/* * Copyright 2011-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "crypto/modes.h" #include "internal/thread_once.h" #include "prov/implementations.h" #include "prov/providercommon.h" #include "prov/provider_ctx.h" #include "drbg_local.h" static OSSL_FUNC_rand_newctx_fn drbg_ctr_new_wrapper; static OSSL_FUNC_rand_freectx_fn drbg_ctr_free; static OSSL_FUNC_rand_instantiate_fn drbg_ctr_instantiate_wrapper; static OSSL_FUNC_rand_uninstantiate_fn drbg_ctr_uninstantiate_wrapper; static OSSL_FUNC_rand_generate_fn drbg_ctr_generate_wrapper; static OSSL_FUNC_rand_reseed_fn drbg_ctr_reseed_wrapper; static OSSL_FUNC_rand_settable_ctx_params_fn drbg_ctr_settable_ctx_params; static OSSL_FUNC_rand_set_ctx_params_fn drbg_ctr_set_ctx_params; static OSSL_FUNC_rand_gettable_ctx_params_fn drbg_ctr_gettable_ctx_params; static OSSL_FUNC_rand_get_ctx_params_fn drbg_ctr_get_ctx_params; static OSSL_FUNC_rand_verify_zeroization_fn drbg_ctr_verify_zeroization; /* * The state of a DRBG AES-CTR. */ typedef struct rand_drbg_ctr_st { EVP_CIPHER_CTX *ctx_ecb; EVP_CIPHER_CTX *ctx_ctr; EVP_CIPHER_CTX *ctx_df; EVP_CIPHER *cipher_ecb; EVP_CIPHER *cipher_ctr; size_t keylen; int use_df; unsigned char K[32]; unsigned char V[16]; /* Temporary block storage used by ctr_df */ unsigned char bltmp[16]; size_t bltmp_pos; unsigned char KX[48]; } PROV_DRBG_CTR; /* * Implementation of NIST SP 800-90A CTR DRBG. */ static void inc_128(PROV_DRBG_CTR *ctr) { unsigned char *p = &ctr->V[0]; u32 n = 16, c = 1; do { --n; c += p[n]; p[n] = (u8)c; c >>= 8; } while (n); } static void ctr_XOR(PROV_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) { size_t i, n; if (in == NULL || inlen == 0) return; /* * Any zero padding will have no effect on the result as we * are XORing. So just process however much input we have. */ n = inlen < ctr->keylen ? inlen : ctr->keylen; for (i = 0; i < n; i++) ctr->K[i] ^= in[i]; if (inlen <= ctr->keylen) return; n = inlen - ctr->keylen; if (n > 16) { /* Should never happen */ n = 16; } for (i = 0; i < n; i++) ctr->V[i] ^= in[i + ctr->keylen]; } /* * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 */ __owur static int ctr_BCC_block(PROV_DRBG_CTR *ctr, unsigned char *out, const unsigned char *in, int len) { int i, outlen = AES_BLOCK_SIZE; for (i = 0; i < len; i++) out[i] ^= in[i]; if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len) || outlen != len) return 0; return 1; } /* * Handle several BCC operations for as much data as we need for K and X */ __owur static int ctr_BCC_blocks(PROV_DRBG_CTR *ctr, const unsigned char *in) { unsigned char in_tmp[48]; unsigned char num_of_blk = 2; memcpy(in_tmp, in, 16); memcpy(in_tmp + 16, in, 16); if (ctr->keylen != 16) { memcpy(in_tmp + 32, in, 16); num_of_blk = 3; } return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk); } /* * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: * see 10.3.1 stage 7. */ __owur static int ctr_BCC_init(PROV_DRBG_CTR *ctr) { unsigned char bltmp[48] = {0}; unsigned char num_of_blk; memset(ctr->KX, 0, 48); num_of_blk = ctr->keylen == 16 ? 2 : 3; bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1; bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2; return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE); } /* * Process several blocks into BCC algorithm, some possibly partial */ __owur static int ctr_BCC_update(PROV_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) { if (in == NULL || inlen == 0) return 1; /* If we have partial block handle it first */ if (ctr->bltmp_pos) { size_t left = 16 - ctr->bltmp_pos; /* If we now have a complete block process it */ if (inlen >= left) { memcpy(ctr->bltmp + ctr->bltmp_pos, in, left); if (!ctr_BCC_blocks(ctr, ctr->bltmp)) return 0; ctr->bltmp_pos = 0; inlen -= left; in += left; } } /* Process zero or more complete blocks */ for (; inlen >= 16; in += 16, inlen -= 16) { if (!ctr_BCC_blocks(ctr, in)) return 0; } /* Copy any remaining partial block to the temporary buffer */ if (inlen > 0) { memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen); ctr->bltmp_pos += inlen; } return 1; } __owur static int ctr_BCC_final(PROV_DRBG_CTR *ctr) { if (ctr->bltmp_pos) { memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos); if (!ctr_BCC_blocks(ctr, ctr->bltmp)) return 0; } return 1; } __owur static int ctr_df(PROV_DRBG_CTR *ctr, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *in3, size_t in3len) { static unsigned char c80 = 0x80; size_t inlen; unsigned char *p = ctr->bltmp; int outlen = AES_BLOCK_SIZE; if (!ctr_BCC_init(ctr)) return 0; if (in1 == NULL) in1len = 0; if (in2 == NULL) in2len = 0; if (in3 == NULL) in3len = 0; inlen = in1len + in2len + in3len; /* Initialise L||N in temporary block */ *p++ = (inlen >> 24) & 0xff; *p++ = (inlen >> 16) & 0xff; *p++ = (inlen >> 8) & 0xff; *p++ = inlen & 0xff; /* NB keylen is at most 32 bytes */ *p++ = 0; *p++ = 0; *p++ = 0; *p = (unsigned char)((ctr->keylen + 16) & 0xff); ctr->bltmp_pos = 8; if (!ctr_BCC_update(ctr, in1, in1len) || !ctr_BCC_update(ctr, in2, in2len) || !ctr_BCC_update(ctr, in3, in3len) || !ctr_BCC_update(ctr, &c80, 1) || !ctr_BCC_final(ctr)) return 0; /* Set up key K */ if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1)) return 0; /* X follows key K */ if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; if (ctr->keylen != 16) if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen, ctr->KX + 16, AES_BLOCK_SIZE) || outlen != AES_BLOCK_SIZE) return 0; return 1; } /* * NB the no-df Update in SP800-90A specifies a constant input length * of seedlen, however other uses of this algorithm pad the input with * zeroes if necessary and have up to two parameters XORed together, * so we handle both cases in this function instead. */ __owur static int ctr_update(PROV_DRBG *drbg, const unsigned char *in1, size_t in1len, const unsigned char *in2, size_t in2len, const unsigned char *nonce, size_t noncelen) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; int outlen = AES_BLOCK_SIZE; unsigned char V_tmp[48], out[48]; unsigned char len; /* correct key is already set up. */ memcpy(V_tmp, ctr->V, 16); inc_128(ctr); memcpy(V_tmp + 16, ctr->V, 16); if (ctr->keylen == 16) { len = 32; } else { inc_128(ctr); memcpy(V_tmp + 32, ctr->V, 16); len = 48; } if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len) || outlen != len) return 0; memcpy(ctr->K, out, ctr->keylen); memcpy(ctr->V, out + ctr->keylen, 16); if (ctr->use_df) { /* If no input reuse existing derived value */ if (in1 != NULL || nonce != NULL || in2 != NULL) if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len)) return 0; /* If this a reuse input in1len != 0 */ if (in1len) ctr_XOR(ctr, ctr->KX, drbg->seedlen); } else { ctr_XOR(ctr, in1, in1len); ctr_XOR(ctr, in2, in2len); } if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1) || !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1)) return 0; return 1; } static int drbg_ctr_instantiate(PROV_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; if (entropy == NULL) return 0; memset(ctr->K, 0, sizeof(ctr->K)); memset(ctr->V, 0, sizeof(ctr->V)); if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)) return 0; inc_128(ctr); if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen)) return 0; return 1; } static int drbg_ctr_instantiate_wrapper(void *vdrbg, unsigned int strength, int prediction_resistance, const unsigned char *pstr, size_t pstr_len, const OSSL_PARAM params[]) { PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; if (!ossl_prov_is_running() || !drbg_ctr_set_ctx_params(drbg, params)) return 0; return ossl_prov_drbg_instantiate(drbg, strength, prediction_resistance, pstr, pstr_len); } static int drbg_ctr_reseed(PROV_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *adin, size_t adinlen) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; if (entropy == NULL) return 0; inc_128(ctr); if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0)) return 0; return 1; } static int drbg_ctr_reseed_wrapper(void *vdrbg, int prediction_resistance, const unsigned char *ent, size_t ent_len, const unsigned char *adin, size_t adin_len) { PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; return ossl_prov_drbg_reseed(drbg, prediction_resistance, ent, ent_len, adin, adin_len); } static void ctr96_inc(unsigned char *counter) { u32 n = 12, c = 1; do { --n; c += counter[n]; counter[n] = (u8)c; c >>= 8; } while (n); } static int drbg_ctr_generate(PROV_DRBG *drbg, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adinlen) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; unsigned int ctr32, blocks; int outl, buflen; if (adin != NULL && adinlen != 0) { inc_128(ctr); if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) return 0; /* This means we reuse derived value */ if (ctr->use_df) { adin = NULL; adinlen = 1; } } else { adinlen = 0; } inc_128(ctr); if (outlen == 0) { inc_128(ctr); if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) return 0; return 1; } memset(out, 0, outlen); do { if (!EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, NULL, ctr->V, -1)) return 0; /*- * outlen has type size_t while EVP_CipherUpdate takes an * int argument and thus cannot be guaranteed to process more * than 2^31-1 bytes at a time. We process such huge generate * requests in 2^30 byte chunks, which is the greatest multiple * of AES block size lower than or equal to 2^31-1. */ buflen = outlen > (1U << 30) ? (1U << 30) : outlen; blocks = (buflen + 15) / 16; ctr32 = GETU32(ctr->V + 12) + blocks; if (ctr32 < blocks) { /* 32-bit counter overflow into V. */ if (ctr32 != 0) { blocks -= ctr32; buflen = blocks * 16; ctr32 = 0; } ctr96_inc(ctr->V); } PUTU32(ctr->V + 12, ctr32); if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen) || outl != buflen) return 0; out += buflen; outlen -= buflen; } while (outlen); if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) return 0; return 1; } static int drbg_ctr_generate_wrapper (void *vdrbg, unsigned char *out, size_t outlen, unsigned int strength, int prediction_resistance, const unsigned char *adin, size_t adin_len) { PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; return ossl_prov_drbg_generate(drbg, out, outlen, strength, prediction_resistance, adin, adin_len); } static int drbg_ctr_uninstantiate(PROV_DRBG *drbg) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; OPENSSL_cleanse(ctr->K, sizeof(ctr->K)); OPENSSL_cleanse(ctr->V, sizeof(ctr->V)); OPENSSL_cleanse(ctr->bltmp, sizeof(ctr->bltmp)); OPENSSL_cleanse(ctr->KX, sizeof(ctr->KX)); ctr->bltmp_pos = 0; return ossl_prov_drbg_uninstantiate(drbg); } static int drbg_ctr_uninstantiate_wrapper(void *vdrbg) { return drbg_ctr_uninstantiate((PROV_DRBG *)vdrbg); } static int drbg_ctr_verify_zeroization(void *vdrbg) { PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; PROV_DRBG_VERYIFY_ZEROIZATION(ctr->K); PROV_DRBG_VERYIFY_ZEROIZATION(ctr->V); PROV_DRBG_VERYIFY_ZEROIZATION(ctr->bltmp); PROV_DRBG_VERYIFY_ZEROIZATION(ctr->KX); if (ctr->bltmp_pos != 0) return 0; return 1; } static int drbg_ctr_init_lengths(PROV_DRBG *drbg) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; int res = 1; /* Maximum number of bits per request = 2^19 = 2^16 bytes */ drbg->max_request = 1 << 16; if (ctr->use_df) { drbg->min_entropylen = 0; drbg->max_entropylen = DRBG_MAX_LENGTH; drbg->min_noncelen = 0; drbg->max_noncelen = DRBG_MAX_LENGTH; drbg->max_perslen = DRBG_MAX_LENGTH; drbg->max_adinlen = DRBG_MAX_LENGTH; if (ctr->keylen > 0) { drbg->min_entropylen = ctr->keylen; drbg->min_noncelen = drbg->min_entropylen / 2; } } else { const size_t len = ctr->keylen > 0 ? drbg->seedlen : DRBG_MAX_LENGTH; drbg->min_entropylen = len; drbg->max_entropylen = len; /* Nonce not used */ drbg->min_noncelen = 0; drbg->max_noncelen = 0; drbg->max_perslen = len; drbg->max_adinlen = len; } return res; } static int drbg_ctr_init(PROV_DRBG *drbg) { PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; size_t keylen; if (ctr->cipher_ctr == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); return 0; } ctr->keylen = keylen = EVP_CIPHER_get_key_length(ctr->cipher_ctr); if (ctr->ctx_ecb == NULL) ctr->ctx_ecb = EVP_CIPHER_CTX_new(); if (ctr->ctx_ctr == NULL) ctr->ctx_ctr = EVP_CIPHER_CTX_new(); if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_EVP_LIB); goto err; } if (!EVP_CipherInit_ex(ctr->ctx_ecb, ctr->cipher_ecb, NULL, NULL, NULL, 1) || !EVP_CipherInit_ex(ctr->ctx_ctr, ctr->cipher_ctr, NULL, NULL, NULL, 1)) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_INITIALISE_CIPHERS); goto err; } drbg->strength = keylen * 8; drbg->seedlen = keylen + 16; if (ctr->use_df) { /* df initialisation */ static const unsigned char df_key[32] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }; if (ctr->ctx_df == NULL) ctr->ctx_df = EVP_CIPHER_CTX_new(); if (ctr->ctx_df == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_EVP_LIB); goto err; } /* Set key schedule for df_key */ if (!EVP_CipherInit_ex(ctr->ctx_df, ctr->cipher_ecb, NULL, df_key, NULL, 1)) { ERR_raise(ERR_LIB_PROV, PROV_R_DERIVATION_FUNCTION_INIT_FAILED); goto err; } } return drbg_ctr_init_lengths(drbg); err: EVP_CIPHER_CTX_free(ctr->ctx_ecb); EVP_CIPHER_CTX_free(ctr->ctx_ctr); ctr->ctx_ecb = ctr->ctx_ctr = NULL; return 0; } static int drbg_ctr_new(PROV_DRBG *drbg) { PROV_DRBG_CTR *ctr; ctr = OPENSSL_secure_zalloc(sizeof(*ctr)); if (ctr == NULL) return 0; ctr->use_df = 1; drbg->data = ctr; return drbg_ctr_init_lengths(drbg); } static void *drbg_ctr_new_wrapper(void *provctx, void *parent, const OSSL_DISPATCH *parent_dispatch) { return ossl_rand_drbg_new(provctx, parent, parent_dispatch, &drbg_ctr_new, &drbg_ctr_instantiate, &drbg_ctr_uninstantiate, &drbg_ctr_reseed, &drbg_ctr_generate); } static void drbg_ctr_free(void *vdrbg) { PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; PROV_DRBG_CTR *ctr; if (drbg != NULL && (ctr = (PROV_DRBG_CTR *)drbg->data) != NULL) { EVP_CIPHER_CTX_free(ctr->ctx_ecb); EVP_CIPHER_CTX_free(ctr->ctx_ctr); EVP_CIPHER_CTX_free(ctr->ctx_df); EVP_CIPHER_free(ctr->cipher_ecb); EVP_CIPHER_free(ctr->cipher_ctr); OPENSSL_secure_clear_free(ctr, sizeof(*ctr)); } ossl_rand_drbg_free(drbg); } static int drbg_ctr_get_ctx_params(void *vdrbg, OSSL_PARAM params[]) { PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; OSSL_PARAM *p; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_USE_DF); if (p != NULL && !OSSL_PARAM_set_int(p, ctr->use_df)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_CIPHER); if (p != NULL) { if (ctr->cipher_ctr == NULL || !OSSL_PARAM_set_utf8_string(p, EVP_CIPHER_get0_name(ctr->cipher_ctr))) return 0; } return ossl_drbg_get_ctx_params(drbg, params); } static const OSSL_PARAM *drbg_ctr_gettable_ctx_params(ossl_unused void *vctx, ossl_unused void *provctx) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0), OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL), OSSL_PARAM_DRBG_GETTABLE_CTX_COMMON, OSSL_PARAM_END }; return known_gettable_ctx_params; } static int drbg_ctr_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { PROV_DRBG *ctx = (PROV_DRBG *)vctx; PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)ctx->data; OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); const OSSL_PARAM *p; char *ecb; const char *propquery = NULL; int i, cipher_init = 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_USE_DF)) != NULL && OSSL_PARAM_get_int(p, &i)) { /* FIPS errors out in the drbg_ctr_init() call later */ ctr->use_df = i != 0; cipher_init = 1; } if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_PROPERTIES)) != NULL) { if (p->data_type != OSSL_PARAM_UTF8_STRING) return 0; propquery = (const char *)p->data; } if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_CIPHER)) != NULL) { const char *base = (const char *)p->data; size_t ctr_str_len = sizeof("CTR") - 1; size_t ecb_str_len = sizeof("ECB") - 1; if (p->data_type != OSSL_PARAM_UTF8_STRING || p->data_size < ctr_str_len) return 0; if (OPENSSL_strcasecmp("CTR", base + p->data_size - ctr_str_len) != 0) { ERR_raise(ERR_LIB_PROV, PROV_R_REQUIRE_CTR_MODE_CIPHER); return 0; } if ((ecb = OPENSSL_strndup(base, p->data_size)) == NULL) return 0; strcpy(ecb + p->data_size - ecb_str_len, "ECB"); EVP_CIPHER_free(ctr->cipher_ecb); EVP_CIPHER_free(ctr->cipher_ctr); ctr->cipher_ctr = EVP_CIPHER_fetch(libctx, base, propquery); ctr->cipher_ecb = EVP_CIPHER_fetch(libctx, ecb, propquery); OPENSSL_free(ecb); if (ctr->cipher_ctr == NULL || ctr->cipher_ecb == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_FIND_CIPHERS); return 0; } cipher_init = 1; } if (cipher_init && !drbg_ctr_init(ctx)) return 0; return ossl_drbg_set_ctx_params(ctx, params); } static const OSSL_PARAM *drbg_ctr_settable_ctx_params(ossl_unused void *vctx, ossl_unused void *provctx) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0), OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL), OSSL_PARAM_DRBG_SETTABLE_CTX_COMMON, OSSL_PARAM_END }; return known_settable_ctx_params; } const OSSL_DISPATCH ossl_drbg_ctr_functions[] = { { OSSL_FUNC_RAND_NEWCTX, (void(*)(void))drbg_ctr_new_wrapper }, { OSSL_FUNC_RAND_FREECTX, (void(*)(void))drbg_ctr_free }, { OSSL_FUNC_RAND_INSTANTIATE, (void(*)(void))drbg_ctr_instantiate_wrapper }, { OSSL_FUNC_RAND_UNINSTANTIATE, (void(*)(void))drbg_ctr_uninstantiate_wrapper }, { OSSL_FUNC_RAND_GENERATE, (void(*)(void))drbg_ctr_generate_wrapper }, { OSSL_FUNC_RAND_RESEED, (void(*)(void))drbg_ctr_reseed_wrapper }, { OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))ossl_drbg_enable_locking }, { OSSL_FUNC_RAND_LOCK, (void(*)(void))ossl_drbg_lock }, { OSSL_FUNC_RAND_UNLOCK, (void(*)(void))ossl_drbg_unlock }, { OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS, (void(*)(void))drbg_ctr_settable_ctx_params }, { OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))drbg_ctr_set_ctx_params }, { OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS, (void(*)(void))drbg_ctr_gettable_ctx_params }, { OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))drbg_ctr_get_ctx_params }, { OSSL_FUNC_RAND_VERIFY_ZEROIZATION, (void(*)(void))drbg_ctr_verify_zeroization }, { OSSL_FUNC_RAND_GET_SEED, (void(*)(void))ossl_drbg_get_seed }, { OSSL_FUNC_RAND_CLEAR_SEED, (void(*)(void))ossl_drbg_clear_seed }, { 0, NULL } };