/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #include #include #define DEFBITS 2048 #define DEFPRIMES 2 static int verbose = 0; typedef enum OPTION_choice { OPT_COMMON, #ifndef OPENSSL_NO_DEPRECATED_3_0 OPT_3, #endif OPT_F4, OPT_ENGINE, OPT_OUT, OPT_PASSOUT, OPT_CIPHER, OPT_PRIMES, OPT_VERBOSE, OPT_QUIET, OPT_R_ENUM, OPT_PROV_ENUM, OPT_TRADITIONAL } OPTION_CHOICE; const OPTIONS genrsa_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] numbits\n"}, OPT_SECTION("General"), {"help", OPT_HELP, '-', "Display this summary"}, #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif OPT_SECTION("Input"), #ifndef OPENSSL_NO_DEPRECATED_3_0 {"3", OPT_3, '-', "(deprecated) Use 3 for the E value"}, #endif {"F4", OPT_F4, '-', "Use the Fermat number F4 (0x10001) for the E value"}, {"f4", OPT_F4, '-', "Use the Fermat number F4 (0x10001) for the E value"}, OPT_SECTION("Output"), {"out", OPT_OUT, '>', "Output the key to specified file"}, {"passout", OPT_PASSOUT, 's', "Output file pass phrase source"}, {"primes", OPT_PRIMES, 'p', "Specify number of primes"}, {"verbose", OPT_VERBOSE, '-', "Verbose output"}, {"quiet", OPT_QUIET, '-', "Terse output"}, {"traditional", OPT_TRADITIONAL, '-', "Use traditional format for private keys"}, {"", OPT_CIPHER, '-', "Encrypt the output with any supported cipher"}, OPT_R_OPTIONS, OPT_PROV_OPTIONS, OPT_PARAMETERS(), {"numbits", 0, 0, "Size of key in bits"}, {NULL} }; int genrsa_main(int argc, char **argv) { BN_GENCB *cb = BN_GENCB_new(); ENGINE *eng = NULL; BIGNUM *bn = BN_new(); BIO *out = NULL; EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *ctx = NULL; EVP_CIPHER *enc = NULL; int ret = 1, num = DEFBITS, private = 0, primes = DEFPRIMES; unsigned long f4 = RSA_F4; char *outfile = NULL, *passoutarg = NULL, *passout = NULL; char *prog, *hexe, *dece, *ciphername = NULL; OPTION_CHOICE o; int traditional = 0; if (bn == NULL || cb == NULL) goto end; opt_set_unknown_name("cipher"); prog = opt_init(argc, argv, genrsa_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: ret = 0; opt_help(genrsa_options); goto end; #ifndef OPENSSL_NO_DEPRECATED_3_0 case OPT_3: f4 = RSA_3; break; #endif case OPT_F4: f4 = RSA_F4; break; case OPT_OUT: outfile = opt_arg(); break; case OPT_ENGINE: eng = setup_engine(opt_arg(), 0); break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_PROV_CASES: if (!opt_provider(o)) goto end; break; case OPT_PASSOUT: passoutarg = opt_arg(); break; case OPT_CIPHER: ciphername = opt_unknown(); break; case OPT_PRIMES: primes = opt_int_arg(); break; case OPT_VERBOSE: verbose = 1; break; case OPT_QUIET: verbose = 0; break; case OPT_TRADITIONAL: traditional = 1; break; } } /* One optional argument, the bitsize. */ argc = opt_num_rest(); argv = opt_rest(); if (argc == 1) { if (!opt_int(argv[0], &num) || num <= 0) goto end; if (num > OPENSSL_RSA_MAX_MODULUS_BITS) BIO_printf(bio_err, "Warning: It is not recommended to use more than %d bit for RSA keys.\n" " Your key size is %d! Larger key size may behave not as expected.\n", OPENSSL_RSA_MAX_MODULUS_BITS, num); } else if (!opt_check_rest_arg(NULL)) { goto opthelp; } if (!app_RAND_load()) goto end; private = 1; if (!opt_cipher(ciphername, &enc)) goto end; if (!app_passwd(NULL, passoutarg, NULL, &passout)) { BIO_printf(bio_err, "Error getting password\n"); goto end; } out = bio_open_owner(outfile, FORMAT_PEM, private); if (out == NULL) goto end; if (!init_gen_str(&ctx, "RSA", eng, 0, app_get0_libctx(), app_get0_propq())) goto end; if (verbose) EVP_PKEY_CTX_set_cb(ctx, progress_cb); EVP_PKEY_CTX_set_app_data(ctx, bio_err); if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, num) <= 0) { BIO_printf(bio_err, "Error setting RSA length\n"); goto end; } if (!BN_set_word(bn, f4)) { BIO_printf(bio_err, "Error allocating RSA public exponent\n"); goto end; } if (EVP_PKEY_CTX_set1_rsa_keygen_pubexp(ctx, bn) <= 0) { BIO_printf(bio_err, "Error setting RSA public exponent\n"); goto end; } if (EVP_PKEY_CTX_set_rsa_keygen_primes(ctx, primes) <= 0) { BIO_printf(bio_err, "Error setting number of primes\n"); goto end; } pkey = app_keygen(ctx, "RSA", num, verbose); if (verbose) { BIGNUM *e = NULL; /* Every RSA key has an 'e' */ EVP_PKEY_get_bn_param(pkey, "e", &e); if (e == NULL) { BIO_printf(bio_err, "Error cannot access RSA e\n"); goto end; } hexe = BN_bn2hex(e); dece = BN_bn2dec(e); if (hexe && dece) { BIO_printf(bio_err, "e is %s (0x%s)\n", dece, hexe); } OPENSSL_free(hexe); OPENSSL_free(dece); BN_free(e); } if (traditional) { if (!PEM_write_bio_PrivateKey_traditional(out, pkey, enc, NULL, 0, NULL, passout)) goto end; } else { if (!PEM_write_bio_PrivateKey(out, pkey, enc, NULL, 0, NULL, passout)) goto end; } ret = 0; end: BN_free(bn); BN_GENCB_free(cb); EVP_PKEY_CTX_free(ctx); EVP_PKEY_free(pkey); EVP_CIPHER_free(enc); BIO_free_all(out); release_engine(eng); OPENSSL_free(passout); if (ret != 0) ERR_print_errors(bio_err); return ret; }