(* Implicit unpack allows to omit the signature in (val ...) expressions. It also adds (module M : S) and (module M) patterns, relying on implicit (val ...) for the implementation. Such patterns can only be used in function definition, match clauses, and let ... in. New: implicit pack is also supported, and you only need to be able to infer the the module type path from the context. *) (* ocaml -principal *) (* Use a module pattern *) let sort (type s) (module Set : Set.S with type elt = s) l = Set.elements (List.fold_right Set.add l Set.empty) (* No real improvement here? *) let make_set (type s) cmp : (module Set.S with type elt = s) = (module Set.Make (struct type t = s let compare = cmp end)) (* No type annotation here *) let sort_cmp (type s) cmp = sort (module Set.Make (struct type t = s let compare = cmp end)) module type S = sig type t val x : t end;; let f (module M : S with type t = int) = M.x;; let f (module M : S with type t = 'a) = M.x;; (* Error *) let f (type a) (module M : S with type t = a) = M.x;; f (module struct type t = int let x = 1 end);; type 'a s = {s: (module S with type t = 'a)};; {s=(module struct type t = int let x = 1 end)};; let f {s=(module M)} = M.x;; (* Error *) let f (type a) ({s=(module M)} : a s) = M.x;; type s = {s: (module S with type t = int)};; let f {s=(module M)} = M.x;; let f {s=(module M)} {s=(module N)} = M.x + N.x;; module type S = sig val x : int end;; let f (module M : S) y (module N : S) = M.x + y + N.x;; let m = (module struct let x = 3 end);; (* Error *) let m = (module struct let x = 3 end : S);; f m 1 m;; f m 1 (module struct let x = 2 end);; let (module M) = m in M.x;; let (module M) = m;; (* Error: only allowed in [let .. in] *) class c = let (module M) = m in object end;; (* Error again *) module M = (val m);; module type S' = sig val f : int -> int end;; (* Even works with recursion, but must be fully explicit *) let rec (module M : S') = (module struct let f n = if n <= 0 then 1 else n * M.f (n-1) end : S') in M.f 3;; (* Subtyping *) module type S = sig type t type u val x : t * u end let f (l : (module S with type t = int and type u = bool) list) = (l :> (module S with type u = bool) list) (* GADTs from the manual *) (* the only modification is in to_string *) module TypEq : sig type ('a, 'b) t val apply: ('a, 'b) t -> 'a -> 'b val refl: ('a, 'a) t val sym: ('a, 'b) t -> ('b, 'a) t end = struct type ('a, 'b) t = ('a -> 'b) * ('b -> 'a) let refl = (fun x -> x), (fun x -> x) let apply (f, _) x = f x let sym (f, g) = (g, f) end module rec Typ : sig module type PAIR = sig type t and t1 and t2 val eq: (t, t1 * t2) TypEq.t val t1: t1 Typ.typ val t2: t2 Typ.typ end type 'a typ = | Int of ('a, int) TypEq.t | String of ('a, string) TypEq.t | Pair of (module PAIR with type t = 'a) end = Typ let int = Typ.Int TypEq.refl let str = Typ.String TypEq.refl let pair (type s1) (type s2) t1 t2 = let module P = struct type t = s1 * s2 type t1 = s1 type t2 = s2 let eq = TypEq.refl let t1 = t1 let t2 = t2 end in Typ.Pair (module P) open Typ let rec to_string: 'a. 'a Typ.typ -> 'a -> string = fun (type s) t x -> match (t : s typ) with | Int eq -> string_of_int (TypEq.apply eq x) | String eq -> Printf.sprintf "%S" (TypEq.apply eq x) | Pair (module P) -> let (x1, x2) = TypEq.apply P.eq x in Printf.sprintf "(%s,%s)" (to_string P.t1 x1) (to_string P.t2 x2)