From 6c76f3606cddeb010cf1fc5ea28b47456ea9639e Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Johannes=20Schl=C3=BCter?= Date: Fri, 19 Nov 2010 09:55:48 +0000 Subject: - Move the old sqlite extension to PECL # discussed in http://www.mail-archive.com/internals@lists.php.net/msg47463.html --- ext/sqlite/libsqlite/src/sqliteInt.h | 1270 ---------------------------------- 1 file changed, 1270 deletions(-) delete mode 100644 ext/sqlite/libsqlite/src/sqliteInt.h (limited to 'ext/sqlite/libsqlite/src/sqliteInt.h') diff --git a/ext/sqlite/libsqlite/src/sqliteInt.h b/ext/sqlite/libsqlite/src/sqliteInt.h deleted file mode 100644 index e7b4a84e99..0000000000 --- a/ext/sqlite/libsqlite/src/sqliteInt.h +++ /dev/null @@ -1,1270 +0,0 @@ -/* -** 2001 September 15 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** Internal interface definitions for SQLite. -** -** @(#) $Id$ -*/ -#include "config.h" -#include "sqlite.h" -#include "hash.h" -#include "parse.h" -#include "btree.h" -#include -#include -#include -#include - -/* -** The maximum number of in-memory pages to use for the main database -** table and for temporary tables. -*/ -#define MAX_PAGES 2000 -#define TEMP_PAGES 500 - -/* -** If the following macro is set to 1, then NULL values are considered -** distinct for the SELECT DISTINCT statement and for UNION or EXCEPT -** compound queries. No other SQL database engine (among those tested) -** works this way except for OCELOT. But the SQL92 spec implies that -** this is how things should work. -** -** If the following macro is set to 0, then NULLs are indistinct for -** SELECT DISTINCT and for UNION. -*/ -#define NULL_ALWAYS_DISTINCT 0 - -/* -** If the following macro is set to 1, then NULL values are considered -** distinct when determining whether or not two entries are the same -** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, -** OCELOT, and Firebird all work. The SQL92 spec explicitly says this -** is the way things are suppose to work. -** -** If the following macro is set to 0, the NULLs are indistinct for -** a UNIQUE index. In this mode, you can only have a single NULL entry -** for a column declared UNIQUE. This is the way Informix and SQL Server -** work. -*/ -#define NULL_DISTINCT_FOR_UNIQUE 1 - -/* -** The maximum number of attached databases. This must be at least 2 -** in order to support the main database file (0) and the file used to -** hold temporary tables (1). And it must be less than 256 because -** an unsigned character is used to stored the database index. -*/ -#define MAX_ATTACHED 10 - -/* -** The next macro is used to determine where TEMP tables and indices -** are stored. Possible values: -** -** 0 Always use a temporary files -** 1 Use a file unless overridden by "PRAGMA temp_store" -** 2 Use memory unless overridden by "PRAGMA temp_store" -** 3 Always use memory -*/ -#ifndef TEMP_STORE -# define TEMP_STORE 1 -#endif - -/* -** When building SQLite for embedded systems where memory is scarce, -** you can define one or more of the following macros to omit extra -** features of the library and thus keep the size of the library to -** a minimum. -*/ -/* #define SQLITE_OMIT_AUTHORIZATION 1 */ -/* #define SQLITE_OMIT_INMEMORYDB 1 */ -/* #define SQLITE_OMIT_VACUUM 1 */ -/* #define SQLITE_OMIT_DATETIME_FUNCS 1 */ -/* #define SQLITE_OMIT_PROGRESS_CALLBACK 1 */ - -/* -** Integers of known sizes. These typedefs might change for architectures -** where the sizes very. Preprocessor macros are available so that the -** types can be conveniently redefined at compile-type. Like this: -** -** cc '-DUINTPTR_TYPE=long long int' ... -*/ -#ifndef UINT32_TYPE -# define UINT32_TYPE unsigned int -#endif -#ifndef UINT16_TYPE -# define UINT16_TYPE unsigned short int -#endif -#ifndef INT16_TYPE -# define INT16_TYPE short int -#endif -#ifndef UINT8_TYPE -# define UINT8_TYPE unsigned char -#endif -#ifndef INT8_TYPE -# define INT8_TYPE signed char -#endif -#ifndef INTPTR_TYPE -# if SQLITE_PTR_SZ==4 -# define INTPTR_TYPE int -# else -# define INTPTR_TYPE long long -# endif -#endif -typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ -typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ -typedef INT16_TYPE i16; /* 2-byte signed integer */ -typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ -typedef UINT8_TYPE i8; /* 1-byte signed integer */ -typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */ -typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */ - -/* -** Defer sourcing vdbe.h until after the "u8" typedef is defined. -*/ -#include "vdbe.h" - -/* -** Most C compilers these days recognize "long double", don't they? -** Just in case we encounter one that does not, we will create a macro -** for long double so that it can be easily changed to just "double". -*/ -#ifndef LONGDOUBLE_TYPE -# define LONGDOUBLE_TYPE long double -#endif - -/* -** This macro casts a pointer to an integer. Useful for doing -** pointer arithmetic. -*/ -#define Addr(X) ((uptr)X) - -/* -** The maximum number of bytes of data that can be put into a single -** row of a single table. The upper bound on this limit is 16777215 -** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB -** here because the overflow page chain is inefficient for really big -** records and we want to discourage people from thinking that -** multi-megabyte records are OK. If your needs are different, you can -** change this define and recompile to increase or decrease the record -** size. -** -** The 16777198 is computed as follows: 238 bytes of payload on the -** original pages plus 16448 overflow pages each holding 1020 bytes of -** data. -*/ -#define MAX_BYTES_PER_ROW 1048576 -/* #define MAX_BYTES_PER_ROW 16777198 */ - -/* -** If memory allocation problems are found, recompile with -** -** -DMEMORY_DEBUG=1 -** -** to enable some sanity checking on malloc() and free(). To -** check for memory leaks, recompile with -** -** -DMEMORY_DEBUG=2 -** -** and a line of text will be written to standard error for -** each malloc() and free(). This output can be analyzed -** by an AWK script to determine if there are any leaks. -*/ -#ifdef MEMORY_DEBUG -# define sqliteMalloc(X) sqliteMalloc_(X,1,__FILE__,__LINE__) -# define sqliteMallocRaw(X) sqliteMalloc_(X,0,__FILE__,__LINE__) -# define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__) -# define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__) -# define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__) -# define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__) - void sqliteStrRealloc(char**); -#else -# define sqliteRealloc_(X,Y) sqliteRealloc(X,Y) -# define sqliteStrRealloc(X) -#endif - -/* -** This variable gets set if malloc() ever fails. After it gets set, -** the SQLite library shuts down permanently. -*/ -extern int sqlite_malloc_failed; - -/* -** The following global variables are used for testing and debugging -** only. They only work if MEMORY_DEBUG is defined. -*/ -#ifdef MEMORY_DEBUG -extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ -extern int sqlite_nFree; /* Number of sqliteFree() calls */ -extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ -#endif - -/* -** Name of the master database table. The master database table -** is a special table that holds the names and attributes of all -** user tables and indices. -*/ -#define MASTER_NAME "sqlite_master" -#define TEMP_MASTER_NAME "sqlite_temp_master" - -/* -** The name of the schema table. -*/ -#define SCHEMA_TABLE(x) (x?TEMP_MASTER_NAME:MASTER_NAME) - -/* -** A convenience macro that returns the number of elements in -** an array. -*/ -#define ArraySize(X) (sizeof(X)/sizeof(X[0])) - -/* -** Forward references to structures -*/ -typedef struct Column Column; -typedef struct Table Table; -typedef struct Index Index; -typedef struct Instruction Instruction; -typedef struct Expr Expr; -typedef struct ExprList ExprList; -typedef struct Parse Parse; -typedef struct Token Token; -typedef struct IdList IdList; -typedef struct SrcList SrcList; -typedef struct WhereInfo WhereInfo; -typedef struct WhereLevel WhereLevel; -typedef struct Select Select; -typedef struct AggExpr AggExpr; -typedef struct FuncDef FuncDef; -typedef struct Trigger Trigger; -typedef struct TriggerStep TriggerStep; -typedef struct TriggerStack TriggerStack; -typedef struct FKey FKey; -typedef struct Db Db; -typedef struct AuthContext AuthContext; - -/* -** Each database file to be accessed by the system is an instance -** of the following structure. There are normally two of these structures -** in the sqlite.aDb[] array. aDb[0] is the main database file and -** aDb[1] is the database file used to hold temporary tables. Additional -** databases may be attached. -*/ -struct Db { - char *zName; /* Name of this database */ - Btree *pBt; /* The B*Tree structure for this database file */ - int schema_cookie; /* Database schema version number for this file */ - Hash tblHash; /* All tables indexed by name */ - Hash idxHash; /* All (named) indices indexed by name */ - Hash trigHash; /* All triggers indexed by name */ - Hash aFKey; /* Foreign keys indexed by to-table */ - u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ - u16 flags; /* Flags associated with this database */ - void *pAux; /* Auxiliary data. Usually NULL */ - void (*xFreeAux)(void*); /* Routine to free pAux */ -}; - -/* -** These macros can be used to test, set, or clear bits in the -** Db.flags field. -*/ -#define DbHasProperty(D,I,P) (((D)->aDb[I].flags&(P))==(P)) -#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].flags&(P))!=0) -#define DbSetProperty(D,I,P) (D)->aDb[I].flags|=(P) -#define DbClearProperty(D,I,P) (D)->aDb[I].flags&=~(P) - -/* -** Allowed values for the DB.flags field. -** -** The DB_Locked flag is set when the first OP_Transaction or OP_Checkpoint -** opcode is emitted for a database. This prevents multiple occurances -** of those opcodes for the same database in the same program. Similarly, -** the DB_Cookie flag is set when the OP_VerifyCookie opcode is emitted, -** and prevents duplicate OP_VerifyCookies from taking up space and slowing -** down execution. -** -** The DB_SchemaLoaded flag is set after the database schema has been -** read into internal hash tables. -** -** DB_UnresetViews means that one or more views have column names that -** have been filled out. If the schema changes, these column names might -** changes and so the view will need to be reset. -*/ -#define DB_Locked 0x0001 /* OP_Transaction opcode has been emitted */ -#define DB_Cookie 0x0002 /* OP_VerifyCookie opcode has been emiited */ -#define DB_SchemaLoaded 0x0004 /* The schema has been loaded */ -#define DB_UnresetViews 0x0008 /* Some views have defined column names */ - - -/* -** Each database is an instance of the following structure. -** -** The sqlite.file_format is initialized by the database file -** and helps determines how the data in the database file is -** represented. This field allows newer versions of the library -** to read and write older databases. The various file formats -** are as follows: -** -** file_format==1 Version 2.1.0. -** file_format==2 Version 2.2.0. Add support for INTEGER PRIMARY KEY. -** file_format==3 Version 2.6.0. Fix empty-string index bug. -** file_format==4 Version 2.7.0. Add support for separate numeric and -** text datatypes. -** -** The sqlite.temp_store determines where temporary database files -** are stored. If 1, then a file is created to hold those tables. If -** 2, then they are held in memory. 0 means use the default value in -** the TEMP_STORE macro. -** -** The sqlite.lastRowid records the last insert rowid generated by an -** insert statement. Inserts on views do not affect its value. Each -** trigger has its own context, so that lastRowid can be updated inside -** triggers as usual. The previous value will be restored once the trigger -** exits. Upon entering a before or instead of trigger, lastRowid is no -** longer (since after version 2.8.12) reset to -1. -** -** The sqlite.nChange does not count changes within triggers and keeps no -** context. It is reset at start of sqlite_exec. -** The sqlite.lsChange represents the number of changes made by the last -** insert, update, or delete statement. It remains constant throughout the -** length of a statement and is then updated by OP_SetCounts. It keeps a -** context stack just like lastRowid so that the count of changes -** within a trigger is not seen outside the trigger. Changes to views do not -** affect the value of lsChange. -** The sqlite.csChange keeps track of the number of current changes (since -** the last statement) and is used to update sqlite_lsChange. -*/ -struct sqlite { - int nDb; /* Number of backends currently in use */ - Db *aDb; /* All backends */ - Db aDbStatic[2]; /* Static space for the 2 default backends */ - int flags; /* Miscellanous flags. See below */ - u8 file_format; /* What file format version is this database? */ - u8 safety_level; /* How aggressive at synching data to disk */ - u8 want_to_close; /* Close after all VDBEs are deallocated */ - u8 temp_store; /* 1=file, 2=memory, 0=compile-time default */ - u8 onError; /* Default conflict algorithm */ - int next_cookie; /* Next value of aDb[0].schema_cookie */ - int cache_size; /* Number of pages to use in the cache */ - int nTable; /* Number of tables in the database */ - void *pBusyArg; /* 1st Argument to the busy callback */ - int (*xBusyCallback)(void *,const char*,int); /* The busy callback */ - void *pCommitArg; /* Argument to xCommitCallback() */ - int (*xCommitCallback)(void*);/* Invoked at every commit. */ - Hash aFunc; /* All functions that can be in SQL exprs */ - int lastRowid; /* ROWID of most recent insert (see above) */ - int priorNewRowid; /* Last randomly generated ROWID */ - int magic; /* Magic number for detect library misuse */ - int nChange; /* Number of rows changed (see above) */ - int lsChange; /* Last statement change count (see above) */ - int csChange; /* Current statement change count (see above) */ - struct sqliteInitInfo { /* Information used during initialization */ - int iDb; /* When back is being initialized */ - int newTnum; /* Rootpage of table being initialized */ - u8 busy; /* TRUE if currently initializing */ - } init; - struct Vdbe *pVdbe; /* List of active virtual machines */ - void (*xTrace)(void*,const char*); /* Trace function */ - void *pTraceArg; /* Argument to the trace function */ -#ifndef SQLITE_OMIT_AUTHORIZATION - int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); - /* Access authorization function */ - void *pAuthArg; /* 1st argument to the access auth function */ -#endif -#ifndef SQLITE_OMIT_PROGRESS_CALLBACK - int (*xProgress)(void *); /* The progress callback */ - void *pProgressArg; /* Argument to the progress callback */ - int nProgressOps; /* Number of opcodes for progress callback */ -#endif -}; - -/* -** Possible values for the sqlite.flags and or Db.flags fields. -** -** On sqlite.flags, the SQLITE_InTrans value means that we have -** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement -** transaction is active on that particular database file. -*/ -#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ -#define SQLITE_Initialized 0x00000002 /* True after initialization */ -#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */ -#define SQLITE_InTrans 0x00000008 /* True if in a transaction */ -#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ -#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ -#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ -#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ - /* DELETE, or UPDATE and return */ - /* the count using a callback. */ -#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ - /* result set is empty */ -#define SQLITE_ReportTypes 0x00000200 /* Include information on datatypes */ - /* in 4th argument of callback */ - -/* -** Possible values for the sqlite.magic field. -** The numbers are obtained at random and have no special meaning, other -** than being distinct from one another. -*/ -#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ -#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ -#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ -#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ - -/* -** Each SQL function is defined by an instance of the following -** structure. A pointer to this structure is stored in the sqlite.aFunc -** hash table. When multiple functions have the same name, the hash table -** points to a linked list of these structures. -*/ -struct FuncDef { - void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */ - void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */ - void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */ - signed char nArg; /* Number of arguments. -1 means unlimited */ - signed char dataType; /* Arg that determines datatype. -1=NUMERIC, */ - /* -2=TEXT. -3=SQLITE_ARGS */ - u8 includeTypes; /* Add datatypes to args of xFunc and xStep */ - void *pUserData; /* User data parameter */ - FuncDef *pNext; /* Next function with same name */ -}; - -/* -** information about each column of an SQL table is held in an instance -** of this structure. -*/ -struct Column { - char *zName; /* Name of this column */ - char *zDflt; /* Default value of this column */ - char *zType; /* Data type for this column */ - u8 notNull; /* True if there is a NOT NULL constraint */ - u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ - u8 sortOrder; /* Some combination of SQLITE_SO_... values */ - u8 dottedName; /* True if zName contains a "." character */ -}; - -/* -** The allowed sort orders. -** -** The TEXT and NUM values use bits that do not overlap with DESC and ASC. -** That way the two can be combined into a single number. -*/ -#define SQLITE_SO_UNK 0 /* Use the default collating type. (SCT_NUM) */ -#define SQLITE_SO_TEXT 2 /* Sort using memcmp() */ -#define SQLITE_SO_NUM 4 /* Sort using sqliteCompare() */ -#define SQLITE_SO_TYPEMASK 6 /* Mask to extract the collating sequence */ -#define SQLITE_SO_ASC 0 /* Sort in ascending order */ -#define SQLITE_SO_DESC 1 /* Sort in descending order */ -#define SQLITE_SO_DIRMASK 1 /* Mask to extract the sort direction */ - -/* -** Each SQL table is represented in memory by an instance of the -** following structure. -** -** Table.zName is the name of the table. The case of the original -** CREATE TABLE statement is stored, but case is not significant for -** comparisons. -** -** Table.nCol is the number of columns in this table. Table.aCol is a -** pointer to an array of Column structures, one for each column. -** -** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of -** the column that is that key. Otherwise Table.iPKey is negative. Note -** that the datatype of the PRIMARY KEY must be INTEGER for this field to -** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of -** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid -** is generated for each row of the table. Table.hasPrimKey is true if -** the table has any PRIMARY KEY, INTEGER or otherwise. -** -** Table.tnum is the page number for the root BTree page of the table in the -** database file. If Table.iDb is the index of the database table backend -** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that -** holds temporary tables and indices. If Table.isTransient -** is true, then the table is stored in a file that is automatically deleted -** when the VDBE cursor to the table is closed. In this case Table.tnum -** refers VDBE cursor number that holds the table open, not to the root -** page number. Transient tables are used to hold the results of a -** sub-query that appears instead of a real table name in the FROM clause -** of a SELECT statement. -*/ -struct Table { - char *zName; /* Name of the table */ - int nCol; /* Number of columns in this table */ - Column *aCol; /* Information about each column */ - int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ - Index *pIndex; /* List of SQL indexes on this table. */ - int tnum; /* Root BTree node for this table (see note above) */ - Select *pSelect; /* NULL for tables. Points to definition if a view. */ - u8 readOnly; /* True if this table should not be written by the user */ - u8 iDb; /* Index into sqlite.aDb[] of the backend for this table */ - u8 isTransient; /* True if automatically deleted when VDBE finishes */ - u8 hasPrimKey; /* True if there exists a primary key */ - u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ - Trigger *pTrigger; /* List of SQL triggers on this table */ - FKey *pFKey; /* Linked list of all foreign keys in this table */ -}; - -/* -** Each foreign key constraint is an instance of the following structure. -** -** A foreign key is associated with two tables. The "from" table is -** the table that contains the REFERENCES clause that creates the foreign -** key. The "to" table is the table that is named in the REFERENCES clause. -** Consider this example: -** -** CREATE TABLE ex1( -** a INTEGER PRIMARY KEY, -** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) -** ); -** -** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". -** -** Each REFERENCES clause generates an instance of the following structure -** which is attached to the from-table. The to-table need not exist when -** the from-table is created. The existance of the to-table is not checked -** until an attempt is made to insert data into the from-table. -** -** The sqlite.aFKey hash table stores pointers to this structure -** given the name of a to-table. For each to-table, all foreign keys -** associated with that table are on a linked list using the FKey.pNextTo -** field. -*/ -struct FKey { - Table *pFrom; /* The table that constains the REFERENCES clause */ - FKey *pNextFrom; /* Next foreign key in pFrom */ - char *zTo; /* Name of table that the key points to */ - FKey *pNextTo; /* Next foreign key that points to zTo */ - int nCol; /* Number of columns in this key */ - struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ - int iFrom; /* Index of column in pFrom */ - char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ - } *aCol; /* One entry for each of nCol column s */ - u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ - u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ - u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ - u8 insertConf; /* How to resolve conflicts that occur on INSERT */ -}; - -/* -** SQLite supports many different ways to resolve a contraint -** error. ROLLBACK processing means that a constraint violation -** causes the operation in process to fail and for the current transaction -** to be rolled back. ABORT processing means the operation in process -** fails and any prior changes from that one operation are backed out, -** but the transaction is not rolled back. FAIL processing means that -** the operation in progress stops and returns an error code. But prior -** changes due to the same operation are not backed out and no rollback -** occurs. IGNORE means that the particular row that caused the constraint -** error is not inserted or updated. Processing continues and no error -** is returned. REPLACE means that preexisting database rows that caused -** a UNIQUE constraint violation are removed so that the new insert or -** update can proceed. Processing continues and no error is reported. -** -** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. -** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the -** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign -** key is set to NULL. CASCADE means that a DELETE or UPDATE of the -** referenced table row is propagated into the row that holds the -** foreign key. -** -** The following symbolic values are used to record which type -** of action to take. -*/ -#define OE_None 0 /* There is no constraint to check */ -#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ -#define OE_Abort 2 /* Back out changes but do no rollback transaction */ -#define OE_Fail 3 /* Stop the operation but leave all prior changes */ -#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ -#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ - -#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ -#define OE_SetNull 7 /* Set the foreign key value to NULL */ -#define OE_SetDflt 8 /* Set the foreign key value to its default */ -#define OE_Cascade 9 /* Cascade the changes */ - -#define OE_Default 99 /* Do whatever the default action is */ - -/* -** Each SQL index is represented in memory by an -** instance of the following structure. -** -** The columns of the table that are to be indexed are described -** by the aiColumn[] field of this structure. For example, suppose -** we have the following table and index: -** -** CREATE TABLE Ex1(c1 int, c2 int, c3 text); -** CREATE INDEX Ex2 ON Ex1(c3,c1); -** -** In the Table structure describing Ex1, nCol==3 because there are -** three columns in the table. In the Index structure describing -** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. -** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the -** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. -** The second column to be indexed (c1) has an index of 0 in -** Ex1.aCol[], hence Ex2.aiColumn[1]==0. -** -** The Index.onError field determines whether or not the indexed columns -** must be unique and what to do if they are not. When Index.onError=OE_None, -** it means this is not a unique index. Otherwise it is a unique index -** and the value of Index.onError indicate the which conflict resolution -** algorithm to employ whenever an attempt is made to insert a non-unique -** element. -*/ -struct Index { - char *zName; /* Name of this index */ - int nColumn; /* Number of columns in the table used by this index */ - int *aiColumn; /* Which columns are used by this index. 1st is 0 */ - Table *pTable; /* The SQL table being indexed */ - int tnum; /* Page containing root of this index in database file */ - u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ - u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ - u8 iDb; /* Index in sqlite.aDb[] of where this index is stored */ - Index *pNext; /* The next index associated with the same table */ -}; - -/* -** Each token coming out of the lexer is an instance of -** this structure. Tokens are also used as part of an expression. -** -** Note if Token.z==0 then Token.dyn and Token.n are undefined and -** may contain random values. Do not make any assuptions about Token.dyn -** and Token.n when Token.z==0. -*/ -struct Token { - const char *z; /* Text of the token. Not NULL-terminated! */ - unsigned dyn : 1; /* True for malloced memory, false for static */ - unsigned n : 31; /* Number of characters in this token */ -}; - -/* -** Each node of an expression in the parse tree is an instance -** of this structure. -** -** Expr.op is the opcode. The integer parser token codes are reused -** as opcodes here. For example, the parser defines TK_GE to be an integer -** code representing the ">=" operator. This same integer code is reused -** to represent the greater-than-or-equal-to operator in the expression -** tree. -** -** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list -** of argument if the expression is a function. -** -** Expr.token is the operator token for this node. For some expressions -** that have subexpressions, Expr.token can be the complete text that gave -** rise to the Expr. In the latter case, the token is marked as being -** a compound token. -** -** An expression of the form ID or ID.ID refers to a column in a table. -** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is -** the integer cursor number of a VDBE cursor pointing to that table and -** Expr.iColumn is the column number for the specific column. If the -** expression is used as a result in an aggregate SELECT, then the -** value is also stored in the Expr.iAgg column in the aggregate so that -** it can be accessed after all aggregates are computed. -** -** If the expression is a function, the Expr.iTable is an integer code -** representing which function. If the expression is an unbound variable -** marker (a question mark character '?' in the original SQL) then the -** Expr.iTable holds the index number for that variable. -** -** The Expr.pSelect field points to a SELECT statement. The SELECT might -** be the right operand of an IN operator. Or, if a scalar SELECT appears -** in an expression the opcode is TK_SELECT and Expr.pSelect is the only -** operand. -*/ -struct Expr { - u8 op; /* Operation performed by this node */ - u8 dataType; /* Either SQLITE_SO_TEXT or SQLITE_SO_NUM */ - u8 iDb; /* Database referenced by this expression */ - u8 flags; /* Various flags. See below */ - Expr *pLeft, *pRight; /* Left and right subnodes */ - ExprList *pList; /* A list of expressions used as function arguments - ** or in " IN (useAgg==TRUE, pull - ** result from the iAgg-th element of the aggregator */ - Select *pSelect; /* When the expression is a sub-select. Also the - ** right side of " IN (