/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright 2005 Nokia. All rights reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ssl_local.h" #include "record/record_local.h" #include "internal/ktls.h" #include "internal/cryptlib.h" #include #include #include #include #include #include #include /* seed1 through seed5 are concatenated */ static int tls1_PRF(SSL_CONNECTION *s, const void *seed1, size_t seed1_len, const void *seed2, size_t seed2_len, const void *seed3, size_t seed3_len, const void *seed4, size_t seed4_len, const void *seed5, size_t seed5_len, const unsigned char *sec, size_t slen, unsigned char *out, size_t olen, int fatal) { const EVP_MD *md = ssl_prf_md(s); EVP_KDF *kdf; EVP_KDF_CTX *kctx = NULL; OSSL_PARAM params[8], *p = params; const char *mdname; if (md == NULL) { /* Should never happen */ if (fatal) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); else ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); return 0; } kdf = EVP_KDF_fetch(SSL_CONNECTION_GET_CTX(s)->libctx, OSSL_KDF_NAME_TLS1_PRF, SSL_CONNECTION_GET_CTX(s)->propq); if (kdf == NULL) goto err; kctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf); if (kctx == NULL) goto err; mdname = EVP_MD_get0_name(md); *p++ = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, (char *)mdname, 0); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SECRET, (unsigned char *)sec, (size_t)slen); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void *)seed1, (size_t)seed1_len); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void *)seed2, (size_t)seed2_len); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void *)seed3, (size_t)seed3_len); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void *)seed4, (size_t)seed4_len); *p++ = OSSL_PARAM_construct_octet_string(OSSL_KDF_PARAM_SEED, (void *)seed5, (size_t)seed5_len); *p = OSSL_PARAM_construct_end(); if (EVP_KDF_derive(kctx, out, olen, params)) { EVP_KDF_CTX_free(kctx); return 1; } err: if (fatal) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); else ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); EVP_KDF_CTX_free(kctx); return 0; } static int tls1_generate_key_block(SSL_CONNECTION *s, unsigned char *km, size_t num) { int ret; /* Calls SSLfatal() as required */ ret = tls1_PRF(s, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE, s->s3.server_random, SSL3_RANDOM_SIZE, s->s3.client_random, SSL3_RANDOM_SIZE, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, km, num, 1); return ret; } int tls_provider_set_tls_params(SSL_CONNECTION *s, EVP_CIPHER_CTX *ctx, const EVP_CIPHER *ciph, const EVP_MD *md) { /* * Provided cipher, the TLS padding/MAC removal is performed provider * side so we need to tell the ctx about our TLS version and mac size */ OSSL_PARAM params[3], *pprm = params; size_t macsize = 0; int imacsize = -1; if ((EVP_CIPHER_get_flags(ciph) & EVP_CIPH_FLAG_AEAD_CIPHER) == 0 /* * We look at s->ext.use_etm instead of SSL_READ_ETM() or * SSL_WRITE_ETM() because this test applies to both reading * and writing. */ && !s->ext.use_etm) imacsize = EVP_MD_get_size(md); if (imacsize >= 0) macsize = (size_t)imacsize; *pprm++ = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION, &s->version); *pprm++ = OSSL_PARAM_construct_size_t(OSSL_CIPHER_PARAM_TLS_MAC_SIZE, &macsize); *pprm = OSSL_PARAM_construct_end(); if (!EVP_CIPHER_CTX_set_params(ctx, params)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; } static int tls_iv_length_within_key_block(const EVP_CIPHER *c) { /* If GCM/CCM mode only part of IV comes from PRF */ if (EVP_CIPHER_get_mode(c) == EVP_CIPH_GCM_MODE) return EVP_GCM_TLS_FIXED_IV_LEN; else if (EVP_CIPHER_get_mode(c) == EVP_CIPH_CCM_MODE) return EVP_CCM_TLS_FIXED_IV_LEN; else return EVP_CIPHER_get_iv_length(c); } int tls1_change_cipher_state(SSL_CONNECTION *s, int which) { unsigned char *p, *mac_secret; unsigned char *key, *iv; const EVP_CIPHER *c; const SSL_COMP *comp = NULL; const EVP_MD *m; int mac_type; size_t mac_secret_size; size_t n, i, j, k, cl; int iivlen; /* * Taglen is only relevant for CCM ciphersuites. Other ciphersuites * ignore this value so we can default it to 0. */ size_t taglen = 0; int direction; c = s->s3.tmp.new_sym_enc; m = s->s3.tmp.new_hash; mac_type = s->s3.tmp.new_mac_pkey_type; #ifndef OPENSSL_NO_COMP comp = s->s3.tmp.new_compression; #endif p = s->s3.tmp.key_block; i = mac_secret_size = s->s3.tmp.new_mac_secret_size; cl = EVP_CIPHER_get_key_length(c); j = cl; iivlen = tls_iv_length_within_key_block(c); if (iivlen < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } k = iivlen; if ((which == SSL3_CHANGE_CIPHER_CLIENT_WRITE) || (which == SSL3_CHANGE_CIPHER_SERVER_READ)) { mac_secret = &(p[0]); n = i + i; key = &(p[n]); n += j + j; iv = &(p[n]); n += k + k; } else { n = i; mac_secret = &(p[n]); n += i + j; key = &(p[n]); n += j + k; iv = &(p[n]); n += k; } if (n > s->s3.tmp.key_block_length) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } switch (EVP_CIPHER_get_mode(c)) { case EVP_CIPH_GCM_MODE: taglen = EVP_GCM_TLS_TAG_LEN; break; case EVP_CIPH_CCM_MODE: if ((s->s3.tmp.new_cipher->algorithm_enc & (SSL_AES128CCM8 | SSL_AES256CCM8)) != 0) taglen = EVP_CCM8_TLS_TAG_LEN; else taglen = EVP_CCM_TLS_TAG_LEN; break; default: if (EVP_CIPHER_is_a(c, "CHACHA20-POLY1305")) { taglen = EVP_CHACHAPOLY_TLS_TAG_LEN; } else { /* MAC secret size corresponds to the MAC output size */ taglen = s->s3.tmp.new_mac_secret_size; } break; } if (which & SSL3_CC_READ) { if (s->ext.use_etm) s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_READ; else s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_READ; if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM; if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE) s->mac_flags |= SSL_MAC_FLAG_READ_MAC_TLSTREE; else s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_TLSTREE; direction = OSSL_RECORD_DIRECTION_READ; } else { if (s->ext.use_etm) s->s3.flags |= TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE; else s->s3.flags &= ~TLS1_FLAGS_ENCRYPT_THEN_MAC_WRITE; if (s->s3.tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC) s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM; else s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM; if (s->s3.tmp.new_cipher->algorithm2 & TLS1_TLSTREE) s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_TLSTREE; else s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_TLSTREE; direction = OSSL_RECORD_DIRECTION_WRITE; } if (!ssl_set_new_record_layer(s, s->version, direction, OSSL_RECORD_PROTECTION_LEVEL_APPLICATION, NULL, 0, key, cl, iv, (size_t)k, mac_secret, mac_secret_size, c, taglen, mac_type, m, comp, NULL)) { /* SSLfatal already called */ goto err; } OSSL_TRACE_BEGIN(TLS) { BIO_printf(trc_out, "which = %04X, key:\n", which); BIO_dump_indent(trc_out, key, EVP_CIPHER_get_key_length(c), 4); BIO_printf(trc_out, "iv:\n"); BIO_dump_indent(trc_out, iv, k, 4); } OSSL_TRACE_END(TLS); return 1; err: return 0; } int tls1_setup_key_block(SSL_CONNECTION *s) { unsigned char *p; const EVP_CIPHER *c; const EVP_MD *hash; SSL_COMP *comp; int mac_type = NID_undef; size_t num, mac_secret_size = 0; int ret = 0; int ivlen; if (s->s3.tmp.key_block_length != 0) return 1; if (!ssl_cipher_get_evp(SSL_CONNECTION_GET_CTX(s), s->session, &c, &hash, &mac_type, &mac_secret_size, &comp, s->ext.use_etm)) { /* Error is already recorded */ SSLfatal_alert(s, SSL_AD_INTERNAL_ERROR); return 0; } ssl_evp_cipher_free(s->s3.tmp.new_sym_enc); s->s3.tmp.new_sym_enc = c; ssl_evp_md_free(s->s3.tmp.new_hash); s->s3.tmp.new_hash = hash; s->s3.tmp.new_mac_pkey_type = mac_type; s->s3.tmp.new_mac_secret_size = mac_secret_size; ivlen = tls_iv_length_within_key_block(c); if (ivlen < 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } num = mac_secret_size + EVP_CIPHER_get_key_length(c) + ivlen; num *= 2; ssl3_cleanup_key_block(s); if ((p = OPENSSL_malloc(num)) == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); goto err; } s->s3.tmp.key_block_length = num; s->s3.tmp.key_block = p; OSSL_TRACE_BEGIN(TLS) { BIO_printf(trc_out, "key block length: %zu\n", num); BIO_printf(trc_out, "client random\n"); BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4); BIO_printf(trc_out, "server random\n"); BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4); BIO_printf(trc_out, "master key\n"); BIO_dump_indent(trc_out, s->session->master_key, s->session->master_key_length, 4); } OSSL_TRACE_END(TLS); if (!tls1_generate_key_block(s, p, num)) { /* SSLfatal() already called */ goto err; } OSSL_TRACE_BEGIN(TLS) { BIO_printf(trc_out, "key block\n"); BIO_dump_indent(trc_out, p, num, 4); } OSSL_TRACE_END(TLS); ret = 1; err: return ret; } size_t tls1_final_finish_mac(SSL_CONNECTION *s, const char *str, size_t slen, unsigned char *out) { size_t hashlen; unsigned char hash[EVP_MAX_MD_SIZE]; size_t finished_size = TLS1_FINISH_MAC_LENGTH; if (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kGOST18) finished_size = 32; if (!ssl3_digest_cached_records(s, 0)) { /* SSLfatal() already called */ return 0; } if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) { /* SSLfatal() already called */ return 0; } if (!tls1_PRF(s, str, slen, hash, hashlen, NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, finished_size, 1)) { /* SSLfatal() already called */ return 0; } OPENSSL_cleanse(hash, hashlen); return finished_size; } int tls1_generate_master_secret(SSL_CONNECTION *s, unsigned char *out, unsigned char *p, size_t len, size_t *secret_size) { if (s->session->flags & SSL_SESS_FLAG_EXTMS) { unsigned char hash[EVP_MAX_MD_SIZE * 2]; size_t hashlen; /* * Digest cached records keeping record buffer (if present): this won't * affect client auth because we're freezing the buffer at the same * point (after client key exchange and before certificate verify) */ if (!ssl3_digest_cached_records(s, 1) || !ssl_handshake_hash(s, hash, sizeof(hash), &hashlen)) { /* SSLfatal() already called */ return 0; } OSSL_TRACE_BEGIN(TLS) { BIO_printf(trc_out, "Handshake hashes:\n"); BIO_dump(trc_out, (char *)hash, hashlen); } OSSL_TRACE_END(TLS); if (!tls1_PRF(s, TLS_MD_EXTENDED_MASTER_SECRET_CONST, TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE, hash, hashlen, NULL, 0, NULL, 0, NULL, 0, p, len, out, SSL3_MASTER_SECRET_SIZE, 1)) { /* SSLfatal() already called */ return 0; } OPENSSL_cleanse(hash, hashlen); } else { if (!tls1_PRF(s, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE, s->s3.client_random, SSL3_RANDOM_SIZE, NULL, 0, s->s3.server_random, SSL3_RANDOM_SIZE, NULL, 0, p, len, out, SSL3_MASTER_SECRET_SIZE, 1)) { /* SSLfatal() already called */ return 0; } } OSSL_TRACE_BEGIN(TLS) { BIO_printf(trc_out, "Premaster Secret:\n"); BIO_dump_indent(trc_out, p, len, 4); BIO_printf(trc_out, "Client Random:\n"); BIO_dump_indent(trc_out, s->s3.client_random, SSL3_RANDOM_SIZE, 4); BIO_printf(trc_out, "Server Random:\n"); BIO_dump_indent(trc_out, s->s3.server_random, SSL3_RANDOM_SIZE, 4); BIO_printf(trc_out, "Master Secret:\n"); BIO_dump_indent(trc_out, s->session->master_key, SSL3_MASTER_SECRET_SIZE, 4); } OSSL_TRACE_END(TLS); *secret_size = SSL3_MASTER_SECRET_SIZE; return 1; } int tls1_export_keying_material(SSL_CONNECTION *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context) { unsigned char *val = NULL; size_t vallen = 0, currentvalpos; int rv = 0; /* * construct PRF arguments we construct the PRF argument ourself rather * than passing separate values into the TLS PRF to ensure that the * concatenation of values does not create a prohibited label. */ vallen = llen + SSL3_RANDOM_SIZE * 2; if (use_context) { vallen += 2 + contextlen; } val = OPENSSL_malloc(vallen); if (val == NULL) goto ret; currentvalpos = 0; memcpy(val + currentvalpos, (unsigned char *)label, llen); currentvalpos += llen; memcpy(val + currentvalpos, s->s3.client_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; memcpy(val + currentvalpos, s->s3.server_random, SSL3_RANDOM_SIZE); currentvalpos += SSL3_RANDOM_SIZE; if (use_context) { val[currentvalpos] = (contextlen >> 8) & 0xff; currentvalpos++; val[currentvalpos] = contextlen & 0xff; currentvalpos++; if ((contextlen > 0) || (context != NULL)) { memcpy(val + currentvalpos, context, contextlen); } } /* * disallow prohibited labels note that SSL3_RANDOM_SIZE > max(prohibited * label len) = 15, so size of val > max(prohibited label len) = 15 and * the comparisons won't have buffer overflow */ if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_EXTENDED_MASTER_SECRET_CONST, TLS_MD_EXTENDED_MASTER_SECRET_CONST_SIZE) == 0) goto err1; if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST, TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1; rv = tls1_PRF(s, val, vallen, NULL, 0, NULL, 0, NULL, 0, NULL, 0, s->session->master_key, s->session->master_key_length, out, olen, 0); goto ret; err1: ERR_raise(ERR_LIB_SSL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL); ret: OPENSSL_clear_free(val, vallen); return rv; } int tls1_alert_code(int code) { switch (code) { case SSL_AD_CLOSE_NOTIFY: return SSL3_AD_CLOSE_NOTIFY; case SSL_AD_UNEXPECTED_MESSAGE: return SSL3_AD_UNEXPECTED_MESSAGE; case SSL_AD_BAD_RECORD_MAC: return SSL3_AD_BAD_RECORD_MAC; case SSL_AD_DECRYPTION_FAILED: return TLS1_AD_DECRYPTION_FAILED; case SSL_AD_RECORD_OVERFLOW: return TLS1_AD_RECORD_OVERFLOW; case SSL_AD_DECOMPRESSION_FAILURE: return SSL3_AD_DECOMPRESSION_FAILURE; case SSL_AD_HANDSHAKE_FAILURE: return SSL3_AD_HANDSHAKE_FAILURE; case SSL_AD_NO_CERTIFICATE: return -1; case SSL_AD_BAD_CERTIFICATE: return SSL3_AD_BAD_CERTIFICATE; case SSL_AD_UNSUPPORTED_CERTIFICATE: return SSL3_AD_UNSUPPORTED_CERTIFICATE; case SSL_AD_CERTIFICATE_REVOKED: return SSL3_AD_CERTIFICATE_REVOKED; case SSL_AD_CERTIFICATE_EXPIRED: return SSL3_AD_CERTIFICATE_EXPIRED; case SSL_AD_CERTIFICATE_UNKNOWN: return SSL3_AD_CERTIFICATE_UNKNOWN; case SSL_AD_ILLEGAL_PARAMETER: return SSL3_AD_ILLEGAL_PARAMETER; case SSL_AD_UNKNOWN_CA: return TLS1_AD_UNKNOWN_CA; case SSL_AD_ACCESS_DENIED: return TLS1_AD_ACCESS_DENIED; case SSL_AD_DECODE_ERROR: return TLS1_AD_DECODE_ERROR; case SSL_AD_DECRYPT_ERROR: return TLS1_AD_DECRYPT_ERROR; case SSL_AD_EXPORT_RESTRICTION: return TLS1_AD_EXPORT_RESTRICTION; case SSL_AD_PROTOCOL_VERSION: return TLS1_AD_PROTOCOL_VERSION; case SSL_AD_INSUFFICIENT_SECURITY: return TLS1_AD_INSUFFICIENT_SECURITY; case SSL_AD_INTERNAL_ERROR: return TLS1_AD_INTERNAL_ERROR; case SSL_AD_USER_CANCELLED: return TLS1_AD_USER_CANCELLED; case SSL_AD_NO_RENEGOTIATION: return TLS1_AD_NO_RENEGOTIATION; case SSL_AD_UNSUPPORTED_EXTENSION: return TLS1_AD_UNSUPPORTED_EXTENSION; case SSL_AD_CERTIFICATE_UNOBTAINABLE: return TLS1_AD_CERTIFICATE_UNOBTAINABLE; case SSL_AD_UNRECOGNIZED_NAME: return TLS1_AD_UNRECOGNIZED_NAME; case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE; case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return TLS1_AD_BAD_CERTIFICATE_HASH_VALUE; case SSL_AD_UNKNOWN_PSK_IDENTITY: return TLS1_AD_UNKNOWN_PSK_IDENTITY; case SSL_AD_INAPPROPRIATE_FALLBACK: return TLS1_AD_INAPPROPRIATE_FALLBACK; case SSL_AD_NO_APPLICATION_PROTOCOL: return TLS1_AD_NO_APPLICATION_PROTOCOL; case SSL_AD_CERTIFICATE_REQUIRED: return SSL_AD_HANDSHAKE_FAILURE; case TLS13_AD_MISSING_EXTENSION: return SSL_AD_HANDSHAKE_FAILURE; default: return -1; } }