *ctx = (pa_lo_test_context *) userdata; switch (pa_stream_get_state(s)) { case PA_STREAM_UNCONNECTED: case PA_STREAM_CREATING: case PA_STREAM_TERMINATED: break; case PA_STREAM_READY: { pa_cvolume vol; pa_operation *o; /* Set volumes for calibration */ if (s == ctx->play_stream) { pa_cvolume_set(&vol, ctx->sample_spec.channels, PA_VOLUME_NORM); o = pa_context_set_sink_input_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL); } else { pa_cvolume_set(&vol, ctx->sample_spec.channels, pa_sw_volume_from_linear(0.0)); o = pa_context_set_source_output_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL); } if (!o) { pa_log_error("Could not set stream volume: %s\n", pa_strerror(pa_context_errno(ctx->context))); pa_assert_not_reached(); } else pa_operation_unref(o); break; } case PA_STREAM_FAILED: default: pa_log_error("Stream error: %s\n", pa_strerror(pa_context_errno(ctx->context))); pa_assert_not_reached(); } } /* This is called whenever the context status changes */ static void context_state_callback(pa_context *c, void *userdata) { pa_lo_test_context *ctx = (pa_lo_test_context *) userdata; pa_mainloop_api *api; switch (pa_context_get_state(c)) { case PA_CONTEXT_CONNECTING: case PA_CONTEXT_AUTHORIZING: case PA_CONTEXT_SETTING_NAME: break; case PA_CONTEXT_READY: { pa_buffer_attr buffer_attr; pa_make_realtime(4); /* Create playback stream */ buffer_attr.maxlength = -1; buffer_attr.tlength = ctx->sample_spec.rate * ctx->fs * ctx->play_latency / 1000; buffer_attr.prebuf = 0; /* Setting prebuf to 0 guarantees us the stream will run synchronously, no matter what */ buffer_attr.minreq = -1; buffer_attr.fragsize = -1; ctx->play_stream = pa_stream_new(c, "loopback: play", &ctx->sample_spec, NULL); pa_assert(ctx->play_stream != NULL); pa_stream_set_state_callback(ctx->play_stream, stream_state_callback, ctx); pa_stream_set_write_callback(ctx->play_stream, calibrate_write_cb, ctx); pa_stream_set_underflow_callback(ctx->play_stream, underflow_cb, userdata); pa_stream_connect_playback(ctx->play_stream, getenv("TEST_SINK"), &buffer_attr, PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE, NULL, NULL); /* Create capture stream */ buffer_attr.maxlength = -1; buffer_attr.tlength = (uint32_t) -1; buffer_attr.prebuf = 0; buffer_attr.minreq = (uint32_t) -1; buffer_attr.fragsize = ctx->sample_spec.rate * ctx->fs * ctx->rec_latency / 1000; ctx->rec_stream = pa_stream_new(c, "loopback: rec", &ctx->sample_spec, NULL); pa_assert(ctx->rec_stream != NULL); pa_stream_set_state_callback(ctx->rec_stream, stream_state_callback, ctx); pa_stream_set_read_callback(ctx->rec_stream, calibrate_read_cb, ctx); pa_stream_set_overflow_callback(ctx->rec_stream, overflow_cb, userdata); pa_stream_connect_record(ctx->rec_stream, getenv("TEST_SOURCE"), &buffer_attr, PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE); break; } case PA_CONTEXT_TERMINATED: api = pa_mainloop_get_api(ctx->mainloop); api->quit(api, 0); break; case PA_CONTEXT_FAILED: default: pa_log_error("Context error: %s\n", pa_strerror(pa_context_errno(c))); pa_assert_not_reached(); } } int pa_lo_test_init(pa_lo_test_context *ctx) { /* FIXME: need to deal with non-float samples at some point */ pa_assert(ctx->sample_spec.format == PA_SAMPLE_FLOAT32); ctx->ss = pa_sample_size(&ctx->sample_spec); ctx->fs = pa_frame_size(&ctx->sample_spec); ctx->mainloop = pa_mainloop_new(); ctx->context = pa_context_new(pa_mainloop_get_api(ctx->mainloop), ctx->context_name); pa_context_set_state_callback(ctx->context, context_state_callback, ctx); /* Connect the context */ if (pa_context_connect(ctx->context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) { pa_log_error("pa_context_connect() failed.\n"); goto quit; } return 0; quit: pa_context_unref(ctx->context); pa_mainloop_free(ctx->mainloop); return -1; } int pa_lo_test_run(pa_lo_test_context *ctx) { int ret; if (pa_mainloop_run(ctx->mainloop, &ret) < 0) { pa_log_error("pa_mainloop_run() failed.\n"); return -1; } return 0; } void pa_lo_test_deinit(pa_lo_test_context *ctx) { if (ctx->play_stream) { pa_stream_disconnect(ctx->play_stream); pa_stream_unref(ctx->play_stream); } if (ctx->rec_stream) { pa_stream_disconnect(ctx->rec_stream); pa_stream_unref(ctx->rec_stream); } if (ctx->context) pa_context_unref(ctx->context); if (ctx->mainloop) pa_mainloop_free(ctx->mainloop); } float pa_rms(const float *s, int n) { float sq = 0; int i; for (i = 0; i < n; i++) sq += s[i] * s[i]; return sqrtf(sq / n); }