/* * sha.c: routines to compute SHA-1/224/256/384/512 digests * * Ref: NIST FIPS PUB 180-2 Secure Hash Standard * * Copyright (C) 2003-2011 Mark Shelor, All Rights Reserved * * Version: 5.60 * Thu Mar 3 05:26:42 MST 2011 * */ #include #include #include #include #include #include "sha.h" #include "sha64bit.h" #define W32 SHA32 /* useful abbreviations */ #define C32 SHA32_CONST #define SR32 SHA32_SHR #define SL32 SHA32_SHL #define LO32 SHA_LO32 #define UCHR unsigned char #define UINT unsigned int #define ULNG unsigned long #define VP void * #define ROTR(x, n) (SR32(x, n) | SL32(x, 32-(n))) #define ROTL(x, n) (SL32(x, n) | SR32(x, 32-(n))) #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define Pa(x, y, z) ((x) ^ (y) ^ (z)) #define Ma(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) #define SIGMA0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define SIGMA1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define sigma0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SR32(x, 3)) #define sigma1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SR32(x, 10)) #define K1 C32(0x5a827999) /* SHA-1 constants */ #define K2 C32(0x6ed9eba1) #define K3 C32(0x8f1bbcdc) #define K4 C32(0xca62c1d6) static W32 K256[64] = /* SHA-224/256 constants */ { C32(0x428a2f98), C32(0x71374491), C32(0xb5c0fbcf), C32(0xe9b5dba5), C32(0x3956c25b), C32(0x59f111f1), C32(0x923f82a4), C32(0xab1c5ed5), C32(0xd807aa98), C32(0x12835b01), C32(0x243185be), C32(0x550c7dc3), C32(0x72be5d74), C32(0x80deb1fe), C32(0x9bdc06a7), C32(0xc19bf174), C32(0xe49b69c1), C32(0xefbe4786), C32(0x0fc19dc6), C32(0x240ca1cc), C32(0x2de92c6f), C32(0x4a7484aa), C32(0x5cb0a9dc), C32(0x76f988da), C32(0x983e5152), C32(0xa831c66d), C32(0xb00327c8), C32(0xbf597fc7), C32(0xc6e00bf3), C32(0xd5a79147), C32(0x06ca6351), C32(0x14292967), C32(0x27b70a85), C32(0x2e1b2138), C32(0x4d2c6dfc), C32(0x53380d13), C32(0x650a7354), C32(0x766a0abb), C32(0x81c2c92e), C32(0x92722c85), C32(0xa2bfe8a1), C32(0xa81a664b), C32(0xc24b8b70), C32(0xc76c51a3), C32(0xd192e819), C32(0xd6990624), C32(0xf40e3585), C32(0x106aa070), C32(0x19a4c116), C32(0x1e376c08), C32(0x2748774c), C32(0x34b0bcb5), C32(0x391c0cb3), C32(0x4ed8aa4a), C32(0x5b9cca4f), C32(0x682e6ff3), C32(0x748f82ee), C32(0x78a5636f), C32(0x84c87814), C32(0x8cc70208), C32(0x90befffa), C32(0xa4506ceb), C32(0xbef9a3f7), C32(0xc67178f2) }; static W32 H01[5] = /* SHA-1 initial hash value */ { C32(0x67452301), C32(0xefcdab89), C32(0x98badcfe), C32(0x10325476), C32(0xc3d2e1f0) }; static W32 H0224[8] = /* SHA-224 initial hash value */ { C32(0xc1059ed8), C32(0x367cd507), C32(0x3070dd17), C32(0xf70e5939), C32(0xffc00b31), C32(0x68581511), C32(0x64f98fa7), C32(0xbefa4fa4) }; static W32 H0256[8] = /* SHA-256 initial hash value */ { C32(0x6a09e667), C32(0xbb67ae85), C32(0x3c6ef372), C32(0xa54ff53a), C32(0x510e527f), C32(0x9b05688c), C32(0x1f83d9ab), C32(0x5be0cd19) }; static void sha1(SHA *s, UCHR *block) /* SHA-1 transform */ { W32 a, b, c, d, e; SHA_STO_CLASS W32 W[16]; W32 *wp = W; W32 *H = (W32 *) s->H; SHA32_SCHED(W, block); /* * Use SHA-1 alternate method from FIPS PUB 180-2 (ref. 6.1.3) * * To improve performance, unroll the loop and consolidate assignments * by changing the roles of variables "a" through "e" at each step. * Note that the variable "T" is no longer needed. */ #define M1(a, b, c, d, e, f, k, w) \ e += ROTL(a, 5) + f(b, c, d) + k + w; \ b = ROTL(b, 30) #define M11(f, k, w) M1(a, b, c, d, e, f, k, w); #define M12(f, k, w) M1(e, a, b, c, d, f, k, w); #define M13(f, k, w) M1(d, e, a, b, c, f, k, w); #define M14(f, k, w) M1(c, d, e, a, b, f, k, w); #define M15(f, k, w) M1(b, c, d, e, a, f, k, w); #define W11(s) W[(s+ 0) & 0xf] #define W12(s) W[(s+13) & 0xf] #define W13(s) W[(s+ 8) & 0xf] #define W14(s) W[(s+ 2) & 0xf] #define A1(s) (W11(s) = ROTL(W11(s) ^ W12(s) ^ W13(s) ^ W14(s), 1)) a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); M11(Ch, K1, *wp++); M12(Ch, K1, *wp++); M13(Ch, K1, *wp++); M14(Ch, K1, *wp++); M15(Ch, K1, *wp++); M11(Ch, K1, *wp ); M12(Ch, K1, A1( 0)); M13(Ch, K1, A1( 1)); M14(Ch, K1, A1( 2)); M15(Ch, K1, A1( 3)); M11(Pa, K2, A1( 4)); M12(Pa, K2, A1( 5)); M13(Pa, K2, A1( 6)); M14(Pa, K2, A1( 7)); M15(Pa, K2, A1( 8)); M11(Pa, K2, A1( 9)); M12(Pa, K2, A1(10)); M13(Pa, K2, A1(11)); M14(Pa, K2, A1(12)); M15(Pa, K2, A1(13)); M11(Pa, K2, A1(14)); M12(Pa, K2, A1(15)); M13(Pa, K2, A1( 0)); M14(Pa, K2, A1( 1)); M15(Pa, K2, A1( 2)); M11(Pa, K2, A1( 3)); M12(Pa, K2, A1( 4)); M13(Pa, K2, A1( 5)); M14(Pa, K2, A1( 6)); M15(Pa, K2, A1( 7)); M11(Ma, K3, A1( 8)); M12(Ma, K3, A1( 9)); M13(Ma, K3, A1(10)); M14(Ma, K3, A1(11)); M15(Ma, K3, A1(12)); M11(Ma, K3, A1(13)); M12(Ma, K3, A1(14)); M13(Ma, K3, A1(15)); M14(Ma, K3, A1( 0)); M15(Ma, K3, A1( 1)); M11(Ma, K3, A1( 2)); M12(Ma, K3, A1( 3)); M13(Ma, K3, A1( 4)); M14(Ma, K3, A1( 5)); M15(Ma, K3, A1( 6)); M11(Ma, K3, A1( 7)); M12(Ma, K3, A1( 8)); M13(Ma, K3, A1( 9)); M14(Ma, K3, A1(10)); M15(Ma, K3, A1(11)); M11(Pa, K4, A1(12)); M12(Pa, K4, A1(13)); M13(Pa, K4, A1(14)); M14(Pa, K4, A1(15)); M15(Pa, K4, A1( 0)); M11(Pa, K4, A1( 1)); M12(Pa, K4, A1( 2)); M13(Pa, K4, A1( 3)); M14(Pa, K4, A1( 4)); M15(Pa, K4, A1( 5)); M11(Pa, K4, A1( 6)); M12(Pa, K4, A1( 7)); M13(Pa, K4, A1( 8)); M14(Pa, K4, A1( 9)); M15(Pa, K4, A1(10)); M11(Pa, K4, A1(11)); M12(Pa, K4, A1(12)); M13(Pa, K4, A1(13)); M14(Pa, K4, A1(14)); M15(Pa, K4, A1(15)); H[0] += a; H[1] += b; H[2] += c; H[3] += d; H[4] += e; } static void sha256(SHA *s, UCHR *block) /* SHA-224/256 transform */ { W32 a, b, c, d, e, f, g, h, T1; SHA_STO_CLASS W32 W[16]; W32 *kp = K256; W32 *wp = W; W32 *H = (W32 *) s->H; SHA32_SCHED(W, block); /* * Use same technique as in sha1() * * To improve performance, unroll the loop and consolidate assignments * by changing the roles of variables "a" through "h" at each step. * Note that the variable "T2" is no longer needed. */ #define M2(a, b, c, d, e, f, g, h, w) \ T1 = h + SIGMA1(e) + Ch(e, f, g) + (*kp++) + w; \ h = T1 + SIGMA0(a) + Ma(a, b, c); d += T1; #define W21(s) W[(s+ 0) & 0xf] #define W22(s) W[(s+14) & 0xf] #define W23(s) W[(s+ 9) & 0xf] #define W24(s) W[(s+ 1) & 0xf] #define A2(s) (W21(s) += sigma1(W22(s)) + W23(s) + sigma0(W24(s))) #define M21(w) M2(a, b, c, d, e, f, g, h, w) #define M22(w) M2(h, a, b, c, d, e, f, g, w) #define M23(w) M2(g, h, a, b, c, d, e, f, w) #define M24(w) M2(f, g, h, a, b, c, d, e, w) #define M25(w) M2(e, f, g, h, a, b, c, d, w) #define M26(w) M2(d, e, f, g, h, a, b, c, w) #define M27(w) M2(c, d, e, f, g, h, a, b, w) #define M28(w) M2(b, c, d, e, f, g, h, a, w) a = H[0]; b = H[1]; c = H[2]; d = H[3]; e = H[4]; f = H[5]; g = H[6]; h = H[7]; M21( *wp++); M22( *wp++); M23( *wp++); M24( *wp++); M25( *wp++); M26( *wp++); M27( *wp++); M28( *wp++); M21( *wp++); M22( *wp++); M23( *wp++); M24( *wp++); M25( *wp++); M26( *wp++); M27( *wp++); M28( *wp ); M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); M21(A2( 0)); M22(A2( 1)); M23(A2( 2)); M24(A2( 3)); M25(A2( 4)); M26(A2( 5)); M27(A2( 6)); M28(A2( 7)); M21(A2( 8)); M22(A2( 9)); M23(A2(10)); M24(A2(11)); M25(A2(12)); M26(A2(13)); M27(A2(14)); M28(A2(15)); H[0] += a; H[1] += b; H[2] += c; H[3] += d; H[4] += e; H[5] += f; H[6] += g; H[7] += h; } #include "sha64bit.c" #define SETBIT(s, pos) s[(pos) >> 3] |= (0x01 << (7 - (pos) % 8)) #define CLRBIT(s, pos) s[(pos) >> 3] &= ~(0x01 << (7 - (pos) % 8)) #define NBYTES(nbits) ((nbits) > 0 ? 1 + (((nbits) - 1) >> 3) : 0) #define HEXLEN(nbytes) ((nbytes) << 1) #define B64LEN(nbytes) (((nbytes) % 3 == 0) ? ((nbytes) / 3) * 4 \ : ((nbytes) / 3) * 4 + ((nbytes) % 3) + 1) /* w32mem: writes 32-bit word to memory in big-endian order */ static void w32mem(UCHR *mem, W32 w32) { int i; for (i = 0; i < 4; i++) *mem++ = (UCHR) (SR32(w32, 24-i*8) & 0xff); } /* digcpy: writes current state to digest buffer */ static void digcpy(SHA *s) { UINT i; UCHR *d = s->digest; W32 *p32 = (W32 *) s->H; W64 *p64 = (W64 *) s->H; if (s->alg <= SHA256) for (i = 0; i < 8; i++, d += 4) w32mem(d, *p32++); else for (i = 0; i < 8; i++, d += 8) { w32mem(d, (W32) ((*p64 >> 16) >> 16)); w32mem(d+4, (W32) (*p64++ & SHA32_MAX)); } } #define SHA_INIT(algo, transform) \ do { \ memset(s, 0, sizeof(SHA)); \ s->alg = algo; s->sha = sha ## transform; \ memcpy(s->H, H0 ## algo, sizeof(H0 ## algo)); \ s->blocksize = SHA ## algo ## _BLOCK_BITS; \ s->digestlen = SHA ## algo ## _DIGEST_BITS >> 3; \ } while (0) /* sharewind: re-initializes the digest object */ void sharewind(SHA *s) { if (s->alg == SHA1) SHA_INIT(1, 1); else if (s->alg == SHA224) SHA_INIT(224, 256); else if (s->alg == SHA256) SHA_INIT(256, 256); else if (s->alg == SHA384) SHA_INIT(384, 512); else if (s->alg == SHA512) SHA_INIT(512, 512); else if (s->alg == SHA512224) SHA_INIT(512224, 512); else if (s->alg == SHA512256) SHA_INIT(512256, 512); } /* shaopen: creates a new digest object */ SHA *shaopen(int alg) { SHA *s; if (alg != SHA1 && alg != SHA224 && alg != SHA256 && alg != SHA384 && alg != SHA512 && alg != SHA512224 && alg != SHA512256) return(NULL); if (alg >= SHA384 && !sha_384_512) return(NULL); SHA_newz(0, s, 1, SHA); if (s == NULL) return(NULL); s->alg = alg; sharewind(s); return(s); } /* shadirect: updates state directly (w/o going through s->block) */ static ULNG shadirect(UCHR *bitstr, ULNG bitcnt, SHA *s) { ULNG savecnt = bitcnt; while (bitcnt >= s->blocksize) { s->sha(s, bitstr); bitstr += (s->blocksize >> 3); bitcnt -= s->blocksize; } if (bitcnt > 0) { memcpy(s->block, bitstr, NBYTES(bitcnt)); s->blockcnt = bitcnt; } return(savecnt); } /* shabytes: updates state for byte-aligned input data */ static ULNG shabytes(UCHR *bitstr, ULNG bitcnt, SHA *s) { UINT offset; UINT nbits; ULNG savecnt = bitcnt; offset = s->blockcnt >> 3; if (s->blockcnt + bitcnt >= s->blocksize) { nbits = s->blocksize - s->blockcnt; memcpy(s->block+offset, bitstr, nbits>>3); bitcnt -= nbits; bitstr += (nbits >> 3); s->sha(s, s->block), s->blockcnt = 0; shadirect(bitstr, bitcnt, s); } else { memcpy(s->block+offset, bitstr, NBYTES(bitcnt)); s->blockcnt += bitcnt; } return(savecnt); } /* shabits: updates state for bit-aligned input data */ static ULNG shabits(UCHR *bitstr, ULNG bitcnt, SHA *s) { UINT i; UINT gap; ULNG nbits; UCHR buf[1<<9]; UINT bufsize = sizeof(buf); ULNG bufbits = (ULNG) bufsize << 3; UINT nbytes = NBYTES(bitcnt); ULNG savecnt = bitcnt; gap = 8 - s->blockcnt % 8; s->block[s->blockcnt>>3] &= ~0 << gap; s->block[s->blockcnt>>3] |= *bitstr >> (8 - gap); s->blockcnt += bitcnt < gap ? bitcnt : gap; if (bitcnt < gap) return(savecnt); if (s->blockcnt == s->blocksize) s->sha(s, s->block), s->blockcnt = 0; if ((bitcnt -= gap) == 0) return(savecnt); while (nbytes > bufsize) { for (i = 0; i < bufsize; i++) buf[i] = bitstr[i] << gap | bitstr[i+1] >> (8-gap); nbits = bitcnt < bufbits ? bitcnt : bufbits; shabytes(buf, nbits, s); bitcnt -= nbits, bitstr += bufsize, nbytes -= bufsize; } for (i = 0; i < nbytes - 1; i++) buf[i] = bitstr[i] << gap | bitstr[i+1] >> (8-gap); buf[nbytes-1] = bitstr[nbytes-1] << gap; shabytes(buf, bitcnt, s); return(savecnt); } /* shawrite: triggers a state update using data in bitstr/bitcnt */ ULNG shawrite(UCHR *bitstr, ULNG bitcnt, SHA *s) { if (bitcnt < 1) return(0); if (SHA_LO32(s->lenll += bitcnt) < bitcnt) if (SHA_LO32(++s->lenlh) == 0) if (SHA_LO32(++s->lenhl) == 0) s->lenhh++; if (s->blockcnt == 0) return(shadirect(bitstr, bitcnt, s)); else if (s->blockcnt % 8 == 0) return(shabytes(bitstr, bitcnt, s)); else return(shabits(bitstr, bitcnt, s)); } /* shafinish: pads remaining block(s) and computes final digest state */ void shafinish(SHA *s) { UINT lenpos, lhpos, llpos; lenpos = s->blocksize == SHA1_BLOCK_BITS ? 448 : 896; lhpos = s->blocksize == SHA1_BLOCK_BITS ? 56 : 120; llpos = s->blocksize == SHA1_BLOCK_BITS ? 60 : 124; SETBIT(s->block, s->blockcnt), s->blockcnt++; while (s->blockcnt > lenpos) if (s->blockcnt < s->blocksize) CLRBIT(s->block, s->blockcnt), s->blockcnt++; else s->sha(s, s->block), s->blockcnt = 0; while (s->blockcnt < lenpos) CLRBIT(s->block, s->blockcnt), s->blockcnt++; if (s->blocksize > SHA1_BLOCK_BITS) { w32mem(s->block + 112, s->lenhh); w32mem(s->block + 116, s->lenhl); } w32mem(s->block + lhpos, s->lenlh); w32mem(s->block + llpos, s->lenll); s->sha(s, s->block); } /* shadigest: returns pointer to current digest (binary) */ UCHR *shadigest(SHA *s) { digcpy(s); return(s->digest); } /* shahex: returns pointer to current digest (hexadecimal) */ char *shahex(SHA *s) { int i; digcpy(s); s->hex[0] = '\0'; if (HEXLEN((size_t) s->digestlen) >= sizeof(s->hex)) return(s->hex); for (i = 0; i < s->digestlen; i++) sprintf(s->hex+i*2, "%02x", s->digest[i]); return(s->hex); } /* map: translation map for Base 64 encoding */ static char map[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /* encbase64: encodes input (0 to 3 bytes) into Base 64 */ static void encbase64(UCHR *in, int n, char *out) { UCHR byte[3] = {0, 0, 0}; out[0] = '\0'; if (n < 1 || n > 3) return; memcpy(byte, in, n); out[0] = map[byte[0] >> 2]; out[1] = map[((byte[0] & 0x03) << 4) | (byte[1] >> 4)]; out[2] = map[((byte[1] & 0x0f) << 2) | (byte[2] >> 6)]; out[3] = map[byte[2] & 0x3f]; out[n+1] = '\0'; } /* shabase64: returns pointer to current digest (Base 64) */ char *shabase64(SHA *s) { int n; UCHR *q; char out[5]; digcpy(s); s->base64[0] = '\0'; if (B64LEN(s->digestlen) >= sizeof(s->base64)) return(s->base64); for (n = s->digestlen, q = s->digest; n > 3; n -= 3, q += 3) { encbase64(q, 3, out); strcat(s->base64, out); } encbase64(q, n, out); strcat(s->base64, out); return(s->base64); } /* shadsize: returns length of digest in bytes */ int shadsize(SHA *s) { return(s->digestlen); } /* shadup: duplicates current digest object */ SHA *shadup(SHA *s) { SHA *p; SHA_new(0, p, 1, SHA); if (p == NULL) return(NULL); memcpy(p, s, sizeof(SHA)); return(p); } /* shadump: dumps digest object to a human-readable ASCII file */ int shadump(char *file, SHA *s) { int i, j; SHA_FILE *f; UCHR *p = shadigest(s); if (file == NULL || strlen(file) == 0) f = SHA_stdout(); else if ((f = SHA_open(file, "w")) == NULL) return(0); SHA_fprintf(f, "alg:%d\nH", s->alg); for (i = 0; i < 8; i++) for (j = 0; j < (s->alg <= 256 ? 4 : 8); j++) SHA_fprintf(f, "%s%02x", j==0 ? ":" : "", *p++); SHA_fprintf(f, "\nblock"); for (i = 0; i < (int) (s->blocksize >> 3); i++) SHA_fprintf(f, ":%02x", s->block[i]); SHA_fprintf(f, "\nblockcnt:%u\n", s->blockcnt); SHA_fprintf(f, "lenhh:%lu\nlenhl:%lu\nlenlh:%lu\nlenll:%lu\n", (ULNG) LO32(s->lenhh), (ULNG) LO32(s->lenhl), (ULNG) LO32(s->lenlh), (ULNG) LO32(s->lenll)); if (f != SHA_stdout()) SHA_close(f); return(1); } /* fgetstr: reads (and returns pointer to) next line of file */ static char *fgetstr(char *line, UINT maxsize, SHA_FILE *f) { char *p; if (SHA_feof(f) || maxsize == 0) return(NULL); for (p = line; !SHA_feof(f) && maxsize > 1; maxsize--) if ((*p++ = SHA_getc(f)) == '\n') break; *p = '\0'; return(line); } /* empty: returns true if line contains only whitespace characters */ static int empty(char *line) { char *p; for (p = line; *p; p++) if (!isspace(*p)) return(0); return(1); } /* getval: null-terminates field value, and sets pointer to rest of line */ static char *getval(char *line, char **pprest) { char *p, *v; for (v = line; *v == ':' || isspace(*v); v++) ; for (p = v; *p; p++) { if (*p == ':' || isspace(*p)) { *p++ = '\0'; break; } } *pprest = p; return(p == v ? NULL : v); } /* types of values present in dump file */ #define T_C 1 /* character */ #define T_I 2 /* normal integer */ #define T_L 3 /* 32-bit value */ #define T_Q 4 /* 64-bit value */ /* ldvals: checks next line in dump file against tag, and loads values */ static int ldvals( SHA_FILE *f, const char *tag, int type, void *pval, int reps, int base) { char *p, *pr, line[512]; UCHR *pc = (UCHR *) pval; UINT *pi = (UINT *) pval; W32 *pl = (W32 *) pval; W64 *pq = (W64 *) pval; while ((p = fgetstr(line, sizeof(line), f)) != NULL) if (line[0] != '#' && !empty(line)) break; if (p == NULL || strcmp(getval(line, &pr), tag) != 0) return(0); while (reps-- > 0) { if ((p = getval(pr, &pr)) == NULL) return(1); switch (type) { case T_C: *pc++ = (UCHR) strtoul(p, NULL, base); break; case T_I: *pi++ = (UINT) strtoul(p, NULL, base); break; case T_L: *pl++ = (W32 ) strtoul(p, NULL, base); break; case T_Q: *pq++ = (W64 ) strto64(p ); break; } } return(1); } /* closeall: closes dump file and de-allocates digest object */ static SHA *closeall(SHA_FILE *f, SHA *s) { if (f != NULL && f != SHA_stdin()) SHA_close(f); if (s != NULL) shaclose(s); return(NULL); } /* shaload: creates digest object corresponding to contents of dump file */ SHA *shaload(char *file) { int alg; SHA *s = NULL; SHA_FILE *f; if (file == NULL || strlen(file) == 0) f = SHA_stdin(); else if ((f = SHA_open(file, "r")) == NULL) return(NULL); if ( /* avoid parens by exploiting precedence of (type)&-> */ !ldvals(f,"alg",T_I,(VP)&alg,1,10) || ((s = shaopen(alg)) == NULL) || !ldvals(f,"H",alg<=SHA256?T_L:T_Q,(VP)s->H,8,16) || !ldvals(f,"block",T_C,(VP)s->block,s->blocksize/8,16) || !ldvals(f,"blockcnt",T_I,(VP)&s->blockcnt,1,10) || (alg <= SHA256 && s->blockcnt >= SHA1_BLOCK_BITS) || (alg >= SHA384 && s->blockcnt >= SHA384_BLOCK_BITS) || !ldvals(f,"lenhh",T_L,(VP)&s->lenhh,1,10) || !ldvals(f,"lenhl",T_L,(VP)&s->lenhl,1,10) || !ldvals(f,"lenlh",T_L,(VP)&s->lenlh,1,10) || !ldvals(f,"lenll",T_L,(VP)&s->lenll,1,10) ) return(closeall(f, s)); if (f != SHA_stdin()) SHA_close(f); return(s); } /* shaclose: de-allocates digest object */ int shaclose(SHA *s) { if (s != NULL) { memset(s, 0, sizeof(SHA)); SHA_free(s); } return(0); }