/* * Copyright 2010-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include "internal/endian.h" #include "crypto/modes.h" #if defined(__GNUC__) && !defined(STRICT_ALIGNMENT) typedef size_t size_t_aX __attribute((__aligned__(1))); #else typedef size_t size_t_aX; #endif #if defined(BSWAP4) && defined(STRICT_ALIGNMENT) /* redefine, because alignment is ensured */ # undef GETU32 # define GETU32(p) BSWAP4(*(const u32 *)(p)) # undef PUTU32 # define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v) #endif /* RISC-V uses C implementation of gmult as a fallback. */ #if defined(__riscv) # define INCLUDE_C_GMULT_4BIT #endif #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16)) #define REDUCE1BIT(V) do { \ if (sizeof(size_t)==8) { \ u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^T; \ } \ else { \ u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \ V.lo = (V.hi<<63)|(V.lo>>1); \ V.hi = (V.hi>>1 )^((u64)T<<32); \ } \ } while(0) /*- * * NOTE: TABLE_BITS and all non-4bit implmentations have been removed in 3.1. * * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8. 8 is effectively reserved for testing purposes. * TABLE_BITS>1 are lookup-table-driven implementations referred to as * "Shoup's" in GCM specification. In other words OpenSSL does not cover * whole spectrum of possible table driven implementations. Why? In * non-"Shoup's" case memory access pattern is segmented in such manner, * that it's trivial to see that cache timing information can reveal * fair portion of intermediate hash value. Given that ciphertext is * always available to attacker, it's possible for him to attempt to * deduce secret parameter H and if successful, tamper with messages * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's * not as trivial, but there is no reason to believe that it's resistant * to cache-timing attack. And the thing about "8-bit" implementation is * that it consumes 16 (sixteen) times more memory, 4KB per individual * key + 1KB shared. Well, on pros side it should be twice as fast as * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version * was observed to run ~75% faster, closer to 100% for commercial * compilers... Yet "4-bit" procedure is preferred, because it's * believed to provide better security-performance balance and adequate * all-round performance. "All-round" refers to things like: * * - shorter setup time effectively improves overall timing for * handling short messages; * - larger table allocation can become unbearable because of VM * subsystem penalties (for example on Windows large enough free * results in VM working set trimming, meaning that consequent * malloc would immediately incur working set expansion); * - larger table has larger cache footprint, which can affect * performance of other code paths (not necessarily even from same * thread in Hyper-Threading world); * * Value of 1 is not appropriate for performance reasons. */ static void gcm_init_4bit(u128 Htable[16], const u64 H[2]) { u128 V; # if defined(OPENSSL_SMALL_FOOTPRINT) int i; # endif Htable[0].hi = 0; Htable[0].lo = 0; V.hi = H[0]; V.lo = H[1]; # if defined(OPENSSL_SMALL_FOOTPRINT) for (Htable[8] = V, i = 4; i > 0; i >>= 1) { REDUCE1BIT(V); Htable[i] = V; } for (i = 2; i < 16; i <<= 1) { u128 *Hi = Htable + i; int j; for (V = *Hi, j = 1; j < i; ++j) { Hi[j].hi = V.hi ^ Htable[j].hi; Hi[j].lo = V.lo ^ Htable[j].lo; } } # else Htable[8] = V; REDUCE1BIT(V); Htable[4] = V; REDUCE1BIT(V); Htable[2] = V; REDUCE1BIT(V); Htable[1] = V; Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; V = Htable[4]; Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; V = Htable[8]; Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; # endif # if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm)) /* * ARM assembler expects specific dword order in Htable. */ { int j; DECLARE_IS_ENDIAN; if (IS_LITTLE_ENDIAN) for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo; Htable[j].lo = V.hi; } else for (j = 0; j < 16; ++j) { V = Htable[j]; Htable[j].hi = V.lo << 32 | V.lo >> 32; Htable[j].lo = V.hi << 32 | V.hi >> 32; } } # endif } # if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT) static const size_t rem_4bit[16] = { PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460), PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0), PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560), PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) }; static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { u128 Z; int cnt = 15; size_t rem, nlo, nhi; DECLARE_IS_ENDIAN; nlo = ((const u8 *)Xi)[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (IS_LITTLE_ENDIAN) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } } # endif # if !defined(GHASH_ASM) # if !defined(OPENSSL_SMALL_FOOTPRINT) /* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */ static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { u128 Z; int cnt; size_t rem, nlo, nhi; DECLARE_IS_ENDIAN; do { cnt = 15; nlo = ((const u8 *)Xi)[15]; nlo ^= inp[15]; nhi = nlo >> 4; nlo &= 0xf; Z.hi = Htable[nlo].hi; Z.lo = Htable[nlo].lo; while (1) { rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nhi].hi; Z.lo ^= Htable[nhi].lo; if (--cnt < 0) break; nlo = ((const u8 *)Xi)[cnt]; nlo ^= inp[cnt]; nhi = nlo >> 4; nlo &= 0xf; rem = (size_t)Z.lo & 0xf; Z.lo = (Z.hi << 60) | (Z.lo >> 4); Z.hi = (Z.hi >> 4); if (sizeof(size_t) == 8) Z.hi ^= rem_4bit[rem]; else Z.hi ^= (u64)rem_4bit[rem] << 32; Z.hi ^= Htable[nlo].hi; Z.lo ^= Htable[nlo].lo; } if (IS_LITTLE_ENDIAN) { # ifdef BSWAP8 Xi[0] = BSWAP8(Z.hi); Xi[1] = BSWAP8(Z.lo); # else u8 *p = (u8 *)Xi; u32 v; v = (u32)(Z.hi >> 32); PUTU32(p, v); v = (u32)(Z.hi); PUTU32(p + 4, v); v = (u32)(Z.lo >> 32); PUTU32(p + 8, v); v = (u32)(Z.lo); PUTU32(p + 12, v); # endif } else { Xi[0] = Z.hi; Xi[1] = Z.lo; } inp += 16; /* Block size is 128 bits so len is a multiple of 16 */ len -= 16; } while (len > 0); } # endif # else void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # define GCM_MUL(ctx) ctx->funcs.gmult(ctx->Xi.u,ctx->Htable) # if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT) # define GHASH(ctx,in,len) ctx->funcs.ghash((ctx)->Xi.u,(ctx)->Htable,in,len) /* * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing * effect. In other words idea is to hash data while it's still in L1 cache * after encryption pass... */ # define GHASH_CHUNK (3*1024) # endif #if (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ)) # if !defined(I386_ONLY) && \ (defined(__i386) || defined(__i386__) || \ defined(__x86_64) || defined(__x86_64__) || \ defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)) # define GHASH_ASM_X86_OR_64 void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define gcm_init_avx gcm_init_clmul # define gcm_gmult_avx gcm_gmult_clmul # define gcm_ghash_avx gcm_ghash_clmul # else void gcm_init_avx(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # if defined(__i386) || defined(__i386__) || defined(_M_IX86) # define GHASH_ASM_X86 void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__arm__) || defined(__arm) || defined(__aarch64__) # include "arm_arch.h" # if __ARM_MAX_ARCH__>=7 # define GHASH_ASM_ARM # define PMULL_CAPABLE (OPENSSL_armcap_P & ARMV8_PMULL) # if defined(__arm__) || defined(__arm) # define NEON_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON) # endif void gcm_init_neon(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); void gcm_init_v8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # endif # elif defined(__sparc__) || defined(__sparc) # include "crypto/sparc_arch.h" # define GHASH_ASM_SPARC void gcm_init_vis3(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC)) # include "crypto/ppc_arch.h" # define GHASH_ASM_PPC void gcm_init_p8(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]); void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len); # elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64 # include "crypto/riscv_arch.h" # define GHASH_ASM_RISCV # undef GHASH void gcm_init_clmul_rv64i_zbb_zbc(u128 Htable[16], const u64 Xi[2]); void gcm_gmult_clmul_rv64i_zbb_zbc(u64 Xi[2], const u128 Htable[16]); # endif #endif static void gcm_get_funcs(struct gcm_funcs_st *ctx) { /* set defaults -- overridden below as needed */ ctx->ginit = gcm_init_4bit; #if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT) ctx->gmult = gcm_gmult_4bit; #else ctx->gmult = NULL; #endif #if !defined(GHASH_ASM) && !defined(OPENSSL_SMALL_FOOTPRINT) ctx->ghash = gcm_ghash_4bit; #else ctx->ghash = NULL; #endif #if defined(GHASH_ASM_X86_OR_64) # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2) /* x86_64 */ if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */ if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */ ctx->ginit = gcm_init_avx; ctx->gmult = gcm_gmult_avx; ctx->ghash = gcm_ghash_avx; } else { ctx->ginit = gcm_init_clmul; ctx->gmult = gcm_gmult_clmul; ctx->ghash = gcm_ghash_clmul; } return; } # endif # if defined(GHASH_ASM_X86) /* x86 only */ # if defined(OPENSSL_IA32_SSE2) if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */ ctx->gmult = gcm_gmult_4bit_mmx; ctx->ghash = gcm_ghash_4bit_mmx; return; } # else if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */ ctx->gmult = gcm_gmult_4bit_mmx; ctx->ghash = gcm_ghash_4bit_mmx; return; } # endif ctx->gmult = gcm_gmult_4bit_x86; ctx->ghash = gcm_ghash_4bit_x86; return; # else /* x86_64 fallback defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; return; # endif #elif defined(GHASH_ASM_ARM) /* ARM defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; # ifdef PMULL_CAPABLE if (PMULL_CAPABLE) { ctx->ginit = (gcm_init_fn)gcm_init_v8; ctx->gmult = gcm_gmult_v8; ctx->ghash = gcm_ghash_v8; } # elif defined(NEON_CAPABLE) if (NEON_CAPABLE) { ctx->ginit = gcm_init_neon; ctx->gmult = gcm_gmult_neon; ctx->ghash = gcm_ghash_neon; } # endif return; #elif defined(GHASH_ASM_SPARC) /* SPARC defaults */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) { ctx->ginit = gcm_init_vis3; ctx->gmult = gcm_gmult_vis3; ctx->ghash = gcm_ghash_vis3; } return; #elif defined(GHASH_ASM_PPC) /* PowerPC does not define GHASH_ASM; defaults set above */ if (OPENSSL_ppccap_P & PPC_CRYPTO207) { ctx->ginit = gcm_init_p8; ctx->gmult = gcm_gmult_p8; ctx->ghash = gcm_ghash_p8; } return; #elif defined(GHASH_ASM_RISCV) && __riscv_xlen == 64 /* RISCV defaults; gmult already set above */ ctx->ghash = NULL; if (RISCV_HAS_ZBB() && RISCV_HAS_ZBC()) { ctx->ginit = gcm_init_clmul_rv64i_zbb_zbc; ctx->gmult = gcm_gmult_clmul_rv64i_zbb_zbc; } return; #elif defined(GHASH_ASM) /* all other architectures use the generic names */ ctx->gmult = gcm_gmult_4bit; ctx->ghash = gcm_ghash_4bit; return; #endif } void ossl_gcm_init_4bit(u128 Htable[16], const u64 H[2]) { struct gcm_funcs_st funcs; gcm_get_funcs(&funcs); funcs.ginit(Htable, H); } void ossl_gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]) { struct gcm_funcs_st funcs; gcm_get_funcs(&funcs); funcs.gmult(Xi, Htable); } void ossl_gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp, size_t len) { struct gcm_funcs_st funcs; u64 tmp[2]; size_t i; gcm_get_funcs(&funcs); if (funcs.ghash != NULL) { funcs.ghash(Xi, Htable, inp, len); } else { /* Emulate ghash if needed */ for (i = 0; i < len; i += 16) { memcpy(tmp, &inp[i], sizeof(tmp)); Xi[0] ^= tmp[0]; Xi[1] ^= tmp[1]; funcs.gmult(Xi, Htable); } } } void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block) { DECLARE_IS_ENDIAN; memset(ctx, 0, sizeof(*ctx)); ctx->block = block; ctx->key = key; (*block) (ctx->H.c, ctx->H.c, key); if (IS_LITTLE_ENDIAN) { /* H is stored in host byte order */ #ifdef BSWAP8 ctx->H.u[0] = BSWAP8(ctx->H.u[0]); ctx->H.u[1] = BSWAP8(ctx->H.u[1]); #else u8 *p = ctx->H.c; u64 hi, lo; hi = (u64)GETU32(p) << 32 | GETU32(p + 4); lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); ctx->H.u[0] = hi; ctx->H.u[1] = lo; #endif } gcm_get_funcs(&ctx->funcs); ctx->funcs.ginit(ctx->Htable, ctx->H.u); } void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv, size_t len) { DECLARE_IS_ENDIAN; unsigned int ctr; ctx->len.u[0] = 0; /* AAD length */ ctx->len.u[1] = 0; /* message length */ ctx->ares = 0; ctx->mres = 0; if (len == 12) { memcpy(ctx->Yi.c, iv, 12); ctx->Yi.c[12] = 0; ctx->Yi.c[13] = 0; ctx->Yi.c[14] = 0; ctx->Yi.c[15] = 1; ctr = 1; } else { size_t i; u64 len0 = len; /* Borrow ctx->Xi to calculate initial Yi */ ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= iv[i]; GCM_MUL(ctx); iv += 16; len -= 16; } if (len) { for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= iv[i]; GCM_MUL(ctx); } len0 <<= 3; if (IS_LITTLE_ENDIAN) { #ifdef BSWAP8 ctx->Xi.u[1] ^= BSWAP8(len0); #else ctx->Xi.c[8] ^= (u8)(len0 >> 56); ctx->Xi.c[9] ^= (u8)(len0 >> 48); ctx->Xi.c[10] ^= (u8)(len0 >> 40); ctx->Xi.c[11] ^= (u8)(len0 >> 32); ctx->Xi.c[12] ^= (u8)(len0 >> 24); ctx->Xi.c[13] ^= (u8)(len0 >> 16); ctx->Xi.c[14] ^= (u8)(len0 >> 8); ctx->Xi.c[15] ^= (u8)(len0); #endif } else { ctx->Xi.u[1] ^= len0; } GCM_MUL(ctx); if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctr = BSWAP4(ctx->Xi.d[3]); #else ctr = GETU32(ctx->Xi.c + 12); #endif else ctr = ctx->Xi.d[3]; /* Copy borrowed Xi to Yi */ ctx->Yi.u[0] = ctx->Xi.u[0]; ctx->Yi.u[1] = ctx->Xi.u[1]; } ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key); ++ctr; if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad, size_t len) { size_t i; unsigned int n; u64 alen = ctx->len.u[0]; if (ctx->len.u[1]) return -2; alen += len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->len.u[0] = alen; n = ctx->ares; if (n) { while (n && len) { ctx->Xi.c[n] ^= *(aad++); --len; n = (n + 1) % 16; } if (n == 0) GCM_MUL(ctx); else { ctx->ares = n; return 0; } } #ifdef GHASH if ((i = (len & (size_t)-16))) { GHASH(ctx, aad, i); aad += i; len -= i; } #else while (len >= 16) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= aad[i]; GCM_MUL(ctx); aad += 16; len -= 16; } #endif if (len) { n = (unsigned int)len; for (i = 0; i < len; ++i) ctx->Xi.c[i] ^= aad[i]; } ctx->ares = n; return 0; } int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = mres % 16; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { # if defined(GHASH) while (n && len) { ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; while (j) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK); len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { size_t j = i; while (len >= 16) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } GHASH(ctx, out - j, j); } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i]; GCM_MUL(ctx); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; # if defined(GHASH) while (len--) { ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } # else while (len--) { ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n]; ++n; } mres = n; # endif } ctx->mres = mres; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (mres == sizeof(ctx->Xn)) { GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); mres = 0; } #else ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n]; mres = n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx); #endif } ctx->mres = mres; return 0; } int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len) { DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; block128_f block = ctx->block; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); #else ctr = GETU32(ctx->Yi.c + 12); #endif else ctr = ctx->Yi.d[3]; n = mres % 16; #if !defined(OPENSSL_SMALL_FOOTPRINT) if (16 % sizeof(size_t) == 0) { /* always true actually */ do { if (n) { # if defined(GHASH) while (n && len) { *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(STRICT_ALIGNMENT) if (((size_t)in | (size_t)out) % sizeof(size_t) != 0) break; # endif # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { size_t j = GHASH_CHUNK; GHASH(ctx, in, GHASH_CHUNK); while (j) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; j -= 16; } len -= GHASH_CHUNK; } # endif if ((i = (len & (size_t)-16))) { GHASH(ctx, in, i); while (len >= 16) { size_t_aX *out_t = (size_t_aX *)out; const size_t_aX *in_t = (const size_t_aX *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) out_t[i] = in_t[i] ^ ctx->EKi.t[i]; out += 16; in += 16; len -= 16; } } # else while (len >= 16) { size_t *out_t = (size_t *)out; const size_t *in_t = (const size_t *)in; (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; for (i = 0; i < 16 / sizeof(size_t); ++i) { size_t c = in_t[i]; out_t[i] = c ^ ctx->EKi.t[i]; ctx->Xi.t[i] ^= c; } GCM_MUL(ctx); out += 16; in += 16; len -= 16; } # endif if (len) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; # if defined(GHASH) while (len--) { out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; ++n; } # else while (len--) { u8 c = in[n]; ctx->Xi.c[n] ^= c; out[n] = c ^ ctx->EKi.c[n]; ++n; } mres = n; # endif } ctx->mres = mres; return 0; } while (0); } #endif for (i = 0; i < len; ++i) { u8 c; if (n == 0) { (*block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) #ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); #else PUTU32(ctx->Yi.c + 12, ctr); #endif else ctx->Yi.d[3] = ctr; } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n]; n = (n + 1) % 16; if (mres == sizeof(ctx->Xn)) { GHASH(ctx,ctx->Xn,sizeof(ctx->Xn)); mres = 0; } #else c = in[i]; out[i] = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; mres = n = (n + 1) % 16; if (n == 0) GCM_MUL(ctx); #endif } ctx->mres = mres; return 0; } int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_encrypt(ctx, in, out, len); #else DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to encrypt finalizes GHASH(AAD) */ #if defined(GHASH) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); #else GCM_MUL(ctx); #endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = mres % 16; if (n) { # if defined(GHASH) while (n && len) { ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; GHASH(ctx, out, GHASH_CHUNK); out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; in += i; len -= i; # if defined(GHASH) GHASH(ctx, out, i); out += i; # else while (j--) { for (i = 0; i < 16; ++i) ctx->Xi.c[i] ^= out[i]; GCM_MUL(ctx); out += 16; } # endif } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { # if defined(GHASH) ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n]; # else ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n]; # endif ++n; } } ctx->mres = mres; return 0; #endif } int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx, const unsigned char *in, unsigned char *out, size_t len, ctr128_f stream) { #if defined(OPENSSL_SMALL_FOOTPRINT) return CRYPTO_gcm128_decrypt(ctx, in, out, len); #else DECLARE_IS_ENDIAN; unsigned int n, ctr, mres; size_t i; u64 mlen = ctx->len.u[1]; void *key = ctx->key; mlen += len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->len.u[1] = mlen; mres = ctx->mres; if (ctx->ares) { /* First call to decrypt finalizes GHASH(AAD) */ # if defined(GHASH) if (len == 0) { GCM_MUL(ctx); ctx->ares = 0; return 0; } memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi)); ctx->Xi.u[0] = 0; ctx->Xi.u[1] = 0; mres = sizeof(ctx->Xi); # else GCM_MUL(ctx); # endif ctx->ares = 0; } if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctr = BSWAP4(ctx->Yi.d[3]); # else ctr = GETU32(ctx->Yi.c + 12); # endif else ctr = ctx->Yi.d[3]; n = mres % 16; if (n) { # if defined(GHASH) while (n && len) { *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n]; --len; n = (n + 1) % 16; } if (n == 0) { GHASH(ctx, ctx->Xn, mres); mres = 0; } else { ctx->mres = mres; return 0; } # else while (n && len) { u8 c = *(in++); *(out++) = c ^ ctx->EKi.c[n]; ctx->Xi.c[n] ^= c; --len; n = (n + 1) % 16; } if (n == 0) { GCM_MUL(ctx); mres = 0; } else { ctx->mres = n; return 0; } # endif } # if defined(GHASH) if (len >= 16 && mres) { GHASH(ctx, ctx->Xn, mres); mres = 0; } # if defined(GHASH_CHUNK) while (len >= GHASH_CHUNK) { GHASH(ctx, in, GHASH_CHUNK); (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c); ctr += GHASH_CHUNK / 16; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += GHASH_CHUNK; in += GHASH_CHUNK; len -= GHASH_CHUNK; } # endif # endif if ((i = (len & (size_t)-16))) { size_t j = i / 16; # if defined(GHASH) GHASH(ctx, in, i); # else while (j--) { size_t k; for (k = 0; k < 16; ++k) ctx->Xi.c[k] ^= in[k]; GCM_MUL(ctx); in += 16; } j = i / 16; in -= i; # endif (*stream) (in, out, j, key, ctx->Yi.c); ctr += (unsigned int)j; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; out += i; in += i; len -= i; } if (len) { (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key); ++ctr; if (IS_LITTLE_ENDIAN) # ifdef BSWAP4 ctx->Yi.d[3] = BSWAP4(ctr); # else PUTU32(ctx->Yi.c + 12, ctr); # endif else ctx->Yi.d[3] = ctr; while (len--) { # if defined(GHASH) out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n]; # else u8 c = in[n]; ctx->Xi.c[mres++] ^= c; out[n] = c ^ ctx->EKi.c[n]; # endif ++n; } } ctx->mres = mres; return 0; #endif } int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag, size_t len) { DECLARE_IS_ENDIAN; u64 alen = ctx->len.u[0] << 3; u64 clen = ctx->len.u[1] << 3; #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) u128 bitlen; unsigned int mres = ctx->mres; if (mres) { unsigned blocks = (mres + 15) & -16; memset(ctx->Xn + mres, 0, blocks - mres); mres = blocks; if (mres == sizeof(ctx->Xn)) { GHASH(ctx, ctx->Xn, mres); mres = 0; } } else if (ctx->ares) { GCM_MUL(ctx); } #else if (ctx->mres || ctx->ares) GCM_MUL(ctx); #endif if (IS_LITTLE_ENDIAN) { #ifdef BSWAP8 alen = BSWAP8(alen); clen = BSWAP8(clen); #else u8 *p = ctx->len.c; ctx->len.u[0] = alen; ctx->len.u[1] = clen; alen = (u64)GETU32(p) << 32 | GETU32(p + 4); clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12); #endif } #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT) bitlen.hi = alen; bitlen.lo = clen; memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen)); mres += sizeof(bitlen); GHASH(ctx, ctx->Xn, mres); #else ctx->Xi.u[0] ^= alen; ctx->Xi.u[1] ^= clen; GCM_MUL(ctx); #endif ctx->Xi.u[0] ^= ctx->EK0.u[0]; ctx->Xi.u[1] ^= ctx->EK0.u[1]; if (tag && len <= sizeof(ctx->Xi)) return CRYPTO_memcmp(ctx->Xi.c, tag, len); else return -1; } void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len) { CRYPTO_gcm128_finish(ctx, NULL, 0); memcpy(tag, ctx->Xi.c, len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c)); } GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block) { GCM128_CONTEXT *ret; if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL) CRYPTO_gcm128_init(ret, key, block); return ret; } void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx) { OPENSSL_clear_free(ctx, sizeof(*ctx)); }