/* * re_*comp and friends - compile REs * This file #includes several others (see the bottom). * * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. * * Development of this software was funded, in part, by Cray Research Inc., * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics * Corporation, none of whom are responsible for the results. The author * thanks all of them. * * Redistribution and use in source and binary forms -- with or without * modification -- are permitted for any purpose, provided that * redistributions in source form retain this entire copyright notice and * indicate the origin and nature of any modifications. * * I'd appreciate being given credit for this package in the documentation * of software which uses it, but that is not a requirement. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * src/backend/regex/regcomp.c * */ #include "regex/regguts.h" /* * forward declarations, up here so forward datatypes etc. are defined early */ /* === regcomp.c === */ static void moresubs(struct vars *v, int wanted); static int freev(struct vars *v, int err); static void makesearch(struct vars *v, struct nfa *nfa); static struct subre *parse(struct vars *v, int stopper, int type, struct state *init, struct state *final); static struct subre *parsebranch(struct vars *v, int stopper, int type, struct state *left, struct state *right, int partial); static struct subre *parseqatom(struct vars *v, int stopper, int type, struct state *lp, struct state *rp, struct subre *top); static void nonword(struct vars *v, int dir, struct state *lp, struct state *rp); static void word(struct vars *v, int dir, struct state *lp, struct state *rp); static void charclass(struct vars *v, enum char_classes cls, struct state *lp, struct state *rp); static void charclasscomplement(struct vars *v, enum char_classes cls, struct state *lp, struct state *rp); static int scannum(struct vars *v); static void repeat(struct vars *v, struct state *lp, struct state *rp, int m, int n); static void bracket(struct vars *v, struct state *lp, struct state *rp); static void cbracket(struct vars *v, struct state *lp, struct state *rp); static void brackpart(struct vars *v, struct state *lp, struct state *rp, bool *have_cclassc); static const chr *scanplain(struct vars *v); static void onechr(struct vars *v, chr c, struct state *lp, struct state *rp); static void optimizebracket(struct vars *v, struct state *lp, struct state *rp); static void wordchrs(struct vars *v); static void processlacon(struct vars *v, struct state *begin, struct state *end, int latype, struct state *lp, struct state *rp); static struct subre *subre(struct vars *v, int op, int flags, struct state *begin, struct state *end); static void freesubre(struct vars *v, struct subre *sr); static void freesubreandsiblings(struct vars *v, struct subre *sr); static void freesrnode(struct vars *v, struct subre *sr); static void removecaptures(struct vars *v, struct subre *t); static int numst(struct subre *t, int start); static void markst(struct subre *t); static void cleanst(struct vars *v); static long nfatree(struct vars *v, struct subre *t, FILE *f); static long nfanode(struct vars *v, struct subre *t, int converttosearch, FILE *f); static int newlacon(struct vars *v, struct state *begin, struct state *end, int latype); static void freelacons(struct subre *subs, int n); static void rfree(regex_t *re); static int rstacktoodeep(void); #ifdef REG_DEBUG static void dump(regex_t *re, FILE *f); static void dumpst(struct subre *t, FILE *f, int nfapresent); static void stdump(struct subre *t, FILE *f, int nfapresent); static const char *stid(struct subre *t, char *buf, size_t bufsize); #endif /* === regc_lex.c === */ static void lexstart(struct vars *v); static void prefixes(struct vars *v); static int next(struct vars *v); static int lexescape(struct vars *v); static chr lexdigits(struct vars *v, int base, int minlen, int maxlen); static int brenext(struct vars *v, chr c); static void skip(struct vars *v); static chr newline(void); static chr chrnamed(struct vars *v, const chr *startp, const chr *endp, chr lastresort); /* === regc_color.c === */ static void initcm(struct vars *v, struct colormap *cm); static void freecm(struct colormap *cm); static color maxcolor(struct colormap *cm); static color newcolor(struct colormap *cm); static void freecolor(struct colormap *cm, color co); static color pseudocolor(struct colormap *cm); static color subcolor(struct colormap *cm, chr c); static color subcolorhi(struct colormap *cm, color *pco); static color newsub(struct colormap *cm, color co); static int newhicolorrow(struct colormap *cm, int oldrow); static void newhicolorcols(struct colormap *cm); static void subcolorcvec(struct vars *v, struct cvec *cv, struct state *lp, struct state *rp); static void subcoloronechr(struct vars *v, chr ch, struct state *lp, struct state *rp, color *lastsubcolor); static void subcoloronerange(struct vars *v, chr from, chr to, struct state *lp, struct state *rp, color *lastsubcolor); static void subcoloronerow(struct vars *v, int rownum, struct state *lp, struct state *rp, color *lastsubcolor); static void okcolors(struct nfa *nfa, struct colormap *cm); static void colorchain(struct colormap *cm, struct arc *a); static void uncolorchain(struct colormap *cm, struct arc *a); static void rainbow(struct nfa *nfa, struct colormap *cm, int type, color but, struct state *from, struct state *to); static void colorcomplement(struct nfa *nfa, struct colormap *cm, int type, struct state *of, struct state *from, struct state *to); #ifdef REG_DEBUG static void dumpcolors(struct colormap *cm, FILE *f); static void dumpchr(chr c, FILE *f); #endif /* === regc_nfa.c === */ static struct nfa *newnfa(struct vars *v, struct colormap *cm, struct nfa *parent); static void freenfa(struct nfa *nfa); static struct state *newstate(struct nfa *nfa); static struct state *newfstate(struct nfa *nfa, int flag); static void dropstate(struct nfa *nfa, struct state *s); static void freestate(struct nfa *nfa, struct state *s); static void newarc(struct nfa *nfa, int t, color co, struct state *from, struct state *to); static void createarc(struct nfa *nfa, int t, color co, struct state *from, struct state *to); static struct arc *allocarc(struct nfa *nfa); static void freearc(struct nfa *nfa, struct arc *victim); static void changearcsource(struct arc *a, struct state *newfrom); static void changearctarget(struct arc *a, struct state *newto); static int hasnonemptyout(struct state *s); static struct arc *findarc(struct state *s, int type, color co); static void cparc(struct nfa *nfa, struct arc *oa, struct state *from, struct state *to); static void sortins(struct nfa *nfa, struct state *s); static int sortins_cmp(const void *a, const void *b); static void sortouts(struct nfa *nfa, struct state *s); static int sortouts_cmp(const void *a, const void *b); static void moveins(struct nfa *nfa, struct state *oldState, struct state *newState); static void copyins(struct nfa *nfa, struct state *oldState, struct state *newState); static void mergeins(struct nfa *nfa, struct state *s, struct arc **arcarray, int arccount); static void moveouts(struct nfa *nfa, struct state *oldState, struct state *newState); static void copyouts(struct nfa *nfa, struct state *oldState, struct state *newState); static void cloneouts(struct nfa *nfa, struct state *old, struct state *from, struct state *to, int type); static void delsub(struct nfa *nfa, struct state *lp, struct state *rp); static void deltraverse(struct nfa *nfa, struct state *leftend, struct state *s); static void dupnfa(struct nfa *nfa, struct state *start, struct state *stop, struct state *from, struct state *to); static void duptraverse(struct nfa *nfa, struct state *s, struct state *stmp); static void removeconstraints(struct nfa *nfa, struct state *start, struct state *stop); static void removetraverse(struct nfa *nfa, struct state *s); static void cleartraverse(struct nfa *nfa, struct state *s); static struct state *single_color_transition(struct state *s1, struct state *s2); static void specialcolors(struct nfa *nfa); static long optimize(struct nfa *nfa, FILE *f); static void pullback(struct nfa *nfa, FILE *f); static int pull(struct nfa *nfa, struct arc *con, struct state **intermediates); static void pushfwd(struct nfa *nfa, FILE *f); static int push(struct nfa *nfa, struct arc *con, struct state **intermediates); #define INCOMPATIBLE 1 /* destroys arc */ #define SATISFIED 2 /* constraint satisfied */ #define COMPATIBLE 3 /* compatible but not satisfied yet */ #define REPLACEARC 4 /* replace arc's color with constraint color */ static int combine(struct nfa *nfa, struct arc *con, struct arc *a); static void fixempties(struct nfa *nfa, FILE *f); static struct state *emptyreachable(struct nfa *nfa, struct state *s, struct state *lastfound, struct arc **inarcsorig); static int isconstraintarc(struct arc *a); static int hasconstraintout(struct state *s); static void fixconstraintloops(struct nfa *nfa, FILE *f); static int findconstraintloop(struct nfa *nfa, struct state *s); static void breakconstraintloop(struct nfa *nfa, struct state *sinitial); static void clonesuccessorstates(struct nfa *nfa, struct state *ssource, struct state *sclone, struct state *spredecessor, struct arc *refarc, char *curdonemap, char *outerdonemap, int nstates); static void cleanup(struct nfa *nfa); static void markreachable(struct nfa *nfa, struct state *s, struct state *okay, struct state *mark); static void markcanreach(struct nfa *nfa, struct state *s, struct state *okay, struct state *mark); static long analyze(struct nfa *nfa); static void checkmatchall(struct nfa *nfa); static bool checkmatchall_recurse(struct nfa *nfa, struct state *s, bool **haspaths); static bool check_out_colors_match(struct state *s, color co1, color co2); static bool check_in_colors_match(struct state *s, color co1, color co2); static void compact(struct nfa *nfa, struct cnfa *cnfa); static void carcsort(struct carc *first, size_t n); static int carc_cmp(const void *a, const void *b); static void freecnfa(struct cnfa *cnfa); static void dumpnfa(struct nfa *nfa, FILE *f); #ifdef REG_DEBUG static void dumpstate(struct state *s, FILE *f); static void dumparcs(struct state *s, FILE *f); static void dumparc(struct arc *a, struct state *s, FILE *f); static void dumpcnfa(struct cnfa *cnfa, FILE *f); static void dumpcstate(int st, struct cnfa *cnfa, FILE *f); #endif /* === regc_cvec.c === */ static struct cvec *newcvec(int nchrs, int nranges); static struct cvec *clearcvec(struct cvec *cv); static void addchr(struct cvec *cv, chr c); static void addrange(struct cvec *cv, chr from, chr to); static struct cvec *getcvec(struct vars *v, int nchrs, int nranges); static void freecvec(struct cvec *cv); /* === regc_pg_locale.c === */ static int pg_wc_isdigit(pg_wchar c); static int pg_wc_isalpha(pg_wchar c); static int pg_wc_isalnum(pg_wchar c); static int pg_wc_isword(pg_wchar c); static int pg_wc_isupper(pg_wchar c); static int pg_wc_islower(pg_wchar c); static int pg_wc_isgraph(pg_wchar c); static int pg_wc_isprint(pg_wchar c); static int pg_wc_ispunct(pg_wchar c); static int pg_wc_isspace(pg_wchar c); static pg_wchar pg_wc_toupper(pg_wchar c); static pg_wchar pg_wc_tolower(pg_wchar c); /* === regc_locale.c === */ static chr element(struct vars *v, const chr *startp, const chr *endp); static struct cvec *range(struct vars *v, chr a, chr b, int cases); static int before(chr x, chr y); static struct cvec *eclass(struct vars *v, chr c, int cases); static enum char_classes lookupcclass(struct vars *v, const chr *startp, const chr *endp); static struct cvec *cclasscvec(struct vars *v, enum char_classes cclasscode, int cases); static int cclass_column_index(struct colormap *cm, chr c); static struct cvec *allcases(struct vars *v, chr c); static int cmp(const chr *x, const chr *y, size_t len); static int casecmp(const chr *x, const chr *y, size_t len); /* internal variables, bundled for easy passing around */ struct vars { regex_t *re; const chr *now; /* scan pointer into string */ const chr *stop; /* end of string */ int err; /* error code (0 if none) */ int cflags; /* copy of compile flags */ int lasttype; /* type of previous token */ int nexttype; /* type of next token */ chr nextvalue; /* value (if any) of next token */ int lexcon; /* lexical context type (see regc_lex.c) */ int nsubexp; /* subexpression count */ struct subre **subs; /* subRE pointer vector */ size_t nsubs; /* length of vector */ struct subre *sub10[10]; /* initial vector, enough for most */ struct nfa *nfa; /* the NFA */ struct colormap *cm; /* character color map */ color nlcolor; /* color of newline */ struct state *wordchrs; /* state in nfa holding word-char outarcs */ struct subre *tree; /* subexpression tree */ struct subre *treechain; /* all tree nodes allocated */ struct subre *treefree; /* any free tree nodes */ int ntree; /* number of tree nodes, plus one */ struct cvec *cv; /* interface cvec */ struct cvec *cv2; /* utility cvec */ struct subre *lacons; /* lookaround-constraint vector */ int nlacons; /* size of lacons[]; note that only slots * numbered 1 .. nlacons-1 are used */ size_t spaceused; /* approx. space used for compilation */ }; /* parsing macros; most know that `v' is the struct vars pointer */ #define NEXT() (next(v)) /* advance by one token */ #define SEE(t) (v->nexttype == (t)) /* is next token this? */ #define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */ #define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */ #define ISERR() VISERR(v) #define VERR(vv,e) ((vv)->nexttype = EOS, \ (vv)->err = ((vv)->err ? (vv)->err : (e))) #define ERR(e) VERR(v, e) /* record an error */ #define NOERR() {if (ISERR()) return;} /* if error seen, return */ #define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */ #define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */ #define INSIST(c, e) do { if (!(c)) ERR(e); } while (0) /* error if c false */ #define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */ #define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y) /* token type codes, some also used as NFA arc types */ #define EMPTY 'n' /* no token present */ #define EOS 'e' /* end of string */ #define PLAIN 'p' /* ordinary character */ #define DIGIT 'd' /* digit (in bound) */ #define BACKREF 'b' /* back reference */ #define COLLEL 'I' /* start of [. */ #define ECLASS 'E' /* start of [= */ #define CCLASS 'C' /* start of [: */ #define END 'X' /* end of [. [= [: */ #define CCLASSS 's' /* char class shorthand escape */ #define CCLASSC 'c' /* complement char class shorthand escape */ #define RANGE 'R' /* - within [] which might be range delim. */ #define LACON 'L' /* lookaround constraint subRE */ #define AHEAD 'a' /* color-lookahead arc */ #define BEHIND 'r' /* color-lookbehind arc */ #define WBDRY 'w' /* word boundary constraint */ #define NWBDRY 'W' /* non-word-boundary constraint */ #define SBEGIN 'A' /* beginning of string (even if not BOL) */ #define SEND 'Z' /* end of string (even if not EOL) */ /* is an arc colored, and hence should belong to a color chain? */ /* the test on "co" eliminates RAINBOW arcs, which we don't bother to chain */ #define COLORED(a) \ ((a)->co >= 0 && \ ((a)->type == PLAIN || (a)->type == AHEAD || (a)->type == BEHIND)) /* static function list */ static const struct fns functions = { rfree, /* regfree insides */ rstacktoodeep /* check for stack getting dangerously deep */ }; /* * pg_regcomp - compile regular expression * * Note: on failure, no resources remain allocated, so pg_regfree() * need not be applied to re. */ int pg_regcomp(regex_t *re, const chr *string, size_t len, int flags, Oid collation) { struct vars var; struct vars *v = &var; struct guts *g; int i; size_t j; #ifdef REG_DEBUG FILE *debug = (flags & REG_PROGRESS) ? stdout : (FILE *) NULL; #else FILE *debug = (FILE *) NULL; #endif #define CNOERR() { if (ISERR()) return freev(v, v->err); } /* sanity checks */ if (re == NULL || string == NULL) return REG_INVARG; if ((flags & REG_QUOTE) && (flags & (REG_ADVANCED | REG_EXPANDED | REG_NEWLINE))) return REG_INVARG; if (!(flags & REG_EXTENDED) && (flags & REG_ADVF)) return REG_INVARG; /* Initialize locale-dependent support */ pg_set_regex_collation(collation); /* initial setup (after which freev() is callable) */ v->re = re; v->now = string; v->stop = v->now + len; v->err = 0; v->cflags = flags; v->nsubexp = 0; v->subs = v->sub10; v->nsubs = 10; for (j = 0; j < v->nsubs; j++) v->subs[j] = NULL; v->nfa = NULL; v->cm = NULL; v->nlcolor = COLORLESS; v->wordchrs = NULL; v->tree = NULL; v->treechain = NULL; v->treefree = NULL; v->cv = NULL; v->cv2 = NULL; v->lacons = NULL; v->nlacons = 0; v->spaceused = 0; re->re_magic = REMAGIC; re->re_info = 0; /* bits get set during parse */ re->re_csize = sizeof(chr); re->re_collation = collation; re->re_guts = NULL; re->re_fns = VS(&functions); /* more complex setup, malloced things */ re->re_guts = VS(MALLOC(sizeof(struct guts))); if (re->re_guts == NULL) return freev(v, REG_ESPACE); g = (struct guts *) re->re_guts; g->tree = NULL; initcm(v, &g->cmap); v->cm = &g->cmap; g->lacons = NULL; g->nlacons = 0; ZAPCNFA(g->search); v->nfa = newnfa(v, v->cm, (struct nfa *) NULL); CNOERR(); /* set up a reasonably-sized transient cvec for getcvec usage */ v->cv = newcvec(100, 20); if (v->cv == NULL) return freev(v, REG_ESPACE); /* parsing */ lexstart(v); /* also handles prefixes */ if ((v->cflags & REG_NLSTOP) || (v->cflags & REG_NLANCH)) { /* assign newline a unique color */ v->nlcolor = subcolor(v->cm, newline()); okcolors(v->nfa, v->cm); } CNOERR(); v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final); assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */ CNOERR(); assert(v->tree != NULL); /* finish setup of nfa and its subre tree */ specialcolors(v->nfa); CNOERR(); #ifdef REG_DEBUG if (debug != NULL) { fprintf(debug, "\n\n\n========= RAW ==========\n"); dumpnfa(v->nfa, debug); dumpst(v->tree, debug, 1); } #endif if (v->cflags & REG_NOSUB) removecaptures(v, v->tree); v->ntree = numst(v->tree, 1); markst(v->tree); cleanst(v); #ifdef REG_DEBUG if (debug != NULL) { fprintf(debug, "\n\n\n========= TREE FIXED ==========\n"); dumpst(v->tree, debug, 1); } #endif /* build compacted NFAs for tree and lacons */ re->re_info |= nfatree(v, v->tree, debug); CNOERR(); assert(v->nlacons == 0 || v->lacons != NULL); for (i = 1; i < v->nlacons; i++) { struct subre *lasub = &v->lacons[i]; #ifdef REG_DEBUG if (debug != NULL) fprintf(debug, "\n\n\n========= LA%d ==========\n", i); #endif /* Prepend .* to pattern if it's a lookbehind LACON */ nfanode(v, lasub, !LATYPE_IS_AHEAD(lasub->latype), debug); } CNOERR(); if (v->tree->flags & SHORTER) NOTE(REG_USHORTEST); /* build compacted NFAs for tree, lacons, fast search */ #ifdef REG_DEBUG if (debug != NULL) fprintf(debug, "\n\n\n========= SEARCH ==========\n"); #endif /* can sacrifice main NFA now, so use it as work area */ (DISCARD) optimize(v->nfa, debug); CNOERR(); makesearch(v, v->nfa); CNOERR(); compact(v->nfa, &g->search); CNOERR(); /* looks okay, package it up */ re->re_nsub = v->nsubexp; v->re = NULL; /* freev no longer frees re */ g->magic = GUTSMAGIC; g->cflags = v->cflags; g->info = re->re_info; g->nsub = re->re_nsub; g->tree = v->tree; v->tree = NULL; g->ntree = v->ntree; g->compare = (v->cflags & REG_ICASE) ? casecmp : cmp; g->lacons = v->lacons; v->lacons = NULL; g->nlacons = v->nlacons; #ifdef REG_DEBUG if (flags & REG_DUMP) { dump(re, stdout); fflush(stdout); } #endif assert(v->err == 0); return freev(v, 0); } /* * moresubs - enlarge subRE vector */ static void moresubs(struct vars *v, int wanted) /* want enough room for this one */ { struct subre **p; size_t n; assert(wanted > 0 && (size_t) wanted >= v->nsubs); n = (size_t) wanted * 3 / 2 + 1; if (v->subs == v->sub10) { p = (struct subre **) MALLOC(n * sizeof(struct subre *)); if (p != NULL) memcpy(VS(p), VS(v->subs), v->nsubs * sizeof(struct subre *)); } else p = (struct subre **) REALLOC(v->subs, n * sizeof(struct subre *)); if (p == NULL) { ERR(REG_ESPACE); return; } v->subs = p; for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++) *p = NULL; assert(v->nsubs == n); assert((size_t) wanted < v->nsubs); } /* * freev - free vars struct's substructures where necessary * * Optionally does error-number setting, and always returns error code * (if any), to make error-handling code terser. */ static int freev(struct vars *v, int err) { if (v->re != NULL) rfree(v->re); if (v->subs != v->sub10) FREE(v->subs); if (v->nfa != NULL) freenfa(v->nfa); if (v->tree != NULL) freesubre(v, v->tree); if (v->treechain != NULL) cleanst(v); if (v->cv != NULL) freecvec(v->cv); if (v->cv2 != NULL) freecvec(v->cv2); if (v->lacons != NULL) freelacons(v->lacons, v->nlacons); ERR(err); /* nop if err==0 */ return v->err; } /* * makesearch - turn an NFA into a search NFA (implicit prepend of .*?) * NFA must have been optimize()d already. */ static void makesearch(struct vars *v, struct nfa *nfa) { struct arc *a; struct arc *b; struct state *pre = nfa->pre; struct state *s; struct state *s2; struct state *slist; /* no loops are needed if it's anchored */ for (a = pre->outs; a != NULL; a = a->outchain) { assert(a->type == PLAIN); if (a->co != nfa->bos[0] && a->co != nfa->bos[1]) break; } if (a != NULL) { /* add implicit .* in front */ rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre); /* and ^* and \A* too -- not always necessary, but harmless */ newarc(nfa, PLAIN, nfa->bos[0], pre, pre); newarc(nfa, PLAIN, nfa->bos[1], pre, pre); /* * The pattern is still MATCHALL if it was before, but the max match * length is now infinity. */ if (nfa->flags & MATCHALL) nfa->maxmatchall = DUPINF; } /* * Now here's the subtle part. Because many REs have no lookback * constraints, often knowing when you were in the pre state tells you * little; it's the next state(s) that are informative. But some of them * may have other inarcs, i.e. it may be possible to make actual progress * and then return to one of them. We must de-optimize such cases, * splitting each such state into progress and no-progress states. */ /* first, make a list of the states reachable from pre and elsewhere */ slist = NULL; for (a = pre->outs; a != NULL; a = a->outchain) { s = a->to; for (b = s->ins; b != NULL; b = b->inchain) { if (b->from != pre) break; } /* * We want to mark states as being in the list already by having non * NULL tmp fields, but we can't just store the old slist value in tmp * because that doesn't work for the first such state. Instead, the * first list entry gets its own address in tmp. */ if (b != NULL && s->tmp == NULL) { s->tmp = (slist != NULL) ? slist : s; slist = s; } } /* do the splits */ for (s = slist; s != NULL; s = s2) { s2 = newstate(nfa); NOERR(); copyouts(nfa, s, s2); NOERR(); for (a = s->ins; a != NULL; a = b) { b = a->inchain; if (a->from != pre) { cparc(nfa, a, a->from, s2); freearc(nfa, a); } } s2 = (s->tmp != s) ? s->tmp : NULL; s->tmp = NULL; /* clean up while we're at it */ } } /* * parse - parse an RE * * This is actually just the top level, which parses a bunch of branches * tied together with '|'. If there's more than one, they appear in the * tree as the children of a '|' subre. */ static struct subre * parse(struct vars *v, int stopper, /* EOS or ')' */ int type, /* LACON (lookaround subRE) or PLAIN */ struct state *init, /* initial state */ struct state *final) /* final state */ { struct subre *branches; /* top level */ struct subre *lastbranch; /* latest branch */ assert(stopper == ')' || stopper == EOS); branches = subre(v, '|', LONGER, init, final); NOERRN(); lastbranch = NULL; do { /* a branch */ struct subre *branch; struct state *left; /* scaffolding for branch */ struct state *right; left = newstate(v->nfa); right = newstate(v->nfa); NOERRN(); EMPTYARC(init, left); EMPTYARC(right, final); NOERRN(); branch = parsebranch(v, stopper, type, left, right, 0); NOERRN(); if (lastbranch) lastbranch->sibling = branch; else branches->child = branch; branches->flags |= UP(branches->flags | branch->flags); lastbranch = branch; } while (EAT('|')); assert(SEE(stopper) || SEE(EOS)); if (!SEE(stopper)) { assert(stopper == ')' && SEE(EOS)); ERR(REG_EPAREN); } /* optimize out simple cases */ if (lastbranch == branches->child) { /* only one branch */ assert(lastbranch->sibling == NULL); freesrnode(v, branches); branches = lastbranch; } else if (!MESSY(branches->flags)) { /* no interesting innards */ freesubreandsiblings(v, branches->child); branches->child = NULL; branches->op = '='; } return branches; } /* * parsebranch - parse one branch of an RE * * This mostly manages concatenation, working closely with parseqatom(). * Concatenated things are bundled up as much as possible, with separate * '.' nodes introduced only when necessary due to substructure. */ static struct subre * parsebranch(struct vars *v, int stopper, /* EOS or ')' */ int type, /* LACON (lookaround subRE) or PLAIN */ struct state *left, /* leftmost state */ struct state *right, /* rightmost state */ int partial) /* is this only part of a branch? */ { struct state *lp; /* left end of current construct */ int seencontent; /* is there anything in this branch yet? */ struct subre *t; lp = left; seencontent = 0; t = subre(v, '=', 0, left, right); /* op '=' is tentative */ NOERRN(); while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) { if (seencontent) { /* implicit concat operator */ lp = newstate(v->nfa); NOERRN(); moveins(v->nfa, right, lp); } seencontent = 1; /* NB, recursion in parseqatom() may swallow rest of branch */ t = parseqatom(v, stopper, type, lp, right, t); NOERRN(); } if (!seencontent) { /* empty branch */ if (!partial) NOTE(REG_UUNSPEC); assert(lp == left); EMPTYARC(left, right); } return t; } /* * parseqatom - parse one quantified atom or constraint of an RE * * The bookkeeping near the end cooperates very closely with parsebranch(); * in particular, it contains a recursion that can involve parsing the rest * of the branch, making this function's name somewhat inaccurate. * * Usually, the return value is just "top", but in some cases where we * have parsed the rest of the branch, we may deem "top" redundant and * free it, returning some child subre instead. */ static struct subre * parseqatom(struct vars *v, int stopper, /* EOS or ')' */ int type, /* LACON (lookaround subRE) or PLAIN */ struct state *lp, /* left state to hang it on */ struct state *rp, /* right state to hang it on */ struct subre *top) /* subtree top */ { struct state *s; /* temporaries for new states */ struct state *s2; #define ARCV(t, val) newarc(v->nfa, t, val, lp, rp) int m, n; struct subre *atom; /* atom's subtree */ struct subre *t; int cap; /* capturing parens? */ int latype; /* lookaround constraint type */ int subno; /* capturing-parens or backref number */ int atomtype; int qprefer; /* quantifier short/long preference */ int f; struct subre **atomp; /* where the pointer to atom is */ /* initial bookkeeping */ atom = NULL; assert(lp->nouts == 0); /* must string new code */ assert(rp->nins == 0); /* between lp and rp */ subno = 0; /* just to shut lint up */ /* an atom or constraint... */ atomtype = v->nexttype; switch (atomtype) { /* first, constraints, which end by returning */ case '^': ARCV('^', 1); if (v->cflags & REG_NLANCH) ARCV(BEHIND, v->nlcolor); NEXT(); return top; break; case '$': ARCV('$', 1); if (v->cflags & REG_NLANCH) ARCV(AHEAD, v->nlcolor); NEXT(); return top; break; case SBEGIN: ARCV('^', 1); /* BOL */ ARCV('^', 0); /* or BOS */ NEXT(); return top; break; case SEND: ARCV('$', 1); /* EOL */ ARCV('$', 0); /* or EOS */ NEXT(); return top; break; case '<': wordchrs(v); s = newstate(v->nfa); NOERRN(); nonword(v, BEHIND, lp, s); word(v, AHEAD, s, rp); NEXT(); return top; break; case '>': wordchrs(v); s = newstate(v->nfa); NOERRN(); word(v, BEHIND, lp, s); nonword(v, AHEAD, s, rp); NEXT(); return top; break; case WBDRY: wordchrs(v); s = newstate(v->nfa); NOERRN(); nonword(v, BEHIND, lp, s); word(v, AHEAD, s, rp); s = newstate(v->nfa); NOERRN(); word(v, BEHIND, lp, s); nonword(v, AHEAD, s, rp); NEXT(); return top; break; case NWBDRY: wordchrs(v); s = newstate(v->nfa); NOERRN(); word(v, BEHIND, lp, s); word(v, AHEAD, s, rp); s = newstate(v->nfa); NOERRN(); nonword(v, BEHIND, lp, s); nonword(v, AHEAD, s, rp); NEXT(); return top; break; case LACON: /* lookaround constraint */ latype = v->nextvalue; NEXT(); s = newstate(v->nfa); s2 = newstate(v->nfa); NOERRN(); t = parse(v, ')', LACON, s, s2); freesubre(v, t); /* internal structure irrelevant */ NOERRN(); assert(SEE(')')); NEXT(); processlacon(v, s, s2, latype, lp, rp); return top; break; /* then errors, to get them out of the way */ case '*': case '+': case '?': case '{': ERR(REG_BADRPT); return top; break; default: ERR(REG_ASSERT); return top; break; /* then plain characters, and minor variants on that theme */ case ')': /* unbalanced paren */ if ((v->cflags & REG_ADVANCED) != REG_EXTENDED) { ERR(REG_EPAREN); return top; } /* legal in EREs due to specification botch */ NOTE(REG_UPBOTCH); /* fall through into case PLAIN */ /* FALLTHROUGH */ case PLAIN: onechr(v, v->nextvalue, lp, rp); okcolors(v->nfa, v->cm); NOERRN(); NEXT(); break; case '[': if (v->nextvalue == 1) bracket(v, lp, rp); else cbracket(v, lp, rp); assert(SEE(']') || ISERR()); NEXT(); break; case CCLASSS: charclass(v, (enum char_classes) v->nextvalue, lp, rp); okcolors(v->nfa, v->cm); NEXT(); break; case CCLASSC: charclasscomplement(v, (enum char_classes) v->nextvalue, lp, rp); /* charclasscomplement() did okcolors() internally */ NEXT(); break; case '.': rainbow(v->nfa, v->cm, PLAIN, (v->cflags & REG_NLSTOP) ? v->nlcolor : COLORLESS, lp, rp); NEXT(); break; /* and finally the ugly stuff */ case '(': /* value flags as capturing or non */ cap = (type == LACON) ? 0 : v->nextvalue; if (cap) { v->nsubexp++; subno = v->nsubexp; if ((size_t) subno >= v->nsubs) moresubs(v, subno); } else atomtype = PLAIN; /* something that's not '(' */ NEXT(); /* * Make separate endpoint states to keep this sub-NFA distinct * from what surrounds it. We need to be sure that when we * duplicate the sub-NFA for a backref, we get the right * states/arcs and no others. In particular, letting a backref * duplicate the sub-NFA from lp to rp would be quite wrong, * because we may add quantification superstructure around this * atom below. (Perhaps we could skip the extra states for * non-capturing parens, but it seems not worth the trouble.) */ s = newstate(v->nfa); s2 = newstate(v->nfa); NOERRN(); /* We may not need these arcs, but keep things connected for now */ EMPTYARC(lp, s); EMPTYARC(s2, rp); NOERRN(); atom = parse(v, ')', type, s, s2); assert(SEE(')') || ISERR()); NEXT(); NOERRN(); if (cap) { if (atom->capno == 0) { /* normal case: just mark the atom as capturing */ atom->flags |= CAP; atom->capno = subno; } else { /* generate no-op wrapper node to handle "((x))" */ t = subre(v, '(', atom->flags | CAP, s, s2); NOERRN(); t->capno = subno; t->child = atom; atom = t; } assert(v->subs[subno] == NULL); v->subs[subno] = atom; } /* postpone everything else pending possible {0} */ break; case BACKREF: /* the Feature From The Black Lagoon */ INSIST(type != LACON, REG_ESUBREG); subno = v->nextvalue; assert(subno > 0); INSIST(subno < v->nsubs, REG_ESUBREG); NOERRN(); INSIST(v->subs[subno] != NULL, REG_ESUBREG); NOERRN(); atom = subre(v, 'b', BACKR, lp, rp); NOERRN(); atom->backno = subno; v->subs[subno]->flags |= BRUSE; EMPTYARC(lp, rp); /* temporarily, so there's something */ NEXT(); break; } /* ...and an atom may be followed by a quantifier */ switch (v->nexttype) { case '*': m = 0; n = DUPINF; qprefer = (v->nextvalue) ? LONGER : SHORTER; NEXT(); break; case '+': m = 1; n = DUPINF; qprefer = (v->nextvalue) ? LONGER : SHORTER; NEXT(); break; case '?': m = 0; n = 1; qprefer = (v->nextvalue) ? LONGER : SHORTER; NEXT(); break; case '{': NEXT(); m = scannum(v); if (EAT(',')) { if (SEE(DIGIT)) n = scannum(v); else n = DUPINF; if (m > n) { ERR(REG_BADBR); return top; } /* {m,n} exercises preference, even if it's {m,m} */ qprefer = (v->nextvalue) ? LONGER : SHORTER; } else { n = m; /* {m} passes operand's preference through */ qprefer = 0; } if (!SEE('}')) { /* catches errors too */ ERR(REG_BADBR); return top; } NEXT(); break; default: /* no quantifier */ m = n = 1; qprefer = 0; break; } /* annoying special case: {0} or {0,0} cancels everything */ if (m == 0 && n == 0) { /* * If we had capturing subexpression(s) within the atom, we don't want * to destroy them, because it's legal (if useless) to back-ref them * later. Hence, just unlink the atom from lp/rp and then ignore it. */ if (atom != NULL && (atom->flags & CAP)) { delsub(v->nfa, lp, atom->begin); delsub(v->nfa, atom->end, rp); } else { /* Otherwise, we can clean up any subre infrastructure we made */ if (atom != NULL) freesubre(v, atom); delsub(v->nfa, lp, rp); } EMPTYARC(lp, rp); return top; } /* if not a messy case, avoid hard part */ assert(!MESSY(top->flags)); f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0); if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) { if (!(m == 1 && n == 1)) repeat(v, lp, rp, m, n); if (atom != NULL) freesubre(v, atom); top->flags = f; return top; } /* * hard part: something messy * * That is, capturing parens, back reference, short/long clash, or an atom * with substructure containing one of those. */ /* now we'll need a subre for the contents even if they're boring */ if (atom == NULL) { atom = subre(v, '=', 0, lp, rp); NOERRN(); } /* * For what follows, we need the atom to have its own begin/end states * that are distinct from lp/rp, so that we can wrap iteration structure * around it. The parenthesized-atom case above already made suitable * states (and we don't want to modify a capturing subre, since it's * already recorded in v->subs[]). Otherwise, we need more states. */ if (atom->begin == lp || atom->end == rp) { s = newstate(v->nfa); s2 = newstate(v->nfa); NOERRN(); moveouts(v->nfa, lp, s); moveins(v->nfa, rp, s2); atom->begin = s; atom->end = s2; } else { /* The atom's OK, but we must temporarily disconnect it from lp/rp */ /* (this removes the EMPTY arcs we made above) */ delsub(v->nfa, lp, atom->begin); delsub(v->nfa, atom->end, rp); } /*---------- * Prepare a general-purpose state skeleton. * * In the no-backrefs case, we want this: * * [lp] ---> [s] ---prefix---> ---atom---> ---rest---> [rp] * * where prefix is some repetitions of atom, and "rest" is the remainder * of the branch. In the general case we need: * * [lp] ---> [s] ---iterator---> [s2] ---rest---> [rp] * * where the iterator wraps around the atom. * * We make the s state here for both cases; s2 is made below if needed *---------- */ s = newstate(v->nfa); /* set up starting state */ NOERRN(); EMPTYARC(lp, s); NOERRN(); /* break remaining subRE into x{...} and what follows */ t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp); NOERRN(); t->child = atom; atomp = &t->child; /* * Here we should recurse to fill t->child->sibling ... but we must * postpone that to the end. One reason is that t->child may be replaced * below, and we don't want to worry about its sibling link. */ /* * Convert top node to a concatenation of the prefix (top->child, covering * whatever we parsed previously) and remaining (t). Note that the prefix * could be empty, in which case this concatenation node is unnecessary. * To keep things simple, we operate in a general way for now, and get rid * of unnecessary subres below. */ assert(top->op == '=' && top->child == NULL); top->child = subre(v, '=', top->flags, top->begin, lp); NOERRN(); top->op = '.'; top->child->sibling = t; /* top->flags will get updated later */ /* if it's a backref, now is the time to replicate the subNFA */ if (atomtype == BACKREF) { assert(atom->begin->nouts == 1); /* just the EMPTY */ delsub(v->nfa, atom->begin, atom->end); assert(v->subs[subno] != NULL); /* * And here's why the recursion got postponed: it must wait until the * skeleton is filled in, because it may hit a backref that wants to * copy the filled-in skeleton. */ dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end, atom->begin, atom->end); NOERRN(); /* The backref node's NFA should not enforce any constraints */ removeconstraints(v->nfa, atom->begin, atom->end); NOERRN(); } /* * It's quantifier time. If the atom is just a backref, we'll let it deal * with quantifiers internally. */ if (atomtype == BACKREF) { /* special case: backrefs have internal quantifiers */ EMPTYARC(s, atom->begin); /* empty prefix */ /* just stuff everything into atom */ repeat(v, atom->begin, atom->end, m, n); atom->min = (short) m; atom->max = (short) n; atom->flags |= COMBINE(qprefer, atom->flags); /* rest of branch can be strung starting from atom->end */ s2 = atom->end; } else if (m == 1 && n == 1 && (qprefer == 0 || (atom->flags & (LONGER | SHORTER | MIXED)) == 0 || qprefer == (atom->flags & (LONGER | SHORTER | MIXED)))) { /* no/vacuous quantifier: done */ EMPTYARC(s, atom->begin); /* empty prefix */ /* rest of branch can be strung starting from atom->end */ s2 = atom->end; } else if (!(atom->flags & (CAP | BACKR))) { /* * If there's no captures nor backrefs in the atom being repeated, we * don't really care where the submatches of the iteration are, so we * don't need an iteration node. Make a plain DFA node instead. */ EMPTYARC(s, atom->begin); /* empty prefix */ repeat(v, atom->begin, atom->end, m, n); f = COMBINE(qprefer, atom->flags); t = subre(v, '=', f, atom->begin, atom->end); NOERRN(); freesubre(v, atom); *atomp = t; /* rest of branch can be strung starting from t->end */ s2 = t->end; } else if (m > 0 && !(atom->flags & BACKR)) { /* * If there's no backrefs involved, we can turn x{m,n} into * x{m-1,n-1}x, with capturing parens in only the second x. This is * valid because we only care about capturing matches from the final * iteration of the quantifier. It's a win because we can implement * the backref-free left side as a plain DFA node, since we don't * really care where its submatches are. */ dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin); assert(m >= 1 && m != DUPINF && n >= 1); repeat(v, s, atom->begin, m - 1, (n == DUPINF) ? n : n - 1); f = COMBINE(qprefer, atom->flags); t = subre(v, '.', f, s, atom->end); /* prefix and atom */ NOERRN(); t->child = subre(v, '=', PREF(f), s, atom->begin); NOERRN(); t->child->sibling = atom; *atomp = t; /* rest of branch can be strung starting from atom->end */ s2 = atom->end; } else { /* general case: need an iteration node */ s2 = newstate(v->nfa); NOERRN(); moveouts(v->nfa, atom->end, s2); NOERRN(); dupnfa(v->nfa, atom->begin, atom->end, s, s2); repeat(v, s, s2, m, n); f = COMBINE(qprefer, atom->flags); t = subre(v, '*', f, s, s2); NOERRN(); t->min = (short) m; t->max = (short) n; t->child = atom; *atomp = t; /* rest of branch is to be strung from iteration's end state */ } /* and finally, look after that postponed recursion */ t = top->child->sibling; if (!(SEE('|') || SEE(stopper) || SEE(EOS))) { /* parse all the rest of the branch, and insert in t->child->sibling */ t->child->sibling = parsebranch(v, stopper, type, s2, rp, 1); NOERRN(); assert(SEE('|') || SEE(stopper) || SEE(EOS)); /* here's the promised update of the flags */ t->flags |= COMBINE(t->flags, t->child->sibling->flags); top->flags |= COMBINE(top->flags, t->flags); /* neither t nor top could be directly marked for capture as yet */ assert(t->capno == 0); assert(top->capno == 0); /* * At this point both top and t are concatenation (op == '.') subres, * and we have top->child = prefix of branch, top->child->sibling = t, * t->child = messy atom (with quantification superstructure if * needed), t->child->sibling = rest of branch. * * If the messy atom was the first thing in the branch, then * top->child is vacuous and we can get rid of one level of * concatenation. */ assert(top->child->op == '='); if (top->child->begin == top->child->end) { assert(!MESSY(top->child->flags)); freesubre(v, top->child); top->child = t->child; freesrnode(v, t); } /* * Otherwise, it's possible that t->child is not messy in itself, but * we considered it messy because its greediness conflicts with what * preceded it. Then it could be that the combination of t->child and * the rest of the branch is also not messy, in which case we can get * rid of the child concatenation by merging t->child and the rest of * the branch into one plain DFA node. */ else if (t->child->op == '=' && t->child->sibling->op == '=' && !MESSY(UP(t->child->flags | t->child->sibling->flags))) { t->op = '='; t->flags = COMBINE(t->child->flags, t->child->sibling->flags); freesubreandsiblings(v, t->child); t->child = NULL; } } else { /* * There's nothing left in the branch, so we don't need the second * concatenation node 't'. Just link s2 straight to rp. */ EMPTYARC(s2, rp); top->child->sibling = t->child; top->flags |= COMBINE(top->flags, top->child->sibling->flags); freesrnode(v, t); /* * Again, it could be that top->child is vacuous (if the messy atom * was in fact the only thing in the branch). In that case we need no * concatenation at all; just replace top with top->child->sibling. */ assert(top->child->op == '='); if (top->child->begin == top->child->end) { assert(!MESSY(top->child->flags)); t = top->child->sibling; top->child->sibling = NULL; freesubre(v, top); top = t; } } return top; } /* * nonword - generate arcs for non-word-character ahead or behind */ static void nonword(struct vars *v, int dir, /* AHEAD or BEHIND */ struct state *lp, struct state *rp) { int anchor = (dir == AHEAD) ? '$' : '^'; assert(dir == AHEAD || dir == BEHIND); newarc(v->nfa, anchor, 1, lp, rp); newarc(v->nfa, anchor, 0, lp, rp); colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp); /* (no need for special attention to \n) */ } /* * word - generate arcs for word character ahead or behind */ static void word(struct vars *v, int dir, /* AHEAD or BEHIND */ struct state *lp, struct state *rp) { assert(dir == AHEAD || dir == BEHIND); cloneouts(v->nfa, v->wordchrs, lp, rp, dir); /* (no need for special attention to \n) */ } /* * charclass - generate arcs for a character class * * This is used for both atoms (\w and sibling escapes) and for elements * of bracket expressions. The caller is responsible for calling okcolors() * at the end of processing the atom or bracket. */ static void charclass(struct vars *v, enum char_classes cls, struct state *lp, struct state *rp) { struct cvec *cv; /* obtain possibly-cached cvec for char class */ NOTE(REG_ULOCALE); cv = cclasscvec(v, cls, (v->cflags & REG_ICASE)); NOERR(); /* build the arcs; this may cause color splitting */ subcolorcvec(v, cv, lp, rp); } /* * charclasscomplement - generate arcs for a complemented character class * * This is used for both atoms (\W and sibling escapes) and for elements * of bracket expressions. In bracket expressions, it is the caller's * responsibility that there not be any open subcolors when this is called. */ static void charclasscomplement(struct vars *v, enum char_classes cls, struct state *lp, struct state *rp) { struct state *cstate; struct cvec *cv; /* make dummy state to hang temporary arcs on */ cstate = newstate(v->nfa); NOERR(); /* obtain possibly-cached cvec for char class */ NOTE(REG_ULOCALE); cv = cclasscvec(v, cls, (v->cflags & REG_ICASE)); NOERR(); /* build arcs for char class; this may cause color splitting */ subcolorcvec(v, cv, cstate, cstate); NOERR(); /* clean up any subcolors in the arc set */ okcolors(v->nfa, v->cm); NOERR(); /* now build output arcs for the complement of the char class */ colorcomplement(v->nfa, v->cm, PLAIN, cstate, lp, rp); NOERR(); /* clean up dummy state */ dropstate(v->nfa, cstate); } /* * scannum - scan a number */ static int /* value, <= DUPMAX */ scannum(struct vars *v) { int n = 0; while (SEE(DIGIT) && n < DUPMAX) { n = n * 10 + v->nextvalue; NEXT(); } if (SEE(DIGIT) || n > DUPMAX) { ERR(REG_BADBR); return 0; } return n; } /* * repeat - replicate subNFA for quantifiers * * The sub-NFA strung from lp to rp is modified to represent m to n * repetitions of its initial contents. * * The duplication sequences used here are chosen carefully so that any * pointers starting out pointing into the subexpression end up pointing into * the last occurrence. (Note that it may not be strung between the same * left and right end states, however!) This used to be important for the * subRE tree, although the important bits are now handled by the in-line * code in parse(), and when this is called, it doesn't matter any more. */ static void repeat(struct vars *v, struct state *lp, struct state *rp, int m, int n) { #define SOME 2 #define INF 3 #define PAIR(x, y) ((x)*4 + (y)) #define REDUCE(x) ( ((x) == DUPINF) ? INF : (((x) > 1) ? SOME : (x)) ) const int rm = REDUCE(m); const int rn = REDUCE(n); struct state *s; struct state *s2; switch (PAIR(rm, rn)) { case PAIR(0, 0): /* empty string */ delsub(v->nfa, lp, rp); EMPTYARC(lp, rp); break; case PAIR(0, 1): /* do as x| */ EMPTYARC(lp, rp); break; case PAIR(0, SOME): /* do as x{1,n}| */ repeat(v, lp, rp, 1, n); NOERR(); EMPTYARC(lp, rp); break; case PAIR(0, INF): /* loop x around */ s = newstate(v->nfa); NOERR(); moveouts(v->nfa, lp, s); moveins(v->nfa, rp, s); EMPTYARC(lp, s); EMPTYARC(s, rp); break; case PAIR(1, 1): /* no action required */ break; case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */ s = newstate(v->nfa); NOERR(); moveouts(v->nfa, lp, s); dupnfa(v->nfa, s, rp, lp, s); NOERR(); repeat(v, lp, s, 1, n - 1); NOERR(); EMPTYARC(lp, s); break; case PAIR(1, INF): /* add loopback arc */ s = newstate(v->nfa); s2 = newstate(v->nfa); NOERR(); moveouts(v->nfa, lp, s); moveins(v->nfa, rp, s2); EMPTYARC(lp, s); EMPTYARC(s2, rp); EMPTYARC(s2, s); break; case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */ s = newstate(v->nfa); NOERR(); moveouts(v->nfa, lp, s); dupnfa(v->nfa, s, rp, lp, s); NOERR(); repeat(v, lp, s, m - 1, n - 1); break; case PAIR(SOME, INF): /* do as x{m-1,}x */ s = newstate(v->nfa); NOERR(); moveouts(v->nfa, lp, s); dupnfa(v->nfa, s, rp, lp, s); NOERR(); repeat(v, lp, s, m - 1, n); break; default: ERR(REG_ASSERT); break; } } /* * bracket - handle non-complemented bracket expression * * Also called from cbracket for complemented bracket expressions. */ static void bracket(struct vars *v, struct state *lp, struct state *rp) { /* * We can't process complemented char classes (e.g. \W) immediately while * scanning the bracket expression, else color bookkeeping gets confused. * Instead, remember whether we saw any in have_cclassc[], and process * them at the end. */ bool have_cclassc[NUM_CCLASSES]; bool any_cclassc; int i; memset(have_cclassc, false, sizeof(have_cclassc)); assert(SEE('[')); NEXT(); while (!SEE(']') && !SEE(EOS)) brackpart(v, lp, rp, have_cclassc); assert(SEE(']') || ISERR()); /* close up open subcolors from the positive bracket elements */ okcolors(v->nfa, v->cm); NOERR(); /* now handle any complemented elements */ any_cclassc = false; for (i = 0; i < NUM_CCLASSES; i++) { if (have_cclassc[i]) { charclasscomplement(v, (enum char_classes) i, lp, rp); NOERR(); any_cclassc = true; } } /* * If we had any complemented elements, see if we can optimize the bracket * into a rainbow. Since a complemented element is the only way a WHITE * arc could get into the result, there's no point in checking otherwise. */ if (any_cclassc) optimizebracket(v, lp, rp); } /* * cbracket - handle complemented bracket expression * * We do it by calling bracket() with dummy endpoints, and then complementing * the result. The alternative would be to invoke rainbow(), and then delete * arcs as the b.e. is seen... but that gets messy, and is really quite * infeasible now that rainbow() just puts out one RAINBOW arc. */ static void cbracket(struct vars *v, struct state *lp, struct state *rp) { struct state *left = newstate(v->nfa); struct state *right = newstate(v->nfa); NOERR(); bracket(v, left, right); /* in NLSTOP mode, ensure newline is not part of the result set */ if (v->cflags & REG_NLSTOP) newarc(v->nfa, PLAIN, v->nlcolor, left, right); NOERR(); assert(lp->nouts == 0); /* all outarcs will be ours */ /* * Easy part of complementing, and all there is to do since the MCCE code * was removed. Note that the result of colorcomplement() cannot be a * rainbow, since we don't allow empty brackets; so there's no point in * calling optimizebracket() again. */ colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp); NOERR(); dropstate(v->nfa, left); assert(right->nins == 0); freestate(v->nfa, right); } /* * brackpart - handle one item (or range) within a bracket expression */ static void brackpart(struct vars *v, struct state *lp, struct state *rp, bool *have_cclassc) { chr startc; chr endc; struct cvec *cv; enum char_classes cls; const chr *startp; const chr *endp; /* parse something, get rid of special cases, take shortcuts */ switch (v->nexttype) { case RANGE: /* a-b-c or other botch */ ERR(REG_ERANGE); return; break; case PLAIN: startc = v->nextvalue; NEXT(); /* shortcut for ordinary chr (not range) */ if (!SEE(RANGE)) { onechr(v, startc, lp, rp); return; } NOERR(); break; case COLLEL: startp = v->now; endp = scanplain(v); INSIST(startp < endp, REG_ECOLLATE); NOERR(); startc = element(v, startp, endp); NOERR(); break; case ECLASS: startp = v->now; endp = scanplain(v); INSIST(startp < endp, REG_ECOLLATE); NOERR(); startc = element(v, startp, endp); NOERR(); cv = eclass(v, startc, (v->cflags & REG_ICASE)); NOERR(); subcolorcvec(v, cv, lp, rp); return; break; case CCLASS: startp = v->now; endp = scanplain(v); INSIST(startp < endp, REG_ECTYPE); NOERR(); cls = lookupcclass(v, startp, endp); NOERR(); charclass(v, cls, lp, rp); return; break; case CCLASSS: charclass(v, (enum char_classes) v->nextvalue, lp, rp); NEXT(); return; break; case CCLASSC: /* we cannot call charclasscomplement() immediately */ have_cclassc[v->nextvalue] = true; NEXT(); return; break; default: ERR(REG_ASSERT); return; break; } if (SEE(RANGE)) { NEXT(); switch (v->nexttype) { case PLAIN: case RANGE: endc = v->nextvalue; NEXT(); NOERR(); break; case COLLEL: startp = v->now; endp = scanplain(v); INSIST(startp < endp, REG_ECOLLATE); NOERR(); endc = element(v, startp, endp); NOERR(); break; default: ERR(REG_ERANGE); return; break; } } else endc = startc; /* * Ranges are unportable. Actually, standard C does guarantee that digits * are contiguous, but making that an exception is just too complicated. */ if (startc != endc) NOTE(REG_UUNPORT); cv = range(v, startc, endc, (v->cflags & REG_ICASE)); NOERR(); subcolorcvec(v, cv, lp, rp); } /* * scanplain - scan PLAIN contents of [. etc. * * Certain bits of trickery in regc_lex.c know that this code does not try * to look past the final bracket of the [. etc. */ static const chr * /* just after end of sequence */ scanplain(struct vars *v) { const chr *endp; assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS)); NEXT(); endp = v->now; while (SEE(PLAIN)) { endp = v->now; NEXT(); } assert(SEE(END) || ISERR()); NEXT(); return endp; } /* * onechr - fill in arcs for a plain character, and possible case complements * This is mostly a shortcut for efficient handling of the common case. */ static void onechr(struct vars *v, chr c, struct state *lp, struct state *rp) { if (!(v->cflags & REG_ICASE)) { color lastsubcolor = COLORLESS; subcoloronechr(v, c, lp, rp, &lastsubcolor); return; } /* rats, need general case anyway... */ subcolorcvec(v, allcases(v, c), lp, rp); } /* * optimizebracket - see if bracket expression can be converted to RAINBOW * * Cases such as "[\s\S]" can produce a set of arcs of all colors, which we * can replace by a single RAINBOW arc for efficiency. (This might seem * like a silly way to write ".", but it's seemingly a common locution in * some other flavors of regex, so take the trouble to support it well.) */ static void optimizebracket(struct vars *v, struct state *lp, struct state *rp) { struct colordesc *cd; struct colordesc *end = CDEND(v->cm); struct arc *a; bool israinbow; /* * Scan lp's out-arcs and transiently mark the mentioned colors. We * expect that all of lp's out-arcs are plain, non-RAINBOW arcs to rp. * (Note: there shouldn't be any pseudocolors yet, but check anyway.) */ for (a = lp->outs; a != NULL; a = a->outchain) { assert(a->type == PLAIN); assert(a->co >= 0); /* i.e. not RAINBOW */ assert(a->to == rp); cd = &v->cm->cd[a->co]; assert(!UNUSEDCOLOR(cd) && !(cd->flags & PSEUDO)); cd->flags |= COLMARK; } /* Scan colors, clear transient marks, check for unmarked live colors */ israinbow = true; for (cd = v->cm->cd; cd < end; cd++) { if (cd->flags & COLMARK) cd->flags &= ~COLMARK; else if (!UNUSEDCOLOR(cd) && !(cd->flags & PSEUDO)) israinbow = false; } /* Can't do anything if not all colors have arcs */ if (!israinbow) return; /* OK, drop existing arcs and replace with a rainbow */ while ((a = lp->outs) != NULL) freearc(v->nfa, a); newarc(v->nfa, PLAIN, RAINBOW, lp, rp); } /* * wordchrs - set up word-chr list for word-boundary stuff, if needed * * The list is kept as a bunch of circular arcs on an otherwise-unused state. * * Note that this must not be called while we have any open subcolors, * else construction of the list would confuse color bookkeeping. * Hence, we can't currently apply a similar optimization in * charclass[complement](), as those need to be usable within bracket * expressions. */ static void wordchrs(struct vars *v) { struct state *cstate; struct cvec *cv; if (v->wordchrs != NULL) return; /* done already */ /* make dummy state to hang the cache arcs on */ cstate = newstate(v->nfa); NOERR(); /* obtain possibly-cached cvec for \w characters */ NOTE(REG_ULOCALE); cv = cclasscvec(v, CC_WORD, (v->cflags & REG_ICASE)); NOERR(); /* build the arcs; this may cause color splitting */ subcolorcvec(v, cv, cstate, cstate); NOERR(); /* close new open subcolors to ensure the cache entry is self-contained */ okcolors(v->nfa, v->cm); NOERR(); /* success! save the cache pointer */ v->wordchrs = cstate; } /* * processlacon - generate the NFA representation of a LACON * * In the general case this is just newlacon() + newarc(), but some cases * can be optimized. */ static void processlacon(struct vars *v, struct state *begin, /* start of parsed LACON sub-re */ struct state *end, /* end of parsed LACON sub-re */ int latype, struct state *lp, /* left state to hang it on */ struct state *rp) /* right state to hang it on */ { struct state *s1; int n; /* * Check for lookaround RE consisting of a single plain color arc (or set * of arcs); this would typically be a simple chr or a bracket expression. */ s1 = single_color_transition(begin, end); switch (latype) { case LATYPE_AHEAD_POS: /* If lookahead RE is just colorset C, convert to AHEAD(C) */ if (s1 != NULL) { cloneouts(v->nfa, s1, lp, rp, AHEAD); return; } break; case LATYPE_AHEAD_NEG: /* If lookahead RE is just colorset C, convert to AHEAD(^C)|$ */ if (s1 != NULL) { colorcomplement(v->nfa, v->cm, AHEAD, s1, lp, rp); newarc(v->nfa, '$', 1, lp, rp); newarc(v->nfa, '$', 0, lp, rp); return; } break; case LATYPE_BEHIND_POS: /* If lookbehind RE is just colorset C, convert to BEHIND(C) */ if (s1 != NULL) { cloneouts(v->nfa, s1, lp, rp, BEHIND); return; } break; case LATYPE_BEHIND_NEG: /* If lookbehind RE is just colorset C, convert to BEHIND(^C)|^ */ if (s1 != NULL) { colorcomplement(v->nfa, v->cm, BEHIND, s1, lp, rp); newarc(v->nfa, '^', 1, lp, rp); newarc(v->nfa, '^', 0, lp, rp); return; } break; default: assert(NOTREACHED); } /* General case: we need a LACON subre and arc */ n = newlacon(v, begin, end, latype); newarc(v->nfa, LACON, n, lp, rp); } /* * subre - allocate a subre */ static struct subre * subre(struct vars *v, int op, int flags, struct state *begin, struct state *end) { struct subre *ret = v->treefree; /* * Checking for stack overflow here is sufficient to protect parse() and * its recursive subroutines. */ if (STACK_TOO_DEEP(v->re)) { ERR(REG_ETOOBIG); return NULL; } if (ret != NULL) v->treefree = ret->child; else { ret = (struct subre *) MALLOC(sizeof(struct subre)); if (ret == NULL) { ERR(REG_ESPACE); return NULL; } ret->chain = v->treechain; v->treechain = ret; } assert(strchr("=b|.*(", op) != NULL); ret->op = op; ret->flags = flags; ret->latype = (char) -1; ret->id = 0; /* will be assigned later */ ret->capno = 0; ret->backno = 0; ret->min = ret->max = 1; ret->child = NULL; ret->sibling = NULL; ret->begin = begin; ret->end = end; ZAPCNFA(ret->cnfa); return ret; } /* * freesubre - free a subRE subtree * * This frees child node(s) of the given subRE too, * but not its siblings. */ static void freesubre(struct vars *v, /* might be NULL */ struct subre *sr) { if (sr == NULL) return; if (sr->child != NULL) freesubreandsiblings(v, sr->child); freesrnode(v, sr); } /* * freesubreandsiblings - free a subRE subtree * * This frees child node(s) of the given subRE too, * as well as any following siblings. */ static void freesubreandsiblings(struct vars *v, /* might be NULL */ struct subre *sr) { while (sr != NULL) { struct subre *next = sr->sibling; freesubre(v, sr); sr = next; } } /* * freesrnode - free one node in a subRE subtree */ static void freesrnode(struct vars *v, /* might be NULL */ struct subre *sr) { if (sr == NULL) return; if (!NULLCNFA(sr->cnfa)) freecnfa(&sr->cnfa); sr->flags = 0; /* in particular, not INUSE */ sr->child = sr->sibling = NULL; sr->begin = sr->end = NULL; if (v != NULL && v->treechain != NULL) { /* we're still parsing, maybe we can reuse the subre */ sr->child = v->treefree; v->treefree = sr; } else FREE(sr); } /* * removecaptures - remove unnecessary capture subREs * * If the caller said that it doesn't care about subexpression match data, * we may delete the "capture" markers on subREs that are not referenced * by any backrefs, and then simplify anything that's become non-messy. * Call this only if REG_NOSUB flag is set. */ static void removecaptures(struct vars *v, struct subre *t) { struct subre *t2; assert(t != NULL); /* * If this isn't itself a backref target, clear capno and tentatively * clear CAP flag. */ if (!(t->flags & BRUSE)) { t->capno = 0; t->flags &= ~CAP; } /* Now recurse to children */ for (t2 = t->child; t2 != NULL; t2 = t2->sibling) { removecaptures(v, t2); /* Propagate child CAP flag back up, if it's still set */ if (t2->flags & CAP) t->flags |= CAP; } /* * If t now contains neither captures nor backrefs, there's no longer any * need to care where its sub-match boundaries are, so we can reduce it to * a simple DFA node. (Note in particular that MIXED child greediness is * not a hindrance here, so we don't use the MESSY() macro.) */ if ((t->flags & (CAP | BACKR)) == 0) { if (t->child) freesubreandsiblings(v, t->child); t->child = NULL; t->op = '='; t->flags &= ~MIXED; } } /* * numst - number tree nodes (assigning "id" indexes) */ static int /* next number */ numst(struct subre *t, int start) /* starting point for subtree numbers */ { int i; struct subre *t2; assert(t != NULL); i = start; t->id = i++; for (t2 = t->child; t2 != NULL; t2 = t2->sibling) i = numst(t2, i); return i; } /* * markst - mark tree nodes as INUSE * * Note: this is a great deal more subtle than it looks. During initial * parsing of a regex, all subres are linked into the treechain list; * discarded ones are also linked into the treefree list for possible reuse. * After we are done creating all subres required for a regex, we run markst() * then cleanst(), which results in discarding all subres not reachable from * v->tree. We then clear v->treechain, indicating that subres must be found * by descending from v->tree. This changes the behavior of freesubre(): it * will henceforth FREE() unwanted subres rather than sticking them into the * treefree list. (Doing that any earlier would result in dangling links in * the treechain list.) This all means that freev() will clean up correctly * if invoked before or after markst()+cleanst(); but it would not work if * called partway through this state conversion, so we mustn't error out * in or between these two functions. */ static void markst(struct subre *t) { struct subre *t2; assert(t != NULL); t->flags |= INUSE; for (t2 = t->child; t2 != NULL; t2 = t2->sibling) markst(t2); } /* * cleanst - free any tree nodes not marked INUSE */ static void cleanst(struct vars *v) { struct subre *t; struct subre *next; for (t = v->treechain; t != NULL; t = next) { next = t->chain; if (!(t->flags & INUSE)) FREE(t); } v->treechain = NULL; v->treefree = NULL; /* just on general principles */ } /* * nfatree - turn a subRE subtree into a tree of compacted NFAs */ static long /* optimize results from top node */ nfatree(struct vars *v, struct subre *t, FILE *f) /* for debug output */ { struct subre *t2; assert(t != NULL && t->begin != NULL); for (t2 = t->child; t2 != NULL; t2 = t2->sibling) (DISCARD) nfatree(v, t2, f); return nfanode(v, t, 0, f); } /* * nfanode - do one NFA for nfatree or lacons * * If converttosearch is true, apply makesearch() to the NFA. */ static long /* optimize results */ nfanode(struct vars *v, struct subre *t, int converttosearch, FILE *f) /* for debug output */ { struct nfa *nfa; long ret = 0; assert(t->begin != NULL); #ifdef REG_DEBUG if (f != NULL) { char idbuf[50]; fprintf(f, "\n\n\n========= TREE NODE %s ==========\n", stid(t, idbuf, sizeof(idbuf))); } #endif nfa = newnfa(v, v->cm, v->nfa); NOERRZ(); dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final); if (!ISERR()) specialcolors(nfa); if (!ISERR()) ret = optimize(nfa, f); if (converttosearch && !ISERR()) makesearch(v, nfa); if (!ISERR()) compact(nfa, &t->cnfa); freenfa(nfa); return ret; } /* * newlacon - allocate a lookaround-constraint subRE */ static int /* lacon number */ newlacon(struct vars *v, struct state *begin, struct state *end, int latype) { int n; struct subre *newlacons; struct subre *sub; if (v->nlacons == 0) { n = 1; /* skip 0th */ newlacons = (struct subre *) MALLOC(2 * sizeof(struct subre)); } else { n = v->nlacons; newlacons = (struct subre *) REALLOC(v->lacons, (n + 1) * sizeof(struct subre)); } if (newlacons == NULL) { ERR(REG_ESPACE); return 0; } v->lacons = newlacons; v->nlacons = n + 1; sub = &v->lacons[n]; sub->begin = begin; sub->end = end; sub->latype = latype; ZAPCNFA(sub->cnfa); return n; } /* * freelacons - free lookaround-constraint subRE vector */ static void freelacons(struct subre *subs, int n) { struct subre *sub; int i; assert(n > 0); for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */ if (!NULLCNFA(sub->cnfa)) freecnfa(&sub->cnfa); FREE(subs); } /* * rfree - free a whole RE (insides of regfree) */ static void rfree(regex_t *re) { struct guts *g; if (re == NULL || re->re_magic != REMAGIC) return; re->re_magic = 0; /* invalidate RE */ g = (struct guts *) re->re_guts; re->re_guts = NULL; re->re_fns = NULL; if (g != NULL) { g->magic = 0; freecm(&g->cmap); if (g->tree != NULL) freesubre((struct vars *) NULL, g->tree); if (g->lacons != NULL) freelacons(g->lacons, g->nlacons); if (!NULLCNFA(g->search)) freecnfa(&g->search); FREE(g); } } /* * rstacktoodeep - check for stack getting dangerously deep * * Return nonzero to fail the operation with error code REG_ETOOBIG, * zero to keep going * * The current implementation is Postgres-specific. If we ever get around * to splitting the regex code out as a standalone library, there will need * to be some API to let applications define a callback function for this. */ static int rstacktoodeep(void) { return stack_is_too_deep(); } #ifdef REG_DEBUG /* * dump - dump an RE in human-readable form */ static void dump(regex_t *re, FILE *f) { struct guts *g; int i; if (re->re_magic != REMAGIC) fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic, REMAGIC); if (re->re_guts == NULL) { fprintf(f, "NULL guts!!!\n"); return; } g = (struct guts *) re->re_guts; if (g->magic != GUTSMAGIC) fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic, GUTSMAGIC); fprintf(f, "\n\n\n========= DUMP ==========\n"); fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n", (int) re->re_nsub, re->re_info, re->re_csize, g->ntree); dumpcolors(&g->cmap, f); if (!NULLCNFA(g->search)) { fprintf(f, "\nsearch:\n"); dumpcnfa(&g->search, f); } for (i = 1; i < g->nlacons; i++) { struct subre *lasub = &g->lacons[i]; const char *latype; switch (lasub->latype) { case LATYPE_AHEAD_POS: latype = "positive lookahead"; break; case LATYPE_AHEAD_NEG: latype = "negative lookahead"; break; case LATYPE_BEHIND_POS: latype = "positive lookbehind"; break; case LATYPE_BEHIND_NEG: latype = "negative lookbehind"; break; default: latype = "???"; break; } fprintf(f, "\nla%d (%s):\n", i, latype); dumpcnfa(&lasub->cnfa, f); } fprintf(f, "\n"); dumpst(g->tree, f, 0); } /* * dumpst - dump a subRE tree */ static void dumpst(struct subre *t, FILE *f, int nfapresent) /* is the original NFA still around? */ { if (t == NULL) fprintf(f, "null tree\n"); else stdump(t, f, nfapresent); fflush(f); } /* * stdump - recursive guts of dumpst */ static void stdump(struct subre *t, FILE *f, int nfapresent) /* is the original NFA still around? */ { char idbuf[50]; struct subre *t2; fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op); if (t->flags & LONGER) fprintf(f, " longest"); if (t->flags & SHORTER) fprintf(f, " shortest"); if (t->flags & MIXED) fprintf(f, " hasmixed"); if (t->flags & CAP) fprintf(f, " hascapture"); if (t->flags & BACKR) fprintf(f, " hasbackref"); if (t->flags & BRUSE) fprintf(f, " isreferenced"); if (!(t->flags & INUSE)) fprintf(f, " UNUSED"); if (t->latype != (char) -1) fprintf(f, " latype(%d)", t->latype); if (t->capno != 0) fprintf(f, " capture(%d)", t->capno); if (t->backno != 0) fprintf(f, " backref(%d)", t->backno); if (t->min != 1 || t->max != 1) { fprintf(f, " {%d,", t->min); if (t->max != DUPINF) fprintf(f, "%d", t->max); fprintf(f, "}"); } if (nfapresent) fprintf(f, " %ld-%ld", (long) t->begin->no, (long) t->end->no); if (t->child != NULL) fprintf(f, " C:%s", stid(t->child, idbuf, sizeof(idbuf))); /* printing second child isn't necessary, but it is often helpful */ if (t->child != NULL && t->child->sibling != NULL) fprintf(f, " C2:%s", stid(t->child->sibling, idbuf, sizeof(idbuf))); if (t->sibling != NULL) fprintf(f, " S:%s", stid(t->sibling, idbuf, sizeof(idbuf))); if (!NULLCNFA(t->cnfa)) { fprintf(f, "\n"); dumpcnfa(&t->cnfa, f); } fprintf(f, "\n"); for (t2 = t->child; t2 != NULL; t2 = t2->sibling) stdump(t2, f, nfapresent); } /* * stid - identify a subtree node for dumping */ static const char * /* points to buf or constant string */ stid(struct subre *t, char *buf, size_t bufsize) { /* big enough for hex int or decimal t->id? */ if (bufsize < sizeof(void *) * 2 + 3 || bufsize < sizeof(t->id) * 3 + 1) return "unable"; if (t->id != 0) sprintf(buf, "%d", t->id); else sprintf(buf, "%p", t); return buf; } #endif /* REG_DEBUG */ #include "regc_lex.c" #include "regc_color.c" #include "regc_nfa.c" #include "regc_cvec.c" #include "regc_pg_locale.c" #include "regc_locale.c"