/* * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "crypto/sparse_array.h" /* * How many bits are used to index each level in the tree structure? * This setting determines the number of pointers stored in each node of the * tree used to represent the sparse array. Having more pointers reduces the * depth of the tree but potentially wastes more memory. That is, this is a * direct space versus time tradeoff. * * The default is to use four bits which means that the are 16 * pointers in each tree node. * * The library builder is also permitted to define other sizes in the closed * interval [2, sizeof(ossl_uintmax_t) * 8]. Space use generally scales * exponentially with the block size, although the implementation only * creates enough blocks to support the largest used index. The depth is: * ceil(log_2(largest index) / 2^{block size}) * E.g. with a block size of 4, and a largest index of 1000, the depth * will be three. */ #ifndef OPENSSL_SA_BLOCK_BITS # define OPENSSL_SA_BLOCK_BITS 4 #elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1) # error OPENSSL_SA_BLOCK_BITS is out of range #endif /* * From the number of bits, work out: * the number of pointers in a tree node; * a bit mask to quickly extract an index and * the maximum depth of the tree structure. */ #define SA_BLOCK_MAX (1 << OPENSSL_SA_BLOCK_BITS) #define SA_BLOCK_MASK (SA_BLOCK_MAX - 1) #define SA_BLOCK_MAX_LEVELS (((int)sizeof(ossl_uintmax_t) * 8 \ + OPENSSL_SA_BLOCK_BITS - 1) \ / OPENSSL_SA_BLOCK_BITS) struct sparse_array_st { int levels; ossl_uintmax_t top; size_t nelem; void **nodes; }; OPENSSL_SA *ossl_sa_new(void) { OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res)); return res; } static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **), void (*leaf)(ossl_uintmax_t, void *, void *), void *arg) { int i[SA_BLOCK_MAX_LEVELS]; void *nodes[SA_BLOCK_MAX_LEVELS]; ossl_uintmax_t idx = 0; int l = 0; i[0] = 0; nodes[0] = sa->nodes; while (l >= 0) { const int n = i[l]; void ** const p = nodes[l]; if (n >= SA_BLOCK_MAX) { if (p != NULL && node != NULL) (*node)(p); l--; idx >>= OPENSSL_SA_BLOCK_BITS; } else { i[l] = n + 1; if (p != NULL && p[n] != NULL) { idx = (idx & ~SA_BLOCK_MASK) | n; if (l < sa->levels - 1) { i[++l] = 0; nodes[l] = p[n]; idx <<= OPENSSL_SA_BLOCK_BITS; } else if (leaf != NULL) { (*leaf)(idx, p[n], arg); } } } } } static void sa_free_node(void **p) { OPENSSL_free(p); } static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg) { OPENSSL_free(p); } void ossl_sa_free(OPENSSL_SA *sa) { if (sa != NULL) { sa_doall(sa, &sa_free_node, NULL, NULL); OPENSSL_free(sa); } } void ossl_sa_free_leaves(OPENSSL_SA *sa) { sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL); OPENSSL_free(sa); } /* Wrap this in a structure to avoid compiler warnings */ struct trampoline_st { void (*func)(ossl_uintmax_t, void *); }; static void trampoline(ossl_uintmax_t n, void *l, void *arg) { ((const struct trampoline_st *)arg)->func(n, l); } void ossl_sa_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *)) { struct trampoline_st tramp; tramp.func = leaf; if (sa != NULL) sa_doall(sa, NULL, &trampoline, &tramp); } void ossl_sa_doall_arg(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *, void *), void *arg) { if (sa != NULL) sa_doall(sa, NULL, leaf, arg); } size_t ossl_sa_num(const OPENSSL_SA *sa) { return sa == NULL ? 0 : sa->nelem; } void *ossl_sa_get(const OPENSSL_SA *sa, ossl_uintmax_t n) { int level; void **p, *r = NULL; if (sa == NULL || sa->nelem == 0) return NULL; if (n <= sa->top) { p = sa->nodes; for (level = sa->levels - 1; p != NULL && level > 0; level--) p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK]; r = p == NULL ? NULL : p[n & SA_BLOCK_MASK]; } return r; } static ossl_inline void **alloc_node(void) { return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *)); } int ossl_sa_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val) { int i, level = 1; ossl_uintmax_t n = posn; void **p; if (sa == NULL) return 0; for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++) if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0) break; for (;sa->levels < level; sa->levels++) { p = alloc_node(); if (p == NULL) return 0; p[0] = sa->nodes; sa->nodes = p; } if (sa->top < posn) sa->top = posn; p = sa->nodes; for (level = sa->levels - 1; level > 0; level--) { i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK; if (p[i] == NULL && (p[i] = alloc_node()) == NULL) return 0; p = p[i]; } p += posn & SA_BLOCK_MASK; if (val == NULL && *p != NULL) sa->nelem--; else if (val != NULL && *p == NULL) sa->nelem++; *p = val; return 1; }