/*------------------------------------------------------------------------- * * execParallel.c * Support routines for parallel execution. * * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * This file contains routines that are intended to support setting up, * using, and tearing down a ParallelContext from within the PostgreSQL * executor. The ParallelContext machinery will handle starting the * workers and ensuring that their state generally matches that of the * leader; see src/backend/access/transam/README.parallel for details. * However, we must save and restore relevant executor state, such as * any ParamListInfo associated with the query, buffer/WAL usage info, and * the actual plan to be passed down to the worker. * * IDENTIFICATION * src/backend/executor/execParallel.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "executor/execParallel.h" #include "executor/executor.h" #include "executor/nodeAgg.h" #include "executor/nodeAppend.h" #include "executor/nodeBitmapHeapscan.h" #include "executor/nodeCustom.h" #include "executor/nodeForeignscan.h" #include "executor/nodeHash.h" #include "executor/nodeHashjoin.h" #include "executor/nodeIncrementalSort.h" #include "executor/nodeIndexonlyscan.h" #include "executor/nodeIndexscan.h" #include "executor/nodeMemoize.h" #include "executor/nodeSeqscan.h" #include "executor/nodeSort.h" #include "executor/nodeSubplan.h" #include "executor/tqueue.h" #include "jit/jit.h" #include "nodes/nodeFuncs.h" #include "pgstat.h" #include "storage/spin.h" #include "tcop/tcopprot.h" #include "utils/datum.h" #include "utils/dsa.h" #include "utils/lsyscache.h" #include "utils/memutils.h" #include "utils/snapmgr.h" /* * Magic numbers for parallel executor communication. We use constants * greater than any 32-bit integer here so that values < 2^32 can be used * by individual parallel nodes to store their own state. */ #define PARALLEL_KEY_EXECUTOR_FIXED UINT64CONST(0xE000000000000001) #define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000002) #define PARALLEL_KEY_PARAMLISTINFO UINT64CONST(0xE000000000000003) #define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000004) #define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000005) #define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000006) #define PARALLEL_KEY_DSA UINT64CONST(0xE000000000000007) #define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xE000000000000008) #define PARALLEL_KEY_JIT_INSTRUMENTATION UINT64CONST(0xE000000000000009) #define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xE00000000000000A) #define PARALLEL_TUPLE_QUEUE_SIZE 65536 /* * Fixed-size random stuff that we need to pass to parallel workers. */ typedef struct FixedParallelExecutorState { int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */ dsa_pointer param_exec; int eflags; int jit_flags; } FixedParallelExecutorState; /* * DSM structure for accumulating per-PlanState instrumentation. * * instrument_options: Same meaning here as in instrument.c. * * instrument_offset: Offset, relative to the start of this structure, * of the first Instrumentation object. This will depend on the length of * the plan_node_id array. * * num_workers: Number of workers. * * num_plan_nodes: Number of plan nodes. * * plan_node_id: Array of plan nodes for which we are gathering instrumentation * from parallel workers. The length of this array is given by num_plan_nodes. */ struct SharedExecutorInstrumentation { int instrument_options; int instrument_offset; int num_workers; int num_plan_nodes; int plan_node_id[FLEXIBLE_ARRAY_MEMBER]; /* array of num_plan_nodes * num_workers Instrumentation objects follows */ }; #define GetInstrumentationArray(sei) \ (AssertVariableIsOfTypeMacro(sei, SharedExecutorInstrumentation *), \ (Instrumentation *) (((char *) sei) + sei->instrument_offset)) /* Context object for ExecParallelEstimate. */ typedef struct ExecParallelEstimateContext { ParallelContext *pcxt; int nnodes; } ExecParallelEstimateContext; /* Context object for ExecParallelInitializeDSM. */ typedef struct ExecParallelInitializeDSMContext { ParallelContext *pcxt; SharedExecutorInstrumentation *instrumentation; int nnodes; } ExecParallelInitializeDSMContext; /* Helper functions that run in the parallel leader. */ static char *ExecSerializePlan(Plan *plan, EState *estate); static bool ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e); static bool ExecParallelInitializeDSM(PlanState *planstate, ExecParallelInitializeDSMContext *d); static shm_mq_handle **ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize); static bool ExecParallelReInitializeDSM(PlanState *planstate, ParallelContext *pcxt); static bool ExecParallelRetrieveInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation); /* Helper function that runs in the parallel worker. */ static DestReceiver *ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc); /* * Create a serialized representation of the plan to be sent to each worker. */ static char * ExecSerializePlan(Plan *plan, EState *estate) { PlannedStmt *pstmt; ListCell *lc; /* We can't scribble on the original plan, so make a copy. */ plan = copyObject(plan); /* * The worker will start its own copy of the executor, and that copy will * insert a junk filter if the toplevel node has any resjunk entries. We * don't want that to happen, because while resjunk columns shouldn't be * sent back to the user, here the tuples are coming back to another * backend which may very well need them. So mutate the target list * accordingly. This is sort of a hack; there might be better ways to do * this... */ foreach(lc, plan->targetlist) { TargetEntry *tle = lfirst_node(TargetEntry, lc); tle->resjunk = false; } /* * Create a dummy PlannedStmt. Most of the fields don't need to be valid * for our purposes, but the worker will need at least a minimal * PlannedStmt to start the executor. */ pstmt = makeNode(PlannedStmt); pstmt->commandType = CMD_SELECT; pstmt->queryId = pgstat_get_my_query_id(); pstmt->hasReturning = false; pstmt->hasModifyingCTE = false; pstmt->canSetTag = true; pstmt->transientPlan = false; pstmt->dependsOnRole = false; pstmt->parallelModeNeeded = false; pstmt->planTree = plan; pstmt->rtable = estate->es_range_table; pstmt->permInfos = estate->es_rteperminfos; pstmt->resultRelations = NIL; pstmt->appendRelations = NIL; /* * Transfer only parallel-safe subplans, leaving a NULL "hole" in the list * for unsafe ones (so that the list indexes of the safe ones are * preserved). This positively ensures that the worker won't try to run, * or even do ExecInitNode on, an unsafe subplan. That's important to * protect, eg, non-parallel-aware FDWs from getting into trouble. */ pstmt->subplans = NIL; foreach(lc, estate->es_plannedstmt->subplans) { Plan *subplan = (Plan *) lfirst(lc); if (subplan && !subplan->parallel_safe) subplan = NULL; pstmt->subplans = lappend(pstmt->subplans, subplan); } pstmt->rewindPlanIDs = NULL; pstmt->rowMarks = NIL; pstmt->relationOids = NIL; pstmt->invalItems = NIL; /* workers can't replan anyway... */ pstmt->paramExecTypes = estate->es_plannedstmt->paramExecTypes; pstmt->utilityStmt = NULL; pstmt->stmt_location = -1; pstmt->stmt_len = -1; /* Return serialized copy of our dummy PlannedStmt. */ return nodeToString(pstmt); } /* * Parallel-aware plan nodes (and occasionally others) may need some state * which is shared across all parallel workers. Before we size the DSM, give * them a chance to call shm_toc_estimate_chunk or shm_toc_estimate_keys on * &pcxt->estimator. * * While we're at it, count the number of PlanState nodes in the tree, so * we know how many Instrumentation structures we need. */ static bool ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e) { if (planstate == NULL) return false; /* Count this node. */ e->nnodes++; switch (nodeTag(planstate)) { case T_SeqScanState: if (planstate->plan->parallel_aware) ExecSeqScanEstimate((SeqScanState *) planstate, e->pcxt); break; case T_IndexScanState: if (planstate->plan->parallel_aware) ExecIndexScanEstimate((IndexScanState *) planstate, e->pcxt); break; case T_IndexOnlyScanState: if (planstate->plan->parallel_aware) ExecIndexOnlyScanEstimate((IndexOnlyScanState *) planstate, e->pcxt); break; case T_ForeignScanState: if (planstate->plan->parallel_aware) ExecForeignScanEstimate((ForeignScanState *) planstate, e->pcxt); break; case T_AppendState: if (planstate->plan->parallel_aware) ExecAppendEstimate((AppendState *) planstate, e->pcxt); break; case T_CustomScanState: if (planstate->plan->parallel_aware) ExecCustomScanEstimate((CustomScanState *) planstate, e->pcxt); break; case T_BitmapHeapScanState: if (planstate->plan->parallel_aware) ExecBitmapHeapEstimate((BitmapHeapScanState *) planstate, e->pcxt); break; case T_HashJoinState: if (planstate->plan->parallel_aware) ExecHashJoinEstimate((HashJoinState *) planstate, e->pcxt); break; case T_HashState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecHashEstimate((HashState *) planstate, e->pcxt); break; case T_SortState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecSortEstimate((SortState *) planstate, e->pcxt); break; case T_IncrementalSortState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecIncrementalSortEstimate((IncrementalSortState *) planstate, e->pcxt); break; case T_AggState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecAggEstimate((AggState *) planstate, e->pcxt); break; case T_MemoizeState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecMemoizeEstimate((MemoizeState *) planstate, e->pcxt); break; default: break; } return planstate_tree_walker(planstate, ExecParallelEstimate, e); } /* * Estimate the amount of space required to serialize the indicated parameters. */ static Size EstimateParamExecSpace(EState *estate, Bitmapset *params) { int paramid; Size sz = sizeof(int); paramid = -1; while ((paramid = bms_next_member(params, paramid)) >= 0) { Oid typeOid; int16 typLen; bool typByVal; ParamExecData *prm; prm = &(estate->es_param_exec_vals[paramid]); typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes, paramid); sz = add_size(sz, sizeof(int)); /* space for paramid */ /* space for datum/isnull */ if (OidIsValid(typeOid)) get_typlenbyval(typeOid, &typLen, &typByVal); else { /* If no type OID, assume by-value, like copyParamList does. */ typLen = sizeof(Datum); typByVal = true; } sz = add_size(sz, datumEstimateSpace(prm->value, prm->isnull, typByVal, typLen)); } return sz; } /* * Serialize specified PARAM_EXEC parameters. * * We write the number of parameters first, as a 4-byte integer, and then * write details for each parameter in turn. The details for each parameter * consist of a 4-byte paramid (location of param in execution time internal * parameter array) and then the datum as serialized by datumSerialize(). */ static dsa_pointer SerializeParamExecParams(EState *estate, Bitmapset *params, dsa_area *area) { Size size; int nparams; int paramid; ParamExecData *prm; dsa_pointer handle; char *start_address; /* Allocate enough space for the current parameter values. */ size = EstimateParamExecSpace(estate, params); handle = dsa_allocate(area, size); start_address = dsa_get_address(area, handle); /* First write the number of parameters as a 4-byte integer. */ nparams = bms_num_members(params); memcpy(start_address, &nparams, sizeof(int)); start_address += sizeof(int); /* Write details for each parameter in turn. */ paramid = -1; while ((paramid = bms_next_member(params, paramid)) >= 0) { Oid typeOid; int16 typLen; bool typByVal; prm = &(estate->es_param_exec_vals[paramid]); typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes, paramid); /* Write paramid. */ memcpy(start_address, ¶mid, sizeof(int)); start_address += sizeof(int); /* Write datum/isnull */ if (OidIsValid(typeOid)) get_typlenbyval(typeOid, &typLen, &typByVal); else { /* If no type OID, assume by-value, like copyParamList does. */ typLen = sizeof(Datum); typByVal = true; } datumSerialize(prm->value, prm->isnull, typByVal, typLen, &start_address); } return handle; } /* * Restore specified PARAM_EXEC parameters. */ static void RestoreParamExecParams(char *start_address, EState *estate) { int nparams; int i; int paramid; memcpy(&nparams, start_address, sizeof(int)); start_address += sizeof(int); for (i = 0; i < nparams; i++) { ParamExecData *prm; /* Read paramid */ memcpy(¶mid, start_address, sizeof(int)); start_address += sizeof(int); prm = &(estate->es_param_exec_vals[paramid]); /* Read datum/isnull. */ prm->value = datumRestore(&start_address, &prm->isnull); prm->execPlan = NULL; } } /* * Initialize the dynamic shared memory segment that will be used to control * parallel execution. */ static bool ExecParallelInitializeDSM(PlanState *planstate, ExecParallelInitializeDSMContext *d) { if (planstate == NULL) return false; /* If instrumentation is enabled, initialize slot for this node. */ if (d->instrumentation != NULL) d->instrumentation->plan_node_id[d->nnodes] = planstate->plan->plan_node_id; /* Count this node. */ d->nnodes++; /* * Call initializers for DSM-using plan nodes. * * Most plan nodes won't do anything here, but plan nodes that allocated * DSM may need to initialize shared state in the DSM before parallel * workers are launched. They can allocate the space they previously * estimated using shm_toc_allocate, and add the keys they previously * estimated using shm_toc_insert, in each case targeting pcxt->toc. */ switch (nodeTag(planstate)) { case T_SeqScanState: if (planstate->plan->parallel_aware) ExecSeqScanInitializeDSM((SeqScanState *) planstate, d->pcxt); break; case T_IndexScanState: if (planstate->plan->parallel_aware) ExecIndexScanInitializeDSM((IndexScanState *) planstate, d->pcxt); break; case T_IndexOnlyScanState: if (planstate->plan->parallel_aware) ExecIndexOnlyScanInitializeDSM((IndexOnlyScanState *) planstate, d->pcxt); break; case T_ForeignScanState: if (planstate->plan->parallel_aware) ExecForeignScanInitializeDSM((ForeignScanState *) planstate, d->pcxt); break; case T_AppendState: if (planstate->plan->parallel_aware) ExecAppendInitializeDSM((AppendState *) planstate, d->pcxt); break; case T_CustomScanState: if (planstate->plan->parallel_aware) ExecCustomScanInitializeDSM((CustomScanState *) planstate, d->pcxt); break; case T_BitmapHeapScanState: if (planstate->plan->parallel_aware) ExecBitmapHeapInitializeDSM((BitmapHeapScanState *) planstate, d->pcxt); break; case T_HashJoinState: if (planstate->plan->parallel_aware) ExecHashJoinInitializeDSM((HashJoinState *) planstate, d->pcxt); break; case T_HashState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecHashInitializeDSM((HashState *) planstate, d->pcxt); break; case T_SortState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecSortInitializeDSM((SortState *) planstate, d->pcxt); break; case T_IncrementalSortState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecIncrementalSortInitializeDSM((IncrementalSortState *) planstate, d->pcxt); break; case T_AggState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecAggInitializeDSM((AggState *) planstate, d->pcxt); break; case T_MemoizeState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecMemoizeInitializeDSM((MemoizeState *) planstate, d->pcxt); break; default: break; } return planstate_tree_walker(planstate, ExecParallelInitializeDSM, d); } /* * It sets up the response queues for backend workers to return tuples * to the main backend and start the workers. */ static shm_mq_handle ** ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize) { shm_mq_handle **responseq; char *tqueuespace; int i; /* Skip this if no workers. */ if (pcxt->nworkers == 0) return NULL; /* Allocate memory for shared memory queue handles. */ responseq = (shm_mq_handle **) palloc(pcxt->nworkers * sizeof(shm_mq_handle *)); /* * If not reinitializing, allocate space from the DSM for the queues; * otherwise, find the already allocated space. */ if (!reinitialize) tqueuespace = shm_toc_allocate(pcxt->toc, mul_size(PARALLEL_TUPLE_QUEUE_SIZE, pcxt->nworkers)); else tqueuespace = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, false); /* Create the queues, and become the receiver for each. */ for (i = 0; i < pcxt->nworkers; ++i) { shm_mq *mq; mq = shm_mq_create(tqueuespace + ((Size) i) * PARALLEL_TUPLE_QUEUE_SIZE, (Size) PARALLEL_TUPLE_QUEUE_SIZE); shm_mq_set_receiver(mq, MyProc); responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL); } /* Add array of queues to shm_toc, so others can find it. */ if (!reinitialize) shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace); /* Return array of handles. */ return responseq; } /* * Sets up the required infrastructure for backend workers to perform * execution and return results to the main backend. */ ParallelExecutorInfo * ExecInitParallelPlan(PlanState *planstate, EState *estate, Bitmapset *sendParams, int nworkers, int64 tuples_needed) { ParallelExecutorInfo *pei; ParallelContext *pcxt; ExecParallelEstimateContext e; ExecParallelInitializeDSMContext d; FixedParallelExecutorState *fpes; char *pstmt_data; char *pstmt_space; char *paramlistinfo_space; BufferUsage *bufusage_space; WalUsage *walusage_space; SharedExecutorInstrumentation *instrumentation = NULL; SharedJitInstrumentation *jit_instrumentation = NULL; int pstmt_len; int paramlistinfo_len; int instrumentation_len = 0; int jit_instrumentation_len = 0; int instrument_offset = 0; Size dsa_minsize = dsa_minimum_size(); char *query_string; int query_len; /* * Force any initplan outputs that we're going to pass to workers to be * evaluated, if they weren't already. * * For simplicity, we use the EState's per-output-tuple ExprContext here. * That risks intra-query memory leakage, since we might pass through here * many times before that ExprContext gets reset; but ExecSetParamPlan * doesn't normally leak any memory in the context (see its comments), so * it doesn't seem worth complicating this function's API to pass it a * shorter-lived ExprContext. This might need to change someday. */ ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate)); /* Allocate object for return value. */ pei = palloc0(sizeof(ParallelExecutorInfo)); pei->finished = false; pei->planstate = planstate; /* Fix up and serialize plan to be sent to workers. */ pstmt_data = ExecSerializePlan(planstate->plan, estate); /* Create a parallel context. */ pcxt = CreateParallelContext("postgres", "ParallelQueryMain", nworkers); pei->pcxt = pcxt; /* * Before telling the parallel context to create a dynamic shared memory * segment, we need to figure out how big it should be. Estimate space * for the various things we need to store. */ /* Estimate space for fixed-size state. */ shm_toc_estimate_chunk(&pcxt->estimator, sizeof(FixedParallelExecutorState)); shm_toc_estimate_keys(&pcxt->estimator, 1); /* Estimate space for query text. */ query_len = strlen(estate->es_sourceText); shm_toc_estimate_chunk(&pcxt->estimator, query_len + 1); shm_toc_estimate_keys(&pcxt->estimator, 1); /* Estimate space for serialized PlannedStmt. */ pstmt_len = strlen(pstmt_data) + 1; shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len); shm_toc_estimate_keys(&pcxt->estimator, 1); /* Estimate space for serialized ParamListInfo. */ paramlistinfo_len = EstimateParamListSpace(estate->es_param_list_info); shm_toc_estimate_chunk(&pcxt->estimator, paramlistinfo_len); shm_toc_estimate_keys(&pcxt->estimator, 1); /* * Estimate space for BufferUsage. * * If EXPLAIN is not in use and there are no extensions loaded that care, * we could skip this. But we have no way of knowing whether anyone's * looking at pgBufferUsage, so do it unconditionally. */ shm_toc_estimate_chunk(&pcxt->estimator, mul_size(sizeof(BufferUsage), pcxt->nworkers)); shm_toc_estimate_keys(&pcxt->estimator, 1); /* * Same thing for WalUsage. */ shm_toc_estimate_chunk(&pcxt->estimator, mul_size(sizeof(WalUsage), pcxt->nworkers)); shm_toc_estimate_keys(&pcxt->estimator, 1); /* Estimate space for tuple queues. */ shm_toc_estimate_chunk(&pcxt->estimator, mul_size(PARALLEL_TUPLE_QUEUE_SIZE, pcxt->nworkers)); shm_toc_estimate_keys(&pcxt->estimator, 1); /* * Give parallel-aware nodes a chance to add to the estimates, and get a * count of how many PlanState nodes there are. */ e.pcxt = pcxt; e.nnodes = 0; ExecParallelEstimate(planstate, &e); /* Estimate space for instrumentation, if required. */ if (estate->es_instrument) { instrumentation_len = offsetof(SharedExecutorInstrumentation, plan_node_id) + sizeof(int) * e.nnodes; instrumentation_len = MAXALIGN(instrumentation_len); instrument_offset = instrumentation_len; instrumentation_len += mul_size(sizeof(Instrumentation), mul_size(e.nnodes, nworkers)); shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len); shm_toc_estimate_keys(&pcxt->estimator, 1); /* Estimate space for JIT instrumentation, if required. */ if (estate->es_jit_flags != PGJIT_NONE) { jit_instrumentation_len = offsetof(SharedJitInstrumentation, jit_instr) + sizeof(JitInstrumentation) * nworkers; shm_toc_estimate_chunk(&pcxt->estimator, jit_instrumentation_len); shm_toc_estimate_keys(&pcxt->estimator, 1); } } /* Estimate space for DSA area. */ shm_toc_estimate_chunk(&pcxt->estimator, dsa_minsize); shm_toc_estimate_keys(&pcxt->estimator, 1); /* Everyone's had a chance to ask for space, so now create the DSM. */ InitializeParallelDSM(pcxt); /* * OK, now we have a dynamic shared memory segment, and it should be big * enough to store all of the data we estimated we would want to put into * it, plus whatever general stuff (not specifically executor-related) the * ParallelContext itself needs to store there. None of the space we * asked for has been allocated or initialized yet, though, so do that. */ /* Store fixed-size state. */ fpes = shm_toc_allocate(pcxt->toc, sizeof(FixedParallelExecutorState)); fpes->tuples_needed = tuples_needed; fpes->param_exec = InvalidDsaPointer; fpes->eflags = estate->es_top_eflags; fpes->jit_flags = estate->es_jit_flags; shm_toc_insert(pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, fpes); /* Store query string */ query_string = shm_toc_allocate(pcxt->toc, query_len + 1); memcpy(query_string, estate->es_sourceText, query_len + 1); shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, query_string); /* Store serialized PlannedStmt. */ pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len); memcpy(pstmt_space, pstmt_data, pstmt_len); shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space); /* Store serialized ParamListInfo. */ paramlistinfo_space = shm_toc_allocate(pcxt->toc, paramlistinfo_len); shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMLISTINFO, paramlistinfo_space); SerializeParamList(estate->es_param_list_info, ¶mlistinfo_space); /* Allocate space for each worker's BufferUsage; no need to initialize. */ bufusage_space = shm_toc_allocate(pcxt->toc, mul_size(sizeof(BufferUsage), pcxt->nworkers)); shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space); pei->buffer_usage = bufusage_space; /* Same for WalUsage. */ walusage_space = shm_toc_allocate(pcxt->toc, mul_size(sizeof(WalUsage), pcxt->nworkers)); shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage_space); pei->wal_usage = walusage_space; /* Set up the tuple queues that the workers will write into. */ pei->tqueue = ExecParallelSetupTupleQueues(pcxt, false); /* We don't need the TupleQueueReaders yet, though. */ pei->reader = NULL; /* * If instrumentation options were supplied, allocate space for the data. * It only gets partially initialized here; the rest happens during * ExecParallelInitializeDSM. */ if (estate->es_instrument) { Instrumentation *instrument; int i; instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len); instrumentation->instrument_options = estate->es_instrument; instrumentation->instrument_offset = instrument_offset; instrumentation->num_workers = nworkers; instrumentation->num_plan_nodes = e.nnodes; instrument = GetInstrumentationArray(instrumentation); for (i = 0; i < nworkers * e.nnodes; ++i) InstrInit(&instrument[i], estate->es_instrument); shm_toc_insert(pcxt->toc, PARALLEL_KEY_INSTRUMENTATION, instrumentation); pei->instrumentation = instrumentation; if (estate->es_jit_flags != PGJIT_NONE) { jit_instrumentation = shm_toc_allocate(pcxt->toc, jit_instrumentation_len); jit_instrumentation->num_workers = nworkers; memset(jit_instrumentation->jit_instr, 0, sizeof(JitInstrumentation) * nworkers); shm_toc_insert(pcxt->toc, PARALLEL_KEY_JIT_INSTRUMENTATION, jit_instrumentation); pei->jit_instrumentation = jit_instrumentation; } } /* * Create a DSA area that can be used by the leader and all workers. * (However, if we failed to create a DSM and are using private memory * instead, then skip this.) */ if (pcxt->seg != NULL) { char *area_space; area_space = shm_toc_allocate(pcxt->toc, dsa_minsize); shm_toc_insert(pcxt->toc, PARALLEL_KEY_DSA, area_space); pei->area = dsa_create_in_place(area_space, dsa_minsize, LWTRANCHE_PARALLEL_QUERY_DSA, pcxt->seg); /* * Serialize parameters, if any, using DSA storage. We don't dare use * the main parallel query DSM for this because we might relaunch * workers after the values have changed (and thus the amount of * storage required has changed). */ if (!bms_is_empty(sendParams)) { pei->param_exec = SerializeParamExecParams(estate, sendParams, pei->area); fpes->param_exec = pei->param_exec; } } /* * Give parallel-aware nodes a chance to initialize their shared data. * This also initializes the elements of instrumentation->ps_instrument, * if it exists. */ d.pcxt = pcxt; d.instrumentation = instrumentation; d.nnodes = 0; /* Install our DSA area while initializing the plan. */ estate->es_query_dsa = pei->area; ExecParallelInitializeDSM(planstate, &d); estate->es_query_dsa = NULL; /* * Make sure that the world hasn't shifted under our feet. This could * probably just be an Assert(), but let's be conservative for now. */ if (e.nnodes != d.nnodes) elog(ERROR, "inconsistent count of PlanState nodes"); /* OK, we're ready to rock and roll. */ return pei; } /* * Set up tuple queue readers to read the results of a parallel subplan. * * This is separate from ExecInitParallelPlan() because we can launch the * worker processes and let them start doing something before we do this. */ void ExecParallelCreateReaders(ParallelExecutorInfo *pei) { int nworkers = pei->pcxt->nworkers_launched; int i; Assert(pei->reader == NULL); if (nworkers > 0) { pei->reader = (TupleQueueReader **) palloc(nworkers * sizeof(TupleQueueReader *)); for (i = 0; i < nworkers; i++) { shm_mq_set_handle(pei->tqueue[i], pei->pcxt->worker[i].bgwhandle); pei->reader[i] = CreateTupleQueueReader(pei->tqueue[i]); } } } /* * Re-initialize the parallel executor shared memory state before launching * a fresh batch of workers. */ void ExecParallelReinitialize(PlanState *planstate, ParallelExecutorInfo *pei, Bitmapset *sendParams) { EState *estate = planstate->state; FixedParallelExecutorState *fpes; /* Old workers must already be shut down */ Assert(pei->finished); /* * Force any initplan outputs that we're going to pass to workers to be * evaluated, if they weren't already (see comments in * ExecInitParallelPlan). */ ExecSetParamPlanMulti(sendParams, GetPerTupleExprContext(estate)); ReinitializeParallelDSM(pei->pcxt); pei->tqueue = ExecParallelSetupTupleQueues(pei->pcxt, true); pei->reader = NULL; pei->finished = false; fpes = shm_toc_lookup(pei->pcxt->toc, PARALLEL_KEY_EXECUTOR_FIXED, false); /* Free any serialized parameters from the last round. */ if (DsaPointerIsValid(fpes->param_exec)) { dsa_free(pei->area, fpes->param_exec); fpes->param_exec = InvalidDsaPointer; } /* Serialize current parameter values if required. */ if (!bms_is_empty(sendParams)) { pei->param_exec = SerializeParamExecParams(estate, sendParams, pei->area); fpes->param_exec = pei->param_exec; } /* Traverse plan tree and let each child node reset associated state. */ estate->es_query_dsa = pei->area; ExecParallelReInitializeDSM(planstate, pei->pcxt); estate->es_query_dsa = NULL; } /* * Traverse plan tree to reinitialize per-node dynamic shared memory state */ static bool ExecParallelReInitializeDSM(PlanState *planstate, ParallelContext *pcxt) { if (planstate == NULL) return false; /* * Call reinitializers for DSM-using plan nodes. */ switch (nodeTag(planstate)) { case T_SeqScanState: if (planstate->plan->parallel_aware) ExecSeqScanReInitializeDSM((SeqScanState *) planstate, pcxt); break; case T_IndexScanState: if (planstate->plan->parallel_aware) ExecIndexScanReInitializeDSM((IndexScanState *) planstate, pcxt); break; case T_IndexOnlyScanState: if (planstate->plan->parallel_aware) ExecIndexOnlyScanReInitializeDSM((IndexOnlyScanState *) planstate, pcxt); break; case T_ForeignScanState: if (planstate->plan->parallel_aware) ExecForeignScanReInitializeDSM((ForeignScanState *) planstate, pcxt); break; case T_AppendState: if (planstate->plan->parallel_aware) ExecAppendReInitializeDSM((AppendState *) planstate, pcxt); break; case T_CustomScanState: if (planstate->plan->parallel_aware) ExecCustomScanReInitializeDSM((CustomScanState *) planstate, pcxt); break; case T_BitmapHeapScanState: if (planstate->plan->parallel_aware) ExecBitmapHeapReInitializeDSM((BitmapHeapScanState *) planstate, pcxt); break; case T_HashJoinState: if (planstate->plan->parallel_aware) ExecHashJoinReInitializeDSM((HashJoinState *) planstate, pcxt); break; case T_HashState: case T_SortState: case T_IncrementalSortState: case T_MemoizeState: /* these nodes have DSM state, but no reinitialization is required */ break; default: break; } return planstate_tree_walker(planstate, ExecParallelReInitializeDSM, pcxt); } /* * Copy instrumentation information about this node and its descendants from * dynamic shared memory. */ static bool ExecParallelRetrieveInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation) { Instrumentation *instrument; int i; int n; int ibytes; int plan_node_id = planstate->plan->plan_node_id; MemoryContext oldcontext; /* Find the instrumentation for this node. */ for (i = 0; i < instrumentation->num_plan_nodes; ++i) if (instrumentation->plan_node_id[i] == plan_node_id) break; if (i >= instrumentation->num_plan_nodes) elog(ERROR, "plan node %d not found", plan_node_id); /* Accumulate the statistics from all workers. */ instrument = GetInstrumentationArray(instrumentation); instrument += i * instrumentation->num_workers; for (n = 0; n < instrumentation->num_workers; ++n) InstrAggNode(planstate->instrument, &instrument[n]); /* * Also store the per-worker detail. * * Worker instrumentation should be allocated in the same context as the * regular instrumentation information, which is the per-query context. * Switch into per-query memory context. */ oldcontext = MemoryContextSwitchTo(planstate->state->es_query_cxt); ibytes = mul_size(instrumentation->num_workers, sizeof(Instrumentation)); planstate->worker_instrument = palloc(ibytes + offsetof(WorkerInstrumentation, instrument)); MemoryContextSwitchTo(oldcontext); planstate->worker_instrument->num_workers = instrumentation->num_workers; memcpy(&planstate->worker_instrument->instrument, instrument, ibytes); /* Perform any node-type-specific work that needs to be done. */ switch (nodeTag(planstate)) { case T_SortState: ExecSortRetrieveInstrumentation((SortState *) planstate); break; case T_IncrementalSortState: ExecIncrementalSortRetrieveInstrumentation((IncrementalSortState *) planstate); break; case T_HashState: ExecHashRetrieveInstrumentation((HashState *) planstate); break; case T_AggState: ExecAggRetrieveInstrumentation((AggState *) planstate); break; case T_MemoizeState: ExecMemoizeRetrieveInstrumentation((MemoizeState *) planstate); break; default: break; } return planstate_tree_walker(planstate, ExecParallelRetrieveInstrumentation, instrumentation); } /* * Add up the workers' JIT instrumentation from dynamic shared memory. */ static void ExecParallelRetrieveJitInstrumentation(PlanState *planstate, SharedJitInstrumentation *shared_jit) { JitInstrumentation *combined; int ibytes; int n; /* * Accumulate worker JIT instrumentation into the combined JIT * instrumentation, allocating it if required. */ if (!planstate->state->es_jit_worker_instr) planstate->state->es_jit_worker_instr = MemoryContextAllocZero(planstate->state->es_query_cxt, sizeof(JitInstrumentation)); combined = planstate->state->es_jit_worker_instr; /* Accumulate all the workers' instrumentations. */ for (n = 0; n < shared_jit->num_workers; ++n) InstrJitAgg(combined, &shared_jit->jit_instr[n]); /* * Store the per-worker detail. * * Similar to ExecParallelRetrieveInstrumentation(), allocate the * instrumentation in per-query context. */ ibytes = offsetof(SharedJitInstrumentation, jit_instr) + mul_size(shared_jit->num_workers, sizeof(JitInstrumentation)); planstate->worker_jit_instrument = MemoryContextAlloc(planstate->state->es_query_cxt, ibytes); memcpy(planstate->worker_jit_instrument, shared_jit, ibytes); } /* * Finish parallel execution. We wait for parallel workers to finish, and * accumulate their buffer/WAL usage. */ void ExecParallelFinish(ParallelExecutorInfo *pei) { int nworkers = pei->pcxt->nworkers_launched; int i; /* Make this be a no-op if called twice in a row. */ if (pei->finished) return; /* * Detach from tuple queues ASAP, so that any still-active workers will * notice that no further results are wanted. */ if (pei->tqueue != NULL) { for (i = 0; i < nworkers; i++) shm_mq_detach(pei->tqueue[i]); pfree(pei->tqueue); pei->tqueue = NULL; } /* * While we're waiting for the workers to finish, let's get rid of the * tuple queue readers. (Any other local cleanup could be done here too.) */ if (pei->reader != NULL) { for (i = 0; i < nworkers; i++) DestroyTupleQueueReader(pei->reader[i]); pfree(pei->reader); pei->reader = NULL; } /* Now wait for the workers to finish. */ WaitForParallelWorkersToFinish(pei->pcxt); /* * Next, accumulate buffer/WAL usage. (This must wait for the workers to * finish, or we might get incomplete data.) */ for (i = 0; i < nworkers; i++) InstrAccumParallelQuery(&pei->buffer_usage[i], &pei->wal_usage[i]); pei->finished = true; } /* * Accumulate instrumentation, and then clean up whatever ParallelExecutorInfo * resources still exist after ExecParallelFinish. We separate these * routines because someone might want to examine the contents of the DSM * after ExecParallelFinish and before calling this routine. */ void ExecParallelCleanup(ParallelExecutorInfo *pei) { /* Accumulate instrumentation, if any. */ if (pei->instrumentation) ExecParallelRetrieveInstrumentation(pei->planstate, pei->instrumentation); /* Accumulate JIT instrumentation, if any. */ if (pei->jit_instrumentation) ExecParallelRetrieveJitInstrumentation(pei->planstate, pei->jit_instrumentation); /* Free any serialized parameters. */ if (DsaPointerIsValid(pei->param_exec)) { dsa_free(pei->area, pei->param_exec); pei->param_exec = InvalidDsaPointer; } if (pei->area != NULL) { dsa_detach(pei->area); pei->area = NULL; } if (pei->pcxt != NULL) { DestroyParallelContext(pei->pcxt); pei->pcxt = NULL; } pfree(pei); } /* * Create a DestReceiver to write tuples we produce to the shm_mq designated * for that purpose. */ static DestReceiver * ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc) { char *mqspace; shm_mq *mq; mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE, false); mqspace += ParallelWorkerNumber * PARALLEL_TUPLE_QUEUE_SIZE; mq = (shm_mq *) mqspace; shm_mq_set_sender(mq, MyProc); return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL)); } /* * Create a QueryDesc for the PlannedStmt we are to execute, and return it. */ static QueryDesc * ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver, int instrument_options) { char *pstmtspace; char *paramspace; PlannedStmt *pstmt; ParamListInfo paramLI; char *queryString; /* Get the query string from shared memory */ queryString = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, false); /* Reconstruct leader-supplied PlannedStmt. */ pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT, false); pstmt = (PlannedStmt *) stringToNode(pstmtspace); /* Reconstruct ParamListInfo. */ paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMLISTINFO, false); paramLI = RestoreParamList(¶mspace); /* Create a QueryDesc for the query. */ return CreateQueryDesc(pstmt, queryString, GetActiveSnapshot(), InvalidSnapshot, receiver, paramLI, NULL, instrument_options); } /* * Copy instrumentation information from this node and its descendants into * dynamic shared memory, so that the parallel leader can retrieve it. */ static bool ExecParallelReportInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation) { int i; int plan_node_id = planstate->plan->plan_node_id; Instrumentation *instrument; InstrEndLoop(planstate->instrument); /* * If we shuffled the plan_node_id values in ps_instrument into sorted * order, we could use binary search here. This might matter someday if * we're pushing down sufficiently large plan trees. For now, do it the * slow, dumb way. */ for (i = 0; i < instrumentation->num_plan_nodes; ++i) if (instrumentation->plan_node_id[i] == plan_node_id) break; if (i >= instrumentation->num_plan_nodes) elog(ERROR, "plan node %d not found", plan_node_id); /* * Add our statistics to the per-node, per-worker totals. It's possible * that this could happen more than once if we relaunched workers. */ instrument = GetInstrumentationArray(instrumentation); instrument += i * instrumentation->num_workers; Assert(IsParallelWorker()); Assert(ParallelWorkerNumber < instrumentation->num_workers); InstrAggNode(&instrument[ParallelWorkerNumber], planstate->instrument); return planstate_tree_walker(planstate, ExecParallelReportInstrumentation, instrumentation); } /* * Initialize the PlanState and its descendants with the information * retrieved from shared memory. This has to be done once the PlanState * is allocated and initialized by executor; that is, after ExecutorStart(). */ static bool ExecParallelInitializeWorker(PlanState *planstate, ParallelWorkerContext *pwcxt) { if (planstate == NULL) return false; switch (nodeTag(planstate)) { case T_SeqScanState: if (planstate->plan->parallel_aware) ExecSeqScanInitializeWorker((SeqScanState *) planstate, pwcxt); break; case T_IndexScanState: if (planstate->plan->parallel_aware) ExecIndexScanInitializeWorker((IndexScanState *) planstate, pwcxt); break; case T_IndexOnlyScanState: if (planstate->plan->parallel_aware) ExecIndexOnlyScanInitializeWorker((IndexOnlyScanState *) planstate, pwcxt); break; case T_ForeignScanState: if (planstate->plan->parallel_aware) ExecForeignScanInitializeWorker((ForeignScanState *) planstate, pwcxt); break; case T_AppendState: if (planstate->plan->parallel_aware) ExecAppendInitializeWorker((AppendState *) planstate, pwcxt); break; case T_CustomScanState: if (planstate->plan->parallel_aware) ExecCustomScanInitializeWorker((CustomScanState *) planstate, pwcxt); break; case T_BitmapHeapScanState: if (planstate->plan->parallel_aware) ExecBitmapHeapInitializeWorker((BitmapHeapScanState *) planstate, pwcxt); break; case T_HashJoinState: if (planstate->plan->parallel_aware) ExecHashJoinInitializeWorker((HashJoinState *) planstate, pwcxt); break; case T_HashState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecHashInitializeWorker((HashState *) planstate, pwcxt); break; case T_SortState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecSortInitializeWorker((SortState *) planstate, pwcxt); break; case T_IncrementalSortState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecIncrementalSortInitializeWorker((IncrementalSortState *) planstate, pwcxt); break; case T_AggState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecAggInitializeWorker((AggState *) planstate, pwcxt); break; case T_MemoizeState: /* even when not parallel-aware, for EXPLAIN ANALYZE */ ExecMemoizeInitializeWorker((MemoizeState *) planstate, pwcxt); break; default: break; } return planstate_tree_walker(planstate, ExecParallelInitializeWorker, pwcxt); } /* * Main entrypoint for parallel query worker processes. * * We reach this function from ParallelWorkerMain, so the setup necessary to * create a sensible parallel environment has already been done; * ParallelWorkerMain worries about stuff like the transaction state, combo * CID mappings, and GUC values, so we don't need to deal with any of that * here. * * Our job is to deal with concerns specific to the executor. The parallel * group leader will have stored a serialized PlannedStmt, and it's our job * to execute that plan and write the resulting tuples to the appropriate * tuple queue. Various bits of supporting information that we need in order * to do this are also stored in the dsm_segment and can be accessed through * the shm_toc. */ void ParallelQueryMain(dsm_segment *seg, shm_toc *toc) { FixedParallelExecutorState *fpes; BufferUsage *buffer_usage; WalUsage *wal_usage; DestReceiver *receiver; QueryDesc *queryDesc; SharedExecutorInstrumentation *instrumentation; SharedJitInstrumentation *jit_instrumentation; int instrument_options = 0; void *area_space; dsa_area *area; ParallelWorkerContext pwcxt; /* Get fixed-size state. */ fpes = shm_toc_lookup(toc, PARALLEL_KEY_EXECUTOR_FIXED, false); /* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */ receiver = ExecParallelGetReceiver(seg, toc); instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION, true); if (instrumentation != NULL) instrument_options = instrumentation->instrument_options; jit_instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_JIT_INSTRUMENTATION, true); queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options); /* Setting debug_query_string for individual workers */ debug_query_string = queryDesc->sourceText; /* Report workers' query for monitoring purposes */ pgstat_report_activity(STATE_RUNNING, debug_query_string); /* Attach to the dynamic shared memory area. */ area_space = shm_toc_lookup(toc, PARALLEL_KEY_DSA, false); area = dsa_attach_in_place(area_space, seg); /* Start up the executor */ queryDesc->plannedstmt->jitFlags = fpes->jit_flags; ExecutorStart(queryDesc, fpes->eflags); /* Special executor initialization steps for parallel workers */ queryDesc->planstate->state->es_query_dsa = area; if (DsaPointerIsValid(fpes->param_exec)) { char *paramexec_space; paramexec_space = dsa_get_address(area, fpes->param_exec); RestoreParamExecParams(paramexec_space, queryDesc->estate); } pwcxt.toc = toc; pwcxt.seg = seg; ExecParallelInitializeWorker(queryDesc->planstate, &pwcxt); /* Pass down any tuple bound */ ExecSetTupleBound(fpes->tuples_needed, queryDesc->planstate); /* * Prepare to track buffer/WAL usage during query execution. * * We do this after starting up the executor to match what happens in the * leader, which also doesn't count buffer accesses and WAL activity that * occur during executor startup. */ InstrStartParallelQuery(); /* * Run the plan. If we specified a tuple bound, be careful not to demand * more tuples than that. */ ExecutorRun(queryDesc, ForwardScanDirection, fpes->tuples_needed < 0 ? (int64) 0 : fpes->tuples_needed, true); /* Shut down the executor */ ExecutorFinish(queryDesc); /* Report buffer/WAL usage during parallel execution. */ buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false); wal_usage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false); InstrEndParallelQuery(&buffer_usage[ParallelWorkerNumber], &wal_usage[ParallelWorkerNumber]); /* Report instrumentation data if any instrumentation options are set. */ if (instrumentation != NULL) ExecParallelReportInstrumentation(queryDesc->planstate, instrumentation); /* Report JIT instrumentation data if any */ if (queryDesc->estate->es_jit && jit_instrumentation != NULL) { Assert(ParallelWorkerNumber < jit_instrumentation->num_workers); jit_instrumentation->jit_instr[ParallelWorkerNumber] = queryDesc->estate->es_jit->instr; } /* Must do this after capturing instrumentation. */ ExecutorEnd(queryDesc); /* Cleanup. */ dsa_detach(area); FreeQueryDesc(queryDesc); receiver->rDestroy(receiver); }