#!/usr/bin/perl # # A tool for analysing the performance of the code snippets found in # t/perf/benchmarks or similar =head1 NAME bench.pl - Compare the performance of perl code snippets across multiple perls. =head1 SYNOPSIS # Basic: run the tests in t/perf/benchmarks against two or # more perls bench.pl [options] perl1[=label1] perl2[=label2] ... # Run bench.pl's own built-in sanity tests bench.pl --action=selftest =head1 DESCRIPTION By default, F will run code snippets found in F (or similar) under cachegrind, in order to calculate how many instruction reads, data writes, branches, cache misses, etc. that one execution of the snippet uses. It will run them against two or more perl executables and show how much each test has gotten better or worse. It is modelled on the F tool, but since it measures instruction reads etc., rather than timings, it is much more precise and reproducible. It is also considerably faster, and is capable or running tests in parallel (with C<-j>). Rather than displaying a single relative percentage per test/perl combination, it displays values for 13 different measurements, such as instruction reads, conditional branch misses etc. There are options to write the raw data to a file, and to read it back. This means that you can view the same run data in different views with different selection and sort options. The optional C<=label> after each perl executable is used in the display output. =head1 OPTIONS =over 4 =item * --action=I What action to perform. The default is I, which runs the benchmarks using I as the back end. The only other action at the moment is I, which runs some basic sanity checks and produces TAP output. =item * --average Only display the overall average, rather than the results for each individual test. =item * --benchfile=I The path of the file which contains the benchmarks (F by default). =item * --bisect=I Run a single test against one perl and exit with a zero status if the named field is in the specified range; exit 1 otherwise. It will complain if more than one test or perl has been specified. It is intended to be called as part of a bisect run, to determine when something changed. For example, bench.pl -j 8 --tests=foo --bisect=Ir,100,105 --perlargs=-Ilib \ ./miniperl might be called from bisect to find when the number of instruction reads for test I falls outside the range 100..105. =item * --debug Enable verbose debugging output. =item * --fields=I Display only the specified fields; for example, --fields=Ir,Ir_m,Ir_mm If only one field is selected, the output is in more compact form. =item * --grindargs=I Optional command-line arguments to pass to cachegrind invocations. =item * ---help Display basic usage information. =item * -j I --jobs=I Run I jobs in parallel (default 1). This determines how many cachegrind process will running at a time, and should generally be set to the number of CPUs available. =item * --norm=I Specify which perl column in the output to treat as the 100% norm. It may be a column number (0..N-1) or a perl executable name or label. It defaults to the leftmost column. =item * --perlargs=I Optional command-line arguments to pass to each perl that is run as part of a cachegrind session. For example, C<--perlargs=-Ilib>. =item * --raw Display raw data counts rather than percentages in the outputs. This allows you to see the exact number of intruction reads, branch misses etc. for each test/perl combination. It also causes the C display per field to be calculated based on the average of each tests's count rather than average of each percentage. This means that tests with very high counts will dominate. =item * --sort=I Order the tests in the output based on the value of I in the column I. The I value is as per C<--norm>. For example bench.pl --sort=Dw:perl-5.20.0 \ perl-5.16.0 perl-5.18.0 perl-5.20.0 =item * -r I --read=I Read in saved data from a previous C<--write> run from the specified file. Requires C to be available. =item * --tests=I Specify a subset of tests to run (or in the case of C<--read>, to display). It may be either a comma-separated list of test names, or a regular expression. For example --tests=expr::assign::scalar_lex,expr::assign::2list_lex --tests=/^expr::/ =item * --verbose Display progress information. =item * -w I --write=I Save the raw data to the specified file. It can be read back later with C<--read>. Requires C to be available. =back =cut use 5.010000; use warnings; use strict; use Getopt::Long qw(:config no_auto_abbrev); use IPC::Open2 (); use IO::Select; use IO::File; use POSIX ":sys_wait_h"; # The version of the file format used to save data. We refuse to process # the file if the integer component differs. my $FORMAT_VERSION = 1.0; # The fields we know about my %VALID_FIELDS = map { $_ => 1 } qw(Ir Ir_m1 Ir_mm Dr Dr_m1 Dr_mm Dw Dw_m1 Dw_mm COND COND_m IND IND_m); sub usage { die < 'grind', average => 0, benchfile => 't/perf/benchmarks', bisect => undef, debug => 0, grindargs => '', fields => undef, jobs => 1, norm => 0, perlargs => '', raw => 0, read => undef, sort => undef, tests => undef, verbose => 0, write => undef, ); # process command-line args and call top-level action { GetOptions( 'action=s' => \$OPTS{action}, 'average' => \$OPTS{average}, 'benchfile=s' => \$OPTS{benchfile}, 'bisect=s' => \$OPTS{bisect}, 'debug' => \$OPTS{debug}, 'grindargs=s' => \$OPTS{grindargs}, 'help' => \$OPTS{help}, 'fields=s' => \$OPTS{fields}, 'jobs|j=i' => \$OPTS{jobs}, 'norm=s' => \$OPTS{norm}, 'perlargs=s' => \$OPTS{perlargs}, 'raw' => \$OPTS{raw}, 'read|r=s' => \$OPTS{read}, 'sort=s' => \$OPTS{sort}, 'tests=s' => \$OPTS{tests}, 'verbose' => \$OPTS{verbose}, 'write|w=s' => \$OPTS{write}, ) or usage; usage if $OPTS{help}; if (defined $OPTS{read} and defined $OPTS{write}) { die "Error: can't specify both --read and --write options\n"; } if (defined $OPTS{read} or defined $OPTS{write}) { # fail early if it's not present require JSON::PP; } if (defined $OPTS{fields}) { my @f = split /,/, $OPTS{fields}; for (@f) { die "Error: --fields: unknown field '$_'\n" unless $VALID_FIELDS{$_}; } my %f = map { $_ => 1 } @f; $OPTS{fields} = \%f; } my %valid_actions = qw(grind 1 selftest 1); unless ($valid_actions{$OPTS{action}}) { die "Error: unrecognised action '$OPTS{action}'\n" . "must be one of: " . join(', ', sort keys %valid_actions)."\n"; } if (defined $OPTS{sort}) { my @s = split /:/, $OPTS{sort}; if (@s != 2) { die "Error: --sort argument should be of the form field:perl: " . "'$OPTS{sort}'\n"; } my ($field, $perl) = @s; die "Error: --sort: unknown field '$field\n" unless $VALID_FIELDS{$field}; # the 'perl' value will be validated later, after we have processed # the perls $OPTS{'sort-field'} = $field; $OPTS{'sort-perl'} = $perl; } if ($OPTS{action} eq 'selftest') { if (@ARGV) { die "Error: no perl executables may be specified with --read\n" } } elsif (defined $OPTS{bisect}) { die "Error: exactly one perl executable must be specified for bisect\n" unless @ARGV == 1; die "Error: Can't specify both --bisect and --read\n" if defined $OPTS{read}; die "Error: Can't specify both --bisect and --write\n" if defined $OPTS{write}; } elsif (defined $OPTS{read}) { if (@ARGV) { die "Error: no perl executables may be specified with --read\n" } } elsif ($OPTS{raw}) { unless (@ARGV) { die "Error: at least one perl executable must be specified\n"; } } else { unless (@ARGV >= 2) { die "Error: at least two perl executables must be specified\n"; } } if ($OPTS{action} eq 'grind') { do_grind(\@ARGV); } elsif ($OPTS{action} eq 'selftest') { do_selftest(); } } exit 0; # Given a hash ref keyed by test names, filter it by deleting unwanted # tests, based on $OPTS{tests}. sub filter_tests { my ($tests) = @_; my $opt = $OPTS{tests}; return unless defined $opt; my @tests; if ($opt =~ m{^/}) { $opt =~ s{^/(.+)/$}{$1} or die "Error: --tests regex must be of the form /.../\n"; for (keys %$tests) { delete $tests->{$_} unless /$opt/; } } else { my %t; for (split /,/, $opt) { die "Error: no such test found: '$_'\n" unless exists $tests->{$_}; $t{$_} = 1; } for (keys %$tests) { delete $tests->{$_} unless exists $t{$_}; } } } # Read in the test file, and filter out any tests excluded by $OPTS{tests} sub read_tests_file { my ($file) = @_; my $ta = do $file; unless ($ta) { die "Error: can't parse '$file': $@\n" if $@; die "Error: can't read '$file': $!\n"; } my $t = { @$ta }; filter_tests($t); return $t; } # Process the perl/column argument of options like --norm and --sort. # Return the index of the matching perl. sub select_a_perl { my ($perl, $perls, $who) = @_; if ($perl =~ /^[0-9]$/) { die "Error: $who value $perl outside range 0.." . $#$perls . "\n" unless $perl < @$perls; return $perl; } else { my @perl = grep $perls->[$_][0] eq $perl || $perls->[$_][1] eq $perl, 0..$#$perls; die "Error: $who: unrecognised perl '$perl'\n" unless @perl; die "Error: $who: ambiguous perl '$perl'\n" if @perl > 1; return $perl[0]; } } # Validate the list of perl=label on the command line. # Return a list of [ exe, label ] pairs. sub process_perls { my @results; for my $p (@_) { my ($perl, $label) = split /=/, $p, 2; $label //= $perl; my $r = qx($perl -e 'print qq(ok\n)' 2>&1); die "Error: unable to execute '$perl': $r" if $r ne "ok\n"; push @results, [ $perl, $label ]; } return @results; } # Return a string containing perl test code wrapped in a loop # that runs $ARGV[0] times sub make_perl_prog { my ($test, $desc, $setup, $code) = @_; return < $bisect_max; } if (defined $OPTS{read}) { open my $in, '<:encoding(UTF-8)', $OPTS{read} or die " Error: can't open $OPTS{read} for reading: $!\n"; my $data = do { local $/; <$in> }; close $in; my $hash = JSON::PP::decode_json($data); if (int($FORMAT_VERSION) < int($hash->{version})) { die "Error: unsupported version $hash->{version} in file" . "'$OPTS{read}' (too new)\n"; } ($loop_counts, $perls, $results, $tests) = @$hash{qw(loop_counts perls results tests)}; filter_tests($results); filter_tests($tests); } else { # How many times to execute the loop for the two trials. The lower # value is intended to do the loop enough times that branch # prediction has taken hold; the higher loop allows us to see the # branch misses after that $loop_counts = [10, 20]; $tests = read_tests_file($OPTS{benchfile}); die "Error: only a single test may be specified with --bisect\n" if defined $OPTS{bisect} and keys %$tests != 1; $perls = [ process_perls(@$perl_args) ]; $results = grind_run($tests, $perls, $loop_counts); } # now that we have a list of perls, use it to process the # 'perl' component of the --norm and --sort args $OPTS{norm} = select_a_perl($OPTS{norm}, $perls, "--norm"); if (defined $OPTS{'sort-perl'}) { $OPTS{'sort-perl'} = select_a_perl($OPTS{'sort-perl'}, $perls, "--sort"); } if (defined $OPTS{write}) { my $json = JSON::PP::encode_json({ version => $FORMAT_VERSION, loop_counts => $loop_counts, perls => $perls, results => $results, tests => $tests, }); open my $out, '>:encoding(UTF-8)', $OPTS{write} or die " Error: can't open $OPTS{write} for writing: $!\n"; print $out $json or die "Error: writing to file '$OPTS{write}': $!\n"; close $out or die "Error: closing file '$OPTS{write}': $!\n"; } else { my ($processed, $averages) = grind_process($results, $perls, $loop_counts); if (defined $OPTS{bisect}) { my @r = values %$results; die "Panic: expected exactly one test result in bisect\n" if @r != 1; @r = values %{$r[0]}; die "Panic: expected exactly one perl result in bisect\n" if @r != 1; my $c = $r[0]{$bisect_field}; die "Panic: no result in bisect for field '$bisect_field'\n" unless defined $c; exit 0 if $bisect_min <= $c and $c <= $bisect_max; exit 1; } else { grind_print($processed, $averages, $perls, $tests); } } } # Run cachegrind for every test/perl combo. # It may run several processes in parallel when -j is specified. # Return a hash ref suitable for input to grind_process() sub grind_run { my ($tests, $perls, $counts) = @_; # Build a list of all the jobs to run my @jobs; for my $test (sort keys %$tests) { # Create two test progs: one with an empty loop and one with code. # Note that the empty loop is actually '{1;}' rather than '{}'; # this causes the loop to have a single nextstate rather than a # stub op, so more closely matches the active loop; e.g.: # {1;} => nextstate; unstack # {$x=1;} => nextstate; const; gvsv; sassign; unstack my @prog = ( make_perl_prog($test, @{$tests->{$test}}{qw(desc setup)}, '1'), make_perl_prog($test, @{$tests->{$test}}{qw(desc setup code)}), ); for my $p (@$perls) { my ($perl, $label) = @$p; # Run both the empty loop and the active loop # $counts->[0] and $counts->[1] times. for my $i (0,1) { for my $j (0,1) { my $cmd = "PERL_HASH_SEED=0 " . "valgrind --tool=cachegrind --branch-sim=yes " . "--cachegrind-out-file=/dev/null " . "$OPTS{grindargs} " . "$perl $OPTS{perlargs} - $counts->[$j] 2>&1"; # for debugging and error messages my $id = "$test/$perl " . ($i ? "active" : "empty") . "/" . ($j ? "long" : "short") . " loop"; push @jobs, { test => $test, perl => $perl, plabel => $label, cmd => $cmd, prog => $prog[$i], active => $i, loopix => $j, id => $id, }; } } } } # Execute each cachegrind and store the results in %results. local $SIG{PIPE} = 'IGNORE'; my $max_jobs = $OPTS{jobs}; my $running = 0; # count of executing jobs my %pids; # map pids to jobs my %fds; # map fds to jobs my %results; my $select = IO::Select->new(); while (@jobs or $running) { if ($OPTS{debug}) { printf "Main loop: pending=%d running=%d\n", scalar(@jobs), $running; } # Start new jobs while (@jobs && $running < $max_jobs) { my $job = shift @jobs; my ($id, $cmd) =@$job{qw(id cmd)}; my ($in, $out, $pid); warn "Starting $id\n" if $OPTS{verbose}; eval { $pid = IPC::Open2::open2($out, $in, $cmd); 1; } or die "Error: while starting cachegrind subprocess" ." for $id:\n$@"; $running++; $pids{$pid} = $job; $fds{"$out"} = $job; $job->{out_fd} = $out; $job->{output} = ''; $job->{pid} = $pid; $out->blocking(0); $select->add($out); if ($OPTS{debug}) { print "Started pid $pid for $id\n"; } # Note: # In principle we should write to $in in the main select loop, # since it may block. In reality, # a) the code we write to the perl process's stdin is likely # to be less than the OS's pipe buffer size; # b) by the time the perl process has read in all its stdin, # the only output it should have generated is a few lines # of cachegrind output preamble. # If these assumptions change, then perform the following print # in the select loop instead. print $in $job->{prog}; close $in; } # Get output of running jobs if ($OPTS{debug}) { printf "Select: waiting on (%s)\n", join ', ', sort { $a <=> $b } map $fds{$_}{pid}, $select->handles; } my @ready = $select->can_read; if ($OPTS{debug}) { printf "Select: pids (%s) ready\n", join ', ', sort { $a <=> $b } map $fds{$_}{pid}, @ready; } unless (@ready) { die "Panic: select returned no file handles\n"; } for my $fd (@ready) { my $j = $fds{"$fd"}; my $r = sysread $fd, $j->{output}, 8192, length($j->{output}); unless (defined $r) { die "Panic: Read from process running $j->{id} gave:\n$!"; } next if $r; # EOF if ($OPTS{debug}) { print "Got eof for pid $fds{$fd}{pid} ($j->{id})\n"; } $select->remove($j->{out_fd}); close($j->{out_fd}) or die "Panic: closing output fh on $j->{id} gave:\n$!\n"; $running--; delete $fds{"$j->{out_fd}"}; my $output = $j->{output}; if ($OPTS{debug}) { my $p = $j->{prog}; $p =~ s/^/ : /mg; my $o = $output; $o =~ s/^/ : /mg; print "\n$j->{id}/\nCommand: $j->{cmd}\n" . "Input:\n$p" . "Output\n$o"; } $results{$j->{test}}{$j->{perl}}[$j->{active}][$j->{loopix}] = parse_cachegrind($output, $j->{id}, $j->{perl}); } # Reap finished jobs while (1) { my $kid = waitpid(-1, WNOHANG); my $ret = $?; last if $kid <= 0; unless (exists $pids{$kid}) { die "Panic: reaped unexpected child $kid"; } my $j = $pids{$kid}; if ($ret) { die sprintf("Error: $j->{id} gave return status 0x%04x\n", $ret) . "with the following output\n:$j->{output}\n"; } delete $pids{$kid}; } } return \%results; } # grind_process(): process the data that has been extracted from # cachgegrind's output. # # $res is of the form ->{benchmark_name}{perl_name}[active][count]{field_name}, # where active is 0 or 1 indicating an empty or active loop, # count is 0 or 1 indicating a short or long loop. E.g. # # $res->{'expr::assign::scalar_lex'}{perl-5.21.1}[0][10]{Dw_mm} # # The $res data structure is modified in-place by this sub. # # $perls is [ [ perl-exe, perl-label], .... ]. # # $counts is [ N, M ] indicating the counts for the short and long loops. # # # return \%output, \%averages, where # # $output{benchmark_name}{perl_name}{field_name} = N # $averages{perl_name}{field_name} = M # # where N is the raw count ($OPTS{raw}), or count_perl0/count_perlI otherwise; # M is the average raw count over all tests ($OPTS{raw}), or # 1/(sum(count_perlI/count_perl0)/num_tests) otherwise. sub grind_process { my ($res, $perls, $counts) = @_; # Process the four results for each test/perf combo: # Convert # $res->{benchmark_name}{perl_name}[active][count]{field_name} = n # to # $res->{benchmark_name}{perl_name}{field_name} = averaged_n # # $r[0][1] - $r[0][0] is the time to do ($counts->[1]-$counts->[0]) # empty loops, eliminating startup time # $r[1][1] - $r[1][0] is the time to do ($counts->[1]-$counts->[0]) # active loops, eliminating startup time # (the two startup times may be different because different code # is being compiled); the difference of the two results above # divided by the count difference is the time to execute the # active code once, eliminating both startup and loop overhead. for my $tests (values %$res) { for my $r (values %$tests) { my $r2; for (keys %{$r->[0][0]}) { my $n = ( ($r->[1][1]{$_} - $r->[1][0]{$_}) - ($r->[0][1]{$_} - $r->[0][0]{$_}) ) / ($counts->[1] - $counts->[0]); $r2->{$_} = $n; } $r = $r2; } } my %totals; my %counts; my %data; my $perl_norm = $perls->[$OPTS{norm}][0]; # the name of the reference perl for my $test_name (keys %$res) { my $res1 = $res->{$test_name}; my $res2_norm = $res1->{$perl_norm}; for my $perl (keys %$res1) { my $res2 = $res1->{$perl}; for my $field (keys %$res2) { my ($p, $q) = ($res2_norm->{$field}, $res2->{$field}); if ($OPTS{raw}) { # Avoid annoying '-0.0' displays. Ideally this number # should never be negative, but fluctuations in # startup etc can theoretically make this happen $q = 0 if ($q <= 0 && $q > -0.1); $totals{$perl}{$field} += $q; $counts{$perl}{$field}++; $data{$test_name}{$perl}{$field} = $q; next; } # $p and $q are notionally integer counts, but # due to variations in startup etc, it's possible for a # count which is supposedly zero to be calculated as a # small positive or negative value. # In this case, set it to zero. Further below we # special-case zeros to avoid division by zero errors etc. $p = 0.0 if $p < 0.01; $q = 0.0 if $q < 0.01; if ($p == 0.0 && $q == 0.0) { # Both perls gave a count of zero, so no change: # treat as 100% $totals{$perl}{$field} += 1; $counts{$perl}{$field}++; $data{$test_name}{$perl}{$field} = 1; } elsif ($p == 0.0 || $q == 0.0) { # If either count is zero, there were too few events # to give a meaningful ratio (and we will end up with # division by zero if we try). Mark the result undef, # indicating that it shouldn't be displayed; and skip # adding to the average $data{$test_name}{$perl}{$field} = undef; } else { # For averages, we record q/p rather than p/q. # Consider a test where perl_norm took 1000 cycles # and perlN took 800 cycles. For the individual # results we display p/q, or 1.25; i.e. a quarter # quicker. For the averages, we instead sum all # the 0.8's, which gives the total cycles required to # execute all tests, with all tests given equal # weight. Later we reciprocate the final result, # i.e. 1/(sum(qi/pi)/n) $totals{$perl}{$field} += $q/$p; $counts{$perl}{$field}++; $data{$test_name}{$perl}{$field} = $p/$q; } } } } # Calculate averages based on %totals and %counts accumulated earlier. my %averages; for my $perl (keys %totals) { my $t = $totals{$perl}; for my $field (keys %$t) { $averages{$perl}{$field} = $OPTS{raw} ? $t->{$field} / $counts{$perl}{$field} # reciprocal - see comments above : $counts{$perl}{$field} / $t->{$field}; } } return \%data, \%averages; } # grind_print(): display the tabulated results of all the cachegrinds. # # Arguments are of the form: # $results->{benchmark_name}{perl_name}{field_name} = N # $averages->{perl_name}{field_name} = M # $perls = [ [ perl-exe, perl-label ], ... ] # $tests->{test_name}{desc => ..., ...} sub grind_print { my ($results, $averages, $perls, $tests) = @_; my @perl_names = map $_->[0], @$perls; my %perl_labels; $perl_labels{$_->[0]} = $_->[1] for @$perls; my $field_label_width = 6; # Calculate the width to display for each column. my $min_width = $OPTS{raw} ? 8 : 6; my @widths = map { length($_) < $min_width ? $min_width : length($_) } @perl_labels{@perl_names}; # Print header. print <[$perlix][0]; @test_names = sort { $results->{$a}{$perl}{$field} <=> $results->{$b}{$perl}{$field} } keys %$results; } else { @test_names = sort(keys %$results); } } # No point in displaying average for only one test. push @test_names, 'AVERAGE' unless @test_names == 1; # If only a single field is to be displayed, use a more compact # format with only a single line of output per test. my $one_field = defined $OPTS{fields} && keys(%{$OPTS{fields}}) == 1; if ($one_field) { print "Results for field " . (keys(%{$OPTS{fields}}))[0] . ".\n"; # The first column will now contain test names rather than # field names; Calculate the max width. $field_label_width = 0; for (@test_names) { $field_label_width = length if length > $field_label_width; } # Print the perl executables header. print "\n"; for my $i (0,1) { print " " x $field_label_width; for (0..$#widths) { printf " %*s", $widths[$_], $i ? ('-' x$widths[$_]) : $perl_labels{$perl_names[$_]}; } print "\n"; } } # Dump the results for each test. for my $test_name (@test_names) { my $doing_ave = ($test_name eq 'AVERAGE'); my $res1 = $doing_ave ? $averages : $results->{$test_name}; unless ($one_field) { print "\n$test_name"; print "\n$tests->{$test_name}{desc}" unless $doing_ave; print "\n\n"; # Print the perl executables header. for my $i (0,1) { print " " x $field_label_width; for (0..$#widths) { printf " %*s", $widths[$_], $i ? ('-' x$widths[$_]) : $perl_labels{$perl_names[$_]}; } print "\n"; } } for my $field (qw(Ir Dr Dw COND IND N COND_m IND_m N Ir_m1 Dr_m1 Dw_m1 N Ir_mm Dr_mm Dw_mm )) { next if $OPTS{fields} and ! exists $OPTS{fields}{$field}; if ($field eq 'N') { print "\n"; next; } if ($one_field) { printf "%-*s", $field_label_width, $test_name; } else { printf "%*s", $field_label_width, $field; } for my $i (0..$#widths) { my $res2 = $res1->{$perl_names[$i]}; my $p = $res2->{$field}; if (!defined $p) { printf " %*s", $widths[$i], '-'; } elsif ($OPTS{raw}) { printf " %*.1f", $widths[$i], $p; } else { printf " %*.2f", $widths[$i], $p * 100; } } print "\n"; } } } # do_selftest(): check that we can parse known cachegrind() # output formats. If the output of cachegrind changes, add a *new* # test here; keep the old tests to make sure we continue to parse # old cachegrinds sub do_selftest { my @tests = ( 'standard', <<'EOF', ==32350== Cachegrind, a cache and branch-prediction profiler ==32350== Copyright (C) 2002-2013, and GNU GPL'd, by Nicholas Nethercote et al. ==32350== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info ==32350== Command: perl5211o /tmp/uiS2gjdqe5 1 ==32350== --32350-- warning: L3 cache found, using its data for the LL simulation. ==32350== ==32350== I refs: 1,124,055 ==32350== I1 misses: 5,573 ==32350== LLi misses: 3,338 ==32350== I1 miss rate: 0.49% ==32350== LLi miss rate: 0.29% ==32350== ==32350== D refs: 404,275 (259,191 rd + 145,084 wr) ==32350== D1 misses: 9,608 ( 6,098 rd + 3,510 wr) ==32350== LLd misses: 5,794 ( 2,781 rd + 3,013 wr) ==32350== D1 miss rate: 2.3% ( 2.3% + 2.4% ) ==32350== LLd miss rate: 1.4% ( 1.0% + 2.0% ) ==32350== ==32350== LL refs: 15,181 ( 11,671 rd + 3,510 wr) ==32350== LL misses: 9,132 ( 6,119 rd + 3,013 wr) ==32350== LL miss rate: 0.5% ( 0.4% + 2.0% ) ==32350== ==32350== Branches: 202,372 (197,050 cond + 5,322 ind) ==32350== Mispredicts: 19,153 ( 17,742 cond + 1,411 ind) ==32350== Mispred rate: 9.4% ( 9.0% + 26.5% ) EOF { COND => 197050, COND_m => 17742, Dr => 259191, Dr_m1 => 6098, Dr_mm => 2781, Dw => 145084, Dw_m1 => 3510, Dw_mm => 3013, IND => 5322, IND_m => 1411, Ir => 1124055, Ir_m1 => 5573, Ir_mm => 3338, }, ); for ('t', '.') { last if require "$_/test.pl"; } plan(@tests / 3 * keys %VALID_FIELDS); while (@tests) { my $desc = shift @tests; my $output = shift @tests; my $expected = shift @tests; my $p = parse_cachegrind($output); for (sort keys %VALID_FIELDS) { is($p->{$_}, $expected->{$_}, "$desc, $_"); } } }