/* * Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "internal/provider.h" #include "internal/core.h" #include "crypto/evp.h" #include "evp_local.h" struct evp_rand_st { OSSL_PROVIDER *prov; int name_id; char *type_name; const char *description; CRYPTO_REF_COUNT refcnt; CRYPTO_RWLOCK *refcnt_lock; const OSSL_DISPATCH *dispatch; OSSL_FUNC_rand_newctx_fn *newctx; OSSL_FUNC_rand_freectx_fn *freectx; OSSL_FUNC_rand_instantiate_fn *instantiate; OSSL_FUNC_rand_uninstantiate_fn *uninstantiate; OSSL_FUNC_rand_generate_fn *generate; OSSL_FUNC_rand_reseed_fn *reseed; OSSL_FUNC_rand_nonce_fn *nonce; OSSL_FUNC_rand_enable_locking_fn *enable_locking; OSSL_FUNC_rand_lock_fn *lock; OSSL_FUNC_rand_unlock_fn *unlock; OSSL_FUNC_rand_gettable_params_fn *gettable_params; OSSL_FUNC_rand_gettable_ctx_params_fn *gettable_ctx_params; OSSL_FUNC_rand_settable_ctx_params_fn *settable_ctx_params; OSSL_FUNC_rand_get_params_fn *get_params; OSSL_FUNC_rand_get_ctx_params_fn *get_ctx_params; OSSL_FUNC_rand_set_ctx_params_fn *set_ctx_params; OSSL_FUNC_rand_verify_zeroization_fn *verify_zeroization; } /* EVP_RAND */ ; static int evp_rand_up_ref(void *vrand) { EVP_RAND *rand = (EVP_RAND *)vrand; int ref = 0; if (rand != NULL) return CRYPTO_UP_REF(&rand->refcnt, &ref, rand->refcnt_lock); return 1; } static void evp_rand_free(void *vrand) { EVP_RAND *rand = (EVP_RAND *)vrand; int ref = 0; if (rand == NULL) return; CRYPTO_DOWN_REF(&rand->refcnt, &ref, rand->refcnt_lock); if (ref > 0) return; OPENSSL_free(rand->type_name); ossl_provider_free(rand->prov); CRYPTO_THREAD_lock_free(rand->refcnt_lock); OPENSSL_free(rand); } static void *evp_rand_new(void) { EVP_RAND *rand = OPENSSL_zalloc(sizeof(*rand)); if (rand == NULL || (rand->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) { OPENSSL_free(rand); return NULL; } rand->refcnt = 1; return rand; } /* Enable locking of the underlying DRBG/RAND if available */ int EVP_RAND_enable_locking(EVP_RAND_CTX *rand) { if (rand->meth->enable_locking != NULL) return rand->meth->enable_locking(rand->algctx); ERR_raise(ERR_LIB_EVP, EVP_R_LOCKING_NOT_SUPPORTED); return 0; } /* Lock the underlying DRBG/RAND if available */ static int evp_rand_lock(EVP_RAND_CTX *rand) { if (rand->meth->lock != NULL) return rand->meth->lock(rand->algctx); return 1; } /* Unlock the underlying DRBG/RAND if available */ static void evp_rand_unlock(EVP_RAND_CTX *rand) { if (rand->meth->unlock != NULL) rand->meth->unlock(rand->algctx); } static void *evp_rand_from_algorithm(int name_id, const OSSL_ALGORITHM *algodef, OSSL_PROVIDER *prov) { const OSSL_DISPATCH *fns = algodef->implementation; EVP_RAND *rand = NULL; int fnrandcnt = 0, fnctxcnt = 0, fnlockcnt = 0, fnenablelockcnt = 0; #ifdef FIPS_MODULE int fnzeroizecnt = 0; #endif if ((rand = evp_rand_new()) == NULL) { ERR_raise(ERR_LIB_EVP, ERR_R_EVP_LIB); return NULL; } rand->name_id = name_id; if ((rand->type_name = ossl_algorithm_get1_first_name(algodef)) == NULL) { evp_rand_free(rand); return NULL; } rand->description = algodef->algorithm_description; rand->dispatch = fns; for (; fns->function_id != 0; fns++) { switch (fns->function_id) { case OSSL_FUNC_RAND_NEWCTX: if (rand->newctx != NULL) break; rand->newctx = OSSL_FUNC_rand_newctx(fns); fnctxcnt++; break; case OSSL_FUNC_RAND_FREECTX: if (rand->freectx != NULL) break; rand->freectx = OSSL_FUNC_rand_freectx(fns); fnctxcnt++; break; case OSSL_FUNC_RAND_INSTANTIATE: if (rand->instantiate != NULL) break; rand->instantiate = OSSL_FUNC_rand_instantiate(fns); fnrandcnt++; break; case OSSL_FUNC_RAND_UNINSTANTIATE: if (rand->uninstantiate != NULL) break; rand->uninstantiate = OSSL_FUNC_rand_uninstantiate(fns); fnrandcnt++; break; case OSSL_FUNC_RAND_GENERATE: if (rand->generate != NULL) break; rand->generate = OSSL_FUNC_rand_generate(fns); fnrandcnt++; break; case OSSL_FUNC_RAND_RESEED: if (rand->reseed != NULL) break; rand->reseed = OSSL_FUNC_rand_reseed(fns); break; case OSSL_FUNC_RAND_NONCE: if (rand->nonce != NULL) break; rand->nonce = OSSL_FUNC_rand_nonce(fns); break; case OSSL_FUNC_RAND_ENABLE_LOCKING: if (rand->enable_locking != NULL) break; rand->enable_locking = OSSL_FUNC_rand_enable_locking(fns); fnenablelockcnt++; break; case OSSL_FUNC_RAND_LOCK: if (rand->lock != NULL) break; rand->lock = OSSL_FUNC_rand_lock(fns); fnlockcnt++; break; case OSSL_FUNC_RAND_UNLOCK: if (rand->unlock != NULL) break; rand->unlock = OSSL_FUNC_rand_unlock(fns); fnlockcnt++; break; case OSSL_FUNC_RAND_GETTABLE_PARAMS: if (rand->gettable_params != NULL) break; rand->gettable_params = OSSL_FUNC_rand_gettable_params(fns); break; case OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS: if (rand->gettable_ctx_params != NULL) break; rand->gettable_ctx_params = OSSL_FUNC_rand_gettable_ctx_params(fns); break; case OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS: if (rand->settable_ctx_params != NULL) break; rand->settable_ctx_params = OSSL_FUNC_rand_settable_ctx_params(fns); break; case OSSL_FUNC_RAND_GET_PARAMS: if (rand->get_params != NULL) break; rand->get_params = OSSL_FUNC_rand_get_params(fns); break; case OSSL_FUNC_RAND_GET_CTX_PARAMS: if (rand->get_ctx_params != NULL) break; rand->get_ctx_params = OSSL_FUNC_rand_get_ctx_params(fns); fnctxcnt++; break; case OSSL_FUNC_RAND_SET_CTX_PARAMS: if (rand->set_ctx_params != NULL) break; rand->set_ctx_params = OSSL_FUNC_rand_set_ctx_params(fns); break; case OSSL_FUNC_RAND_VERIFY_ZEROIZATION: if (rand->verify_zeroization != NULL) break; rand->verify_zeroization = OSSL_FUNC_rand_verify_zeroization(fns); #ifdef FIPS_MODULE fnzeroizecnt++; #endif break; } } /* * In order to be a consistent set of functions we must have at least * a complete set of "rand" functions and a complete set of context * management functions. In FIPS mode, we also require the zeroization * verification function. * * In addition, if locking can be enabled, we need a complete set of * locking functions. */ if (fnrandcnt != 3 || fnctxcnt != 3 || (fnenablelockcnt != 0 && fnenablelockcnt != 1) || (fnlockcnt != 0 && fnlockcnt != 2) #ifdef FIPS_MODULE || fnzeroizecnt != 1 #endif ) { evp_rand_free(rand); ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS); return NULL; } if (prov != NULL && !ossl_provider_up_ref(prov)) { evp_rand_free(rand); ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); return NULL; } rand->prov = prov; return rand; } EVP_RAND *EVP_RAND_fetch(OSSL_LIB_CTX *libctx, const char *algorithm, const char *properties) { return evp_generic_fetch(libctx, OSSL_OP_RAND, algorithm, properties, evp_rand_from_algorithm, evp_rand_up_ref, evp_rand_free); } int EVP_RAND_up_ref(EVP_RAND *rand) { return evp_rand_up_ref(rand); } void EVP_RAND_free(EVP_RAND *rand) { evp_rand_free(rand); } int evp_rand_get_number(const EVP_RAND *rand) { return rand->name_id; } const char *EVP_RAND_get0_name(const EVP_RAND *rand) { return rand->type_name; } const char *EVP_RAND_get0_description(const EVP_RAND *rand) { return rand->description; } int EVP_RAND_is_a(const EVP_RAND *rand, const char *name) { return rand != NULL && evp_is_a(rand->prov, rand->name_id, NULL, name); } const OSSL_PROVIDER *EVP_RAND_get0_provider(const EVP_RAND *rand) { return rand->prov; } int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]) { if (rand->get_params != NULL) return rand->get_params(params); return 1; } int EVP_RAND_CTX_up_ref(EVP_RAND_CTX *ctx) { int ref = 0; return CRYPTO_UP_REF(&ctx->refcnt, &ref, ctx->refcnt_lock); } EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent) { EVP_RAND_CTX *ctx; void *parent_ctx = NULL; const OSSL_DISPATCH *parent_dispatch = NULL; if (rand == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_NULL_ALGORITHM); return NULL; } ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) return NULL; if ((ctx->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) { OPENSSL_free(ctx); ERR_raise(ERR_LIB_EVP, ERR_R_CRYPTO_LIB); return NULL; } if (parent != NULL) { if (!EVP_RAND_CTX_up_ref(parent)) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); CRYPTO_THREAD_lock_free(ctx->refcnt_lock); OPENSSL_free(ctx); return NULL; } parent_ctx = parent->algctx; parent_dispatch = parent->meth->dispatch; } if ((ctx->algctx = rand->newctx(ossl_provider_ctx(rand->prov), parent_ctx, parent_dispatch)) == NULL || !EVP_RAND_up_ref(rand)) { ERR_raise(ERR_LIB_EVP, ERR_R_EVP_LIB); rand->freectx(ctx->algctx); CRYPTO_THREAD_lock_free(ctx->refcnt_lock); OPENSSL_free(ctx); EVP_RAND_CTX_free(parent); return NULL; } ctx->meth = rand; ctx->parent = parent; ctx->refcnt = 1; return ctx; } void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx) { int ref = 0; EVP_RAND_CTX *parent; if (ctx == NULL) return; CRYPTO_DOWN_REF(&ctx->refcnt, &ref, ctx->refcnt_lock); if (ref > 0) return; parent = ctx->parent; ctx->meth->freectx(ctx->algctx); ctx->algctx = NULL; EVP_RAND_free(ctx->meth); CRYPTO_THREAD_lock_free(ctx->refcnt_lock); OPENSSL_free(ctx); EVP_RAND_CTX_free(parent); } EVP_RAND *EVP_RAND_CTX_get0_rand(EVP_RAND_CTX *ctx) { return ctx->meth; } static int evp_rand_get_ctx_params_locked(EVP_RAND_CTX *ctx, OSSL_PARAM params[]) { return ctx->meth->get_ctx_params(ctx->algctx, params); } int EVP_RAND_CTX_get_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[]) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_get_ctx_params_locked(ctx, params); evp_rand_unlock(ctx); return res; } static int evp_rand_set_ctx_params_locked(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]) { if (ctx->meth->set_ctx_params != NULL) return ctx->meth->set_ctx_params(ctx->algctx, params); return 1; } int EVP_RAND_CTX_set_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_set_ctx_params_locked(ctx, params); evp_rand_unlock(ctx); return res; } const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand) { if (rand->gettable_params == NULL) return NULL; return rand->gettable_params(ossl_provider_ctx(EVP_RAND_get0_provider(rand))); } const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand) { void *provctx; if (rand->gettable_ctx_params == NULL) return NULL; provctx = ossl_provider_ctx(EVP_RAND_get0_provider(rand)); return rand->gettable_ctx_params(NULL, provctx); } const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand) { void *provctx; if (rand->settable_ctx_params == NULL) return NULL; provctx = ossl_provider_ctx(EVP_RAND_get0_provider(rand)); return rand->settable_ctx_params(NULL, provctx); } const OSSL_PARAM *EVP_RAND_CTX_gettable_params(EVP_RAND_CTX *ctx) { void *provctx; if (ctx->meth->gettable_ctx_params == NULL) return NULL; provctx = ossl_provider_ctx(EVP_RAND_get0_provider(ctx->meth)); return ctx->meth->gettable_ctx_params(ctx->algctx, provctx); } const OSSL_PARAM *EVP_RAND_CTX_settable_params(EVP_RAND_CTX *ctx) { void *provctx; if (ctx->meth->settable_ctx_params == NULL) return NULL; provctx = ossl_provider_ctx(EVP_RAND_get0_provider(ctx->meth)); return ctx->meth->settable_ctx_params(ctx->algctx, provctx); } void EVP_RAND_do_all_provided(OSSL_LIB_CTX *libctx, void (*fn)(EVP_RAND *rand, void *arg), void *arg) { evp_generic_do_all(libctx, OSSL_OP_RAND, (void (*)(void *, void *))fn, arg, evp_rand_from_algorithm, evp_rand_up_ref, evp_rand_free); } int EVP_RAND_names_do_all(const EVP_RAND *rand, void (*fn)(const char *name, void *data), void *data) { if (rand->prov != NULL) return evp_names_do_all(rand->prov, rand->name_id, fn, data); return 1; } static int evp_rand_instantiate_locked (EVP_RAND_CTX *ctx, unsigned int strength, int prediction_resistance, const unsigned char *pstr, size_t pstr_len, const OSSL_PARAM params[]) { return ctx->meth->instantiate(ctx->algctx, strength, prediction_resistance, pstr, pstr_len, params); } int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength, int prediction_resistance, const unsigned char *pstr, size_t pstr_len, const OSSL_PARAM params[]) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_instantiate_locked(ctx, strength, prediction_resistance, pstr, pstr_len, params); evp_rand_unlock(ctx); return res; } static int evp_rand_uninstantiate_locked(EVP_RAND_CTX *ctx) { return ctx->meth->uninstantiate(ctx->algctx); } int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_uninstantiate_locked(ctx); evp_rand_unlock(ctx); return res; } static int evp_rand_generate_locked(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen, unsigned int strength, int prediction_resistance, const unsigned char *addin, size_t addin_len) { size_t chunk, max_request = 0; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; params[0] = OSSL_PARAM_construct_size_t(OSSL_RAND_PARAM_MAX_REQUEST, &max_request); if (!evp_rand_get_ctx_params_locked(ctx, params) || max_request == 0) { ERR_raise(ERR_LIB_EVP, EVP_R_UNABLE_TO_GET_MAXIMUM_REQUEST_SIZE); return 0; } for (; outlen > 0; outlen -= chunk, out += chunk) { chunk = outlen > max_request ? max_request : outlen; if (!ctx->meth->generate(ctx->algctx, out, chunk, strength, prediction_resistance, addin, addin_len)) { ERR_raise(ERR_LIB_EVP, EVP_R_GENERATE_ERROR); return 0; } /* * Prediction resistance is only relevant the first time around, * subsequently, the DRBG has already been properly reseeded. */ prediction_resistance = 0; } return 1; } int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen, unsigned int strength, int prediction_resistance, const unsigned char *addin, size_t addin_len) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_generate_locked(ctx, out, outlen, strength, prediction_resistance, addin, addin_len); evp_rand_unlock(ctx); return res; } static int evp_rand_reseed_locked(EVP_RAND_CTX *ctx, int prediction_resistance, const unsigned char *ent, size_t ent_len, const unsigned char *addin, size_t addin_len) { if (ctx->meth->reseed != NULL) return ctx->meth->reseed(ctx->algctx, prediction_resistance, ent, ent_len, addin, addin_len); return 1; } int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance, const unsigned char *ent, size_t ent_len, const unsigned char *addin, size_t addin_len) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_reseed_locked(ctx, prediction_resistance, ent, ent_len, addin, addin_len); evp_rand_unlock(ctx); return res; } static unsigned int evp_rand_strength_locked(EVP_RAND_CTX *ctx) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; unsigned int strength = 0; params[0] = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength); if (!evp_rand_get_ctx_params_locked(ctx, params)) return 0; return strength; } unsigned int EVP_RAND_get_strength(EVP_RAND_CTX *ctx) { unsigned int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_strength_locked(ctx); evp_rand_unlock(ctx); return res; } static int evp_rand_nonce_locked(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen) { unsigned int str = evp_rand_strength_locked(ctx); if (ctx->meth->nonce == NULL) return 0; if (ctx->meth->nonce(ctx->algctx, out, str, outlen, outlen)) return 1; return evp_rand_generate_locked(ctx, out, outlen, str, 0, NULL, 0); } int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_nonce_locked(ctx, out, outlen); evp_rand_unlock(ctx); return res; } int EVP_RAND_get_state(EVP_RAND_CTX *ctx) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; int state; params[0] = OSSL_PARAM_construct_int(OSSL_RAND_PARAM_STATE, &state); if (!EVP_RAND_CTX_get_params(ctx, params)) state = EVP_RAND_STATE_ERROR; return state; } static int evp_rand_verify_zeroization_locked(EVP_RAND_CTX *ctx) { if (ctx->meth->verify_zeroization != NULL) return ctx->meth->verify_zeroization(ctx->algctx); return 0; } int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx) { int res; if (!evp_rand_lock(ctx)) return 0; res = evp_rand_verify_zeroization_locked(ctx); evp_rand_unlock(ctx); return res; }