/*------------------------------------------------------------------------- * * postgres.h * Primary include file for PostgreSQL server .c files * * This should be the first file included by PostgreSQL backend modules. * Client-side code should include postgres_fe.h instead. * * * Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group * Portions Copyright (c) 1995, Regents of the University of California * * src/include/postgres.h * *------------------------------------------------------------------------- */ /* *---------------------------------------------------------------- * TABLE OF CONTENTS * * When adding stuff to this file, please try to put stuff * into the relevant section, or add new sections as appropriate. * * section description * ------- ------------------------------------------------ * 1) variable-length datatypes (TOAST support) * 2) Datum type + support macros * 3) miscellaneous * * NOTES * * In general, this file should contain declarations that are widely needed * in the backend environment, but are of no interest outside the backend. * * Simple type definitions live in c.h, where they are shared with * postgres_fe.h. We do that since those type definitions are needed by * frontend modules that want to deal with binary data transmission to or * from the backend. Type definitions in this file should be for * representations that never escape the backend, such as Datum or * TOASTed varlena objects. * *---------------------------------------------------------------- */ #ifndef POSTGRES_H #define POSTGRES_H #include "c.h" #include "utils/elog.h" #include "utils/palloc.h" /* ---------------------------------------------------------------- * Section 1: variable-length datatypes (TOAST support) * ---------------------------------------------------------------- */ /* * struct varatt_external is a traditional "TOAST pointer", that is, the * information needed to fetch a Datum stored out-of-line in a TOAST table. * The data is compressed if and only if the external size stored in * va_extinfo is less than va_rawsize - VARHDRSZ. * * This struct must not contain any padding, because we sometimes compare * these pointers using memcmp. * * Note that this information is stored unaligned within actual tuples, so * you need to memcpy from the tuple into a local struct variable before * you can look at these fields! (The reason we use memcmp is to avoid * having to do that just to detect equality of two TOAST pointers...) */ typedef struct varatt_external { int32 va_rawsize; /* Original data size (includes header) */ uint32 va_extinfo; /* External saved size (without header) and * compression method */ Oid va_valueid; /* Unique ID of value within TOAST table */ Oid va_toastrelid; /* RelID of TOAST table containing it */ } varatt_external; /* * These macros define the "saved size" portion of va_extinfo. Its remaining * two high-order bits identify the compression method. */ #define VARLENA_EXTSIZE_BITS 30 #define VARLENA_EXTSIZE_MASK ((1U << VARLENA_EXTSIZE_BITS) - 1) /* * struct varatt_indirect is a "TOAST pointer" representing an out-of-line * Datum that's stored in memory, not in an external toast relation. * The creator of such a Datum is entirely responsible that the referenced * storage survives for as long as referencing pointer Datums can exist. * * Note that just as for struct varatt_external, this struct is stored * unaligned within any containing tuple. */ typedef struct varatt_indirect { struct varlena *pointer; /* Pointer to in-memory varlena */ } varatt_indirect; /* * struct varatt_expanded is a "TOAST pointer" representing an out-of-line * Datum that is stored in memory, in some type-specific, not necessarily * physically contiguous format that is convenient for computation not * storage. APIs for this, in particular the definition of struct * ExpandedObjectHeader, are in src/include/utils/expandeddatum.h. * * Note that just as for struct varatt_external, this struct is stored * unaligned within any containing tuple. */ typedef struct ExpandedObjectHeader ExpandedObjectHeader; typedef struct varatt_expanded { ExpandedObjectHeader *eohptr; } varatt_expanded; /* * Type tag for the various sorts of "TOAST pointer" datums. The peculiar * value for VARTAG_ONDISK comes from a requirement for on-disk compatibility * with a previous notion that the tag field was the pointer datum's length. */ typedef enum vartag_external { VARTAG_INDIRECT = 1, VARTAG_EXPANDED_RO = 2, VARTAG_EXPANDED_RW = 3, VARTAG_ONDISK = 18 } vartag_external; /* this test relies on the specific tag values above */ #define VARTAG_IS_EXPANDED(tag) \ (((tag) & ~1) == VARTAG_EXPANDED_RO) #define VARTAG_SIZE(tag) \ ((tag) == VARTAG_INDIRECT ? sizeof(varatt_indirect) : \ VARTAG_IS_EXPANDED(tag) ? sizeof(varatt_expanded) : \ (tag) == VARTAG_ONDISK ? sizeof(varatt_external) : \ TrapMacro(true, "unrecognized TOAST vartag")) /* * These structs describe the header of a varlena object that may have been * TOASTed. Generally, don't reference these structs directly, but use the * macros below. * * We use separate structs for the aligned and unaligned cases because the * compiler might otherwise think it could generate code that assumes * alignment while touching fields of a 1-byte-header varlena. */ typedef union { struct /* Normal varlena (4-byte length) */ { uint32 va_header; char va_data[FLEXIBLE_ARRAY_MEMBER]; } va_4byte; struct /* Compressed-in-line format */ { uint32 va_header; uint32 va_tcinfo; /* Original data size (excludes header) and * compression method; see va_extinfo */ char va_data[FLEXIBLE_ARRAY_MEMBER]; /* Compressed data */ } va_compressed; } varattrib_4b; typedef struct { uint8 va_header; char va_data[FLEXIBLE_ARRAY_MEMBER]; /* Data begins here */ } varattrib_1b; /* TOAST pointers are a subset of varattrib_1b with an identifying tag byte */ typedef struct { uint8 va_header; /* Always 0x80 or 0x01 */ uint8 va_tag; /* Type of datum */ char va_data[FLEXIBLE_ARRAY_MEMBER]; /* Type-specific data */ } varattrib_1b_e; /* * Bit layouts for varlena headers on big-endian machines: * * 00xxxxxx 4-byte length word, aligned, uncompressed data (up to 1G) * 01xxxxxx 4-byte length word, aligned, *compressed* data (up to 1G) * 10000000 1-byte length word, unaligned, TOAST pointer * 1xxxxxxx 1-byte length word, unaligned, uncompressed data (up to 126b) * * Bit layouts for varlena headers on little-endian machines: * * xxxxxx00 4-byte length word, aligned, uncompressed data (up to 1G) * xxxxxx10 4-byte length word, aligned, *compressed* data (up to 1G) * 00000001 1-byte length word, unaligned, TOAST pointer * xxxxxxx1 1-byte length word, unaligned, uncompressed data (up to 126b) * * The "xxx" bits are the length field (which includes itself in all cases). * In the big-endian case we mask to extract the length, in the little-endian * case we shift. Note that in both cases the flag bits are in the physically * first byte. Also, it is not possible for a 1-byte length word to be zero; * this lets us disambiguate alignment padding bytes from the start of an * unaligned datum. (We now *require* pad bytes to be filled with zero!) * * In TOAST pointers the va_tag field (see varattrib_1b_e) is used to discern * the specific type and length of the pointer datum. */ /* * Endian-dependent macros. These are considered internal --- use the * external macros below instead of using these directly. * * Note: IS_1B is true for external toast records but VARSIZE_1B will return 0 * for such records. Hence you should usually check for IS_EXTERNAL before * checking for IS_1B. */ #ifdef WORDS_BIGENDIAN #define VARATT_IS_4B(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x00) #define VARATT_IS_4B_U(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x00) #define VARATT_IS_4B_C(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0xC0) == 0x40) #define VARATT_IS_1B(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0x80) == 0x80) #define VARATT_IS_1B_E(PTR) \ ((((varattrib_1b *) (PTR))->va_header) == 0x80) #define VARATT_NOT_PAD_BYTE(PTR) \ (*((uint8 *) (PTR)) != 0) /* VARSIZE_4B() should only be used on known-aligned data */ #define VARSIZE_4B(PTR) \ (((varattrib_4b *) (PTR))->va_4byte.va_header & 0x3FFFFFFF) #define VARSIZE_1B(PTR) \ (((varattrib_1b *) (PTR))->va_header & 0x7F) #define VARTAG_1B_E(PTR) \ (((varattrib_1b_e *) (PTR))->va_tag) #define SET_VARSIZE_4B(PTR,len) \ (((varattrib_4b *) (PTR))->va_4byte.va_header = (len) & 0x3FFFFFFF) #define SET_VARSIZE_4B_C(PTR,len) \ (((varattrib_4b *) (PTR))->va_4byte.va_header = ((len) & 0x3FFFFFFF) | 0x40000000) #define SET_VARSIZE_1B(PTR,len) \ (((varattrib_1b *) (PTR))->va_header = (len) | 0x80) #define SET_VARTAG_1B_E(PTR,tag) \ (((varattrib_1b_e *) (PTR))->va_header = 0x80, \ ((varattrib_1b_e *) (PTR))->va_tag = (tag)) #else /* !WORDS_BIGENDIAN */ #define VARATT_IS_4B(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x00) #define VARATT_IS_4B_U(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x00) #define VARATT_IS_4B_C(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0x03) == 0x02) #define VARATT_IS_1B(PTR) \ ((((varattrib_1b *) (PTR))->va_header & 0x01) == 0x01) #define VARATT_IS_1B_E(PTR) \ ((((varattrib_1b *) (PTR))->va_header) == 0x01) #define VARATT_NOT_PAD_BYTE(PTR) \ (*((uint8 *) (PTR)) != 0) /* VARSIZE_4B() should only be used on known-aligned data */ #define VARSIZE_4B(PTR) \ ((((varattrib_4b *) (PTR))->va_4byte.va_header >> 2) & 0x3FFFFFFF) #define VARSIZE_1B(PTR) \ ((((varattrib_1b *) (PTR))->va_header >> 1) & 0x7F) #define VARTAG_1B_E(PTR) \ (((varattrib_1b_e *) (PTR))->va_tag) #define SET_VARSIZE_4B(PTR,len) \ (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2)) #define SET_VARSIZE_4B_C(PTR,len) \ (((varattrib_4b *) (PTR))->va_4byte.va_header = (((uint32) (len)) << 2) | 0x02) #define SET_VARSIZE_1B(PTR,len) \ (((varattrib_1b *) (PTR))->va_header = (((uint8) (len)) << 1) | 0x01) #define SET_VARTAG_1B_E(PTR,tag) \ (((varattrib_1b_e *) (PTR))->va_header = 0x01, \ ((varattrib_1b_e *) (PTR))->va_tag = (tag)) #endif /* WORDS_BIGENDIAN */ #define VARDATA_4B(PTR) (((varattrib_4b *) (PTR))->va_4byte.va_data) #define VARDATA_4B_C(PTR) (((varattrib_4b *) (PTR))->va_compressed.va_data) #define VARDATA_1B(PTR) (((varattrib_1b *) (PTR))->va_data) #define VARDATA_1B_E(PTR) (((varattrib_1b_e *) (PTR))->va_data) /* * Externally visible TOAST macros begin here. */ #define VARHDRSZ_EXTERNAL offsetof(varattrib_1b_e, va_data) #define VARHDRSZ_COMPRESSED offsetof(varattrib_4b, va_compressed.va_data) #define VARHDRSZ_SHORT offsetof(varattrib_1b, va_data) #define VARATT_SHORT_MAX 0x7F #define VARATT_CAN_MAKE_SHORT(PTR) \ (VARATT_IS_4B_U(PTR) && \ (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT) <= VARATT_SHORT_MAX) #define VARATT_CONVERTED_SHORT_SIZE(PTR) \ (VARSIZE(PTR) - VARHDRSZ + VARHDRSZ_SHORT) /* * In consumers oblivious to data alignment, call PG_DETOAST_DATUM_PACKED(), * VARDATA_ANY(), VARSIZE_ANY() and VARSIZE_ANY_EXHDR(). Elsewhere, call * PG_DETOAST_DATUM(), VARDATA() and VARSIZE(). Directly fetching an int16, * int32 or wider field in the struct representing the datum layout requires * aligned data. memcpy() is alignment-oblivious, as are most operations on * datatypes, such as text, whose layout struct contains only char fields. * * Code assembling a new datum should call VARDATA() and SET_VARSIZE(). * (Datums begin life untoasted.) * * Other macros here should usually be used only by tuple assembly/disassembly * code and code that specifically wants to work with still-toasted Datums. */ #define VARDATA(PTR) VARDATA_4B(PTR) #define VARSIZE(PTR) VARSIZE_4B(PTR) #define VARSIZE_SHORT(PTR) VARSIZE_1B(PTR) #define VARDATA_SHORT(PTR) VARDATA_1B(PTR) #define VARTAG_EXTERNAL(PTR) VARTAG_1B_E(PTR) #define VARSIZE_EXTERNAL(PTR) (VARHDRSZ_EXTERNAL + VARTAG_SIZE(VARTAG_EXTERNAL(PTR))) #define VARDATA_EXTERNAL(PTR) VARDATA_1B_E(PTR) #define VARATT_IS_COMPRESSED(PTR) VARATT_IS_4B_C(PTR) #define VARATT_IS_EXTERNAL(PTR) VARATT_IS_1B_E(PTR) #define VARATT_IS_EXTERNAL_ONDISK(PTR) \ (VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_ONDISK) #define VARATT_IS_EXTERNAL_INDIRECT(PTR) \ (VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_INDIRECT) #define VARATT_IS_EXTERNAL_EXPANDED_RO(PTR) \ (VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_EXPANDED_RO) #define VARATT_IS_EXTERNAL_EXPANDED_RW(PTR) \ (VARATT_IS_EXTERNAL(PTR) && VARTAG_EXTERNAL(PTR) == VARTAG_EXPANDED_RW) #define VARATT_IS_EXTERNAL_EXPANDED(PTR) \ (VARATT_IS_EXTERNAL(PTR) && VARTAG_IS_EXPANDED(VARTAG_EXTERNAL(PTR))) #define VARATT_IS_EXTERNAL_NON_EXPANDED(PTR) \ (VARATT_IS_EXTERNAL(PTR) && !VARTAG_IS_EXPANDED(VARTAG_EXTERNAL(PTR))) #define VARATT_IS_SHORT(PTR) VARATT_IS_1B(PTR) #define VARATT_IS_EXTENDED(PTR) (!VARATT_IS_4B_U(PTR)) #define SET_VARSIZE(PTR, len) SET_VARSIZE_4B(PTR, len) #define SET_VARSIZE_SHORT(PTR, len) SET_VARSIZE_1B(PTR, len) #define SET_VARSIZE_COMPRESSED(PTR, len) SET_VARSIZE_4B_C(PTR, len) #define SET_VARTAG_EXTERNAL(PTR, tag) SET_VARTAG_1B_E(PTR, tag) #define VARSIZE_ANY(PTR) \ (VARATT_IS_1B_E(PTR) ? VARSIZE_EXTERNAL(PTR) : \ (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR) : \ VARSIZE_4B(PTR))) /* Size of a varlena data, excluding header */ #define VARSIZE_ANY_EXHDR(PTR) \ (VARATT_IS_1B_E(PTR) ? VARSIZE_EXTERNAL(PTR)-VARHDRSZ_EXTERNAL : \ (VARATT_IS_1B(PTR) ? VARSIZE_1B(PTR)-VARHDRSZ_SHORT : \ VARSIZE_4B(PTR)-VARHDRSZ)) /* caution: this will not work on an external or compressed-in-line Datum */ /* caution: this will return a possibly unaligned pointer */ #define VARDATA_ANY(PTR) \ (VARATT_IS_1B(PTR) ? VARDATA_1B(PTR) : VARDATA_4B(PTR)) /* Decompressed size and compression method of a compressed-in-line Datum */ #define VARDATA_COMPRESSED_GET_EXTSIZE(PTR) \ (((varattrib_4b *) (PTR))->va_compressed.va_tcinfo & VARLENA_EXTSIZE_MASK) #define VARDATA_COMPRESSED_GET_COMPRESS_METHOD(PTR) \ (((varattrib_4b *) (PTR))->va_compressed.va_tcinfo >> VARLENA_EXTSIZE_BITS) /* Same for external Datums; but note argument is a struct varatt_external */ #define VARATT_EXTERNAL_GET_EXTSIZE(toast_pointer) \ ((toast_pointer).va_extinfo & VARLENA_EXTSIZE_MASK) #define VARATT_EXTERNAL_GET_COMPRESS_METHOD(toast_pointer) \ ((toast_pointer).va_extinfo >> VARLENA_EXTSIZE_BITS) #define VARATT_EXTERNAL_SET_SIZE_AND_COMPRESS_METHOD(toast_pointer, len, cm) \ do { \ Assert((cm) == TOAST_PGLZ_COMPRESSION_ID || \ (cm) == TOAST_LZ4_COMPRESSION_ID); \ ((toast_pointer).va_extinfo = \ (len) | ((uint32) (cm) << VARLENA_EXTSIZE_BITS)); \ } while (0) /* * Testing whether an externally-stored value is compressed now requires * comparing size stored in va_extinfo (the actual length of the external data) * to rawsize (the original uncompressed datum's size). The latter includes * VARHDRSZ overhead, the former doesn't. We never use compression unless it * actually saves space, so we expect either equality or less-than. */ #define VARATT_EXTERNAL_IS_COMPRESSED(toast_pointer) \ (VARATT_EXTERNAL_GET_EXTSIZE(toast_pointer) < \ (toast_pointer).va_rawsize - VARHDRSZ) /* ---------------------------------------------------------------- * Section 2: Datum type + support macros * ---------------------------------------------------------------- */ /* * A Datum contains either a value of a pass-by-value type or a pointer to a * value of a pass-by-reference type. Therefore, we require: * * sizeof(Datum) == sizeof(void *) == 4 or 8 * * The macros below and the analogous macros for other types should be used to * convert between a Datum and the appropriate C type. */ typedef uintptr_t Datum; /* * A NullableDatum is used in places where both a Datum and its nullness needs * to be stored. This can be more efficient than storing datums and nullness * in separate arrays, due to better spatial locality, even if more space may * be wasted due to padding. */ typedef struct NullableDatum { #define FIELDNO_NULLABLE_DATUM_DATUM 0 Datum value; #define FIELDNO_NULLABLE_DATUM_ISNULL 1 bool isnull; /* due to alignment padding this could be used for flags for free */ } NullableDatum; #define SIZEOF_DATUM SIZEOF_VOID_P /* * DatumGetBool * Returns boolean value of a datum. * * Note: any nonzero value will be considered true. */ #define DatumGetBool(X) ((bool) ((X) != 0)) /* * BoolGetDatum * Returns datum representation for a boolean. * * Note: any nonzero value will be considered true. */ #define BoolGetDatum(X) ((Datum) ((X) ? 1 : 0)) /* * DatumGetChar * Returns character value of a datum. */ #define DatumGetChar(X) ((char) (X)) /* * CharGetDatum * Returns datum representation for a character. */ #define CharGetDatum(X) ((Datum) (X)) /* * Int8GetDatum * Returns datum representation for an 8-bit integer. */ #define Int8GetDatum(X) ((Datum) (X)) /* * DatumGetUInt8 * Returns 8-bit unsigned integer value of a datum. */ #define DatumGetUInt8(X) ((uint8) (X)) /* * UInt8GetDatum * Returns datum representation for an 8-bit unsigned integer. */ #define UInt8GetDatum(X) ((Datum) (X)) /* * DatumGetInt16 * Returns 16-bit integer value of a datum. */ #define DatumGetInt16(X) ((int16) (X)) /* * Int16GetDatum * Returns datum representation for a 16-bit integer. */ #define Int16GetDatum(X) ((Datum) (X)) /* * DatumGetUInt16 * Returns 16-bit unsigned integer value of a datum. */ #define DatumGetUInt16(X) ((uint16) (X)) /* * UInt16GetDatum * Returns datum representation for a 16-bit unsigned integer. */ #define UInt16GetDatum(X) ((Datum) (X)) /* * DatumGetInt32 * Returns 32-bit integer value of a datum. */ #define DatumGetInt32(X) ((int32) (X)) /* * Int32GetDatum * Returns datum representation for a 32-bit integer. */ #define Int32GetDatum(X) ((Datum) (X)) /* * DatumGetUInt32 * Returns 32-bit unsigned integer value of a datum. */ #define DatumGetUInt32(X) ((uint32) (X)) /* * UInt32GetDatum * Returns datum representation for a 32-bit unsigned integer. */ #define UInt32GetDatum(X) ((Datum) (X)) /* * DatumGetObjectId * Returns object identifier value of a datum. */ #define DatumGetObjectId(X) ((Oid) (X)) /* * ObjectIdGetDatum * Returns datum representation for an object identifier. */ #define ObjectIdGetDatum(X) ((Datum) (X)) /* * DatumGetTransactionId * Returns transaction identifier value of a datum. */ #define DatumGetTransactionId(X) ((TransactionId) (X)) /* * TransactionIdGetDatum * Returns datum representation for a transaction identifier. */ #define TransactionIdGetDatum(X) ((Datum) (X)) /* * MultiXactIdGetDatum * Returns datum representation for a multixact identifier. */ #define MultiXactIdGetDatum(X) ((Datum) (X)) /* * DatumGetCommandId * Returns command identifier value of a datum. */ #define DatumGetCommandId(X) ((CommandId) (X)) /* * CommandIdGetDatum * Returns datum representation for a command identifier. */ #define CommandIdGetDatum(X) ((Datum) (X)) /* * DatumGetPointer * Returns pointer value of a datum. */ #define DatumGetPointer(X) ((Pointer) (X)) /* * PointerGetDatum * Returns datum representation for a pointer. */ #define PointerGetDatum(X) ((Datum) (X)) /* * DatumGetCString * Returns C string (null-terminated string) value of a datum. * * Note: C string is not a full-fledged Postgres type at present, * but type input functions use this conversion for their inputs. */ #define DatumGetCString(X) ((char *) DatumGetPointer(X)) /* * CStringGetDatum * Returns datum representation for a C string (null-terminated string). * * Note: C string is not a full-fledged Postgres type at present, * but type output functions use this conversion for their outputs. * Note: CString is pass-by-reference; caller must ensure the pointed-to * value has adequate lifetime. */ #define CStringGetDatum(X) PointerGetDatum(X) /* * DatumGetName * Returns name value of a datum. */ #define DatumGetName(X) ((Name) DatumGetPointer(X)) /* * NameGetDatum * Returns datum representation for a name. * * Note: Name is pass-by-reference; caller must ensure the pointed-to * value has adequate lifetime. */ #define NameGetDatum(X) CStringGetDatum(NameStr(*(X))) /* * DatumGetInt64 * Returns 64-bit integer value of a datum. * * Note: this macro hides whether int64 is pass by value or by reference. */ #ifdef USE_FLOAT8_BYVAL #define DatumGetInt64(X) ((int64) (X)) #else #define DatumGetInt64(X) (* ((int64 *) DatumGetPointer(X))) #endif /* * Int64GetDatum * Returns datum representation for a 64-bit integer. * * Note: if int64 is pass by reference, this function returns a reference * to palloc'd space. */ #ifdef USE_FLOAT8_BYVAL #define Int64GetDatum(X) ((Datum) (X)) #else extern Datum Int64GetDatum(int64 X); #endif /* * DatumGetUInt64 * Returns 64-bit unsigned integer value of a datum. * * Note: this macro hides whether int64 is pass by value or by reference. */ #ifdef USE_FLOAT8_BYVAL #define DatumGetUInt64(X) ((uint64) (X)) #else #define DatumGetUInt64(X) (* ((uint64 *) DatumGetPointer(X))) #endif /* * UInt64GetDatum * Returns datum representation for a 64-bit unsigned integer. * * Note: if int64 is pass by reference, this function returns a reference * to palloc'd space. */ #ifdef USE_FLOAT8_BYVAL #define UInt64GetDatum(X) ((Datum) (X)) #else #define UInt64GetDatum(X) Int64GetDatum((int64) (X)) #endif /* * Float <-> Datum conversions * * These have to be implemented as inline functions rather than macros, when * passing by value, because many machines pass int and float function * parameters/results differently; so we need to play weird games with unions. */ /* * DatumGetFloat4 * Returns 4-byte floating point value of a datum. */ static inline float4 DatumGetFloat4(Datum X) { union { int32 value; float4 retval; } myunion; myunion.value = DatumGetInt32(X); return myunion.retval; } /* * Float4GetDatum * Returns datum representation for a 4-byte floating point number. */ static inline Datum Float4GetDatum(float4 X) { union { float4 value; int32 retval; } myunion; myunion.value = X; return Int32GetDatum(myunion.retval); } /* * DatumGetFloat8 * Returns 8-byte floating point value of a datum. * * Note: this macro hides whether float8 is pass by value or by reference. */ #ifdef USE_FLOAT8_BYVAL static inline float8 DatumGetFloat8(Datum X) { union { int64 value; float8 retval; } myunion; myunion.value = DatumGetInt64(X); return myunion.retval; } #else #define DatumGetFloat8(X) (* ((float8 *) DatumGetPointer(X))) #endif /* * Float8GetDatum * Returns datum representation for an 8-byte floating point number. * * Note: if float8 is pass by reference, this function returns a reference * to palloc'd space. */ #ifdef USE_FLOAT8_BYVAL static inline Datum Float8GetDatum(float8 X) { union { float8 value; int64 retval; } myunion; myunion.value = X; return Int64GetDatum(myunion.retval); } #else extern Datum Float8GetDatum(float8 X); #endif /* * Int64GetDatumFast * Float8GetDatumFast * * These macros are intended to allow writing code that does not depend on * whether int64 and float8 are pass-by-reference types, while not * sacrificing performance when they are. The argument must be a variable * that will exist and have the same value for as long as the Datum is needed. * In the pass-by-ref case, the address of the variable is taken to use as * the Datum. In the pass-by-val case, these will be the same as the non-Fast * macros. */ #ifdef USE_FLOAT8_BYVAL #define Int64GetDatumFast(X) Int64GetDatum(X) #define Float8GetDatumFast(X) Float8GetDatum(X) #else #define Int64GetDatumFast(X) PointerGetDatum(&(X)) #define Float8GetDatumFast(X) PointerGetDatum(&(X)) #endif /* ---------------------------------------------------------------- * Section 3: miscellaneous * ---------------------------------------------------------------- */ /* * NON_EXEC_STATIC: It's sometimes useful to define a variable or function * that is normally static but extern when using EXEC_BACKEND (see * pg_config_manual.h). There would then typically be some code in * postmaster.c that uses those extern symbols to transfer state between * processes or do whatever other things it needs to do in EXEC_BACKEND mode. */ #ifdef EXEC_BACKEND #define NON_EXEC_STATIC #else #define NON_EXEC_STATIC static #endif #endif /* POSTGRES_H */