/* * mplogic.c * * Bitwise logical operations on MPI values * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mpi-priv.h" #include "mplogic.h" /* {{{ Lookup table for population count */ static unsigned char bitc[] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; /* }}} */ /*------------------------------------------------------------------------*/ /* mpl_not(a, b) - compute b = ~a mpl_and(a, b, c) - compute c = a & b mpl_or(a, b, c) - compute c = a | b mpl_xor(a, b, c) - compute c = a ^ b */ /* {{{ mpl_not(a, b) */ mp_err mpl_not(mp_int *a, mp_int *b) { mp_err res; unsigned int ix; ARGCHK(a != NULL && b != NULL, MP_BADARG); if ((res = mp_copy(a, b)) != MP_OKAY) return res; /* This relies on the fact that the digit type is unsigned */ for (ix = 0; ix < USED(b); ix++) DIGIT(b, ix) = ~DIGIT(b, ix); s_mp_clamp(b); return MP_OKAY; } /* end mpl_not() */ /* }}} */ /* {{{ mpl_and(a, b, c) */ mp_err mpl_and(mp_int *a, mp_int *b, mp_int *c) { mp_int *which, *other; mp_err res; unsigned int ix; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); if (USED(a) <= USED(b)) { which = a; other = b; } else { which = b; other = a; } if ((res = mp_copy(which, c)) != MP_OKAY) return res; for (ix = 0; ix < USED(which); ix++) DIGIT(c, ix) &= DIGIT(other, ix); s_mp_clamp(c); return MP_OKAY; } /* end mpl_and() */ /* }}} */ /* {{{ mpl_or(a, b, c) */ mp_err mpl_or(mp_int *a, mp_int *b, mp_int *c) { mp_int *which, *other; mp_err res; unsigned int ix; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); if (USED(a) >= USED(b)) { which = a; other = b; } else { which = b; other = a; } if ((res = mp_copy(which, c)) != MP_OKAY) return res; for (ix = 0; ix < USED(which); ix++) DIGIT(c, ix) |= DIGIT(other, ix); return MP_OKAY; } /* end mpl_or() */ /* }}} */ /* {{{ mpl_xor(a, b, c) */ mp_err mpl_xor(mp_int *a, mp_int *b, mp_int *c) { mp_int *which, *other; mp_err res; unsigned int ix; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); if (USED(a) >= USED(b)) { which = a; other = b; } else { which = b; other = a; } if ((res = mp_copy(which, c)) != MP_OKAY) return res; for (ix = 0; ix < USED(which); ix++) DIGIT(c, ix) ^= DIGIT(other, ix); s_mp_clamp(c); return MP_OKAY; } /* end mpl_xor() */ /* }}} */ /*------------------------------------------------------------------------*/ /* mpl_rsh(a, b, d) - b = a >> d mpl_lsh(a, b, d) - b = a << d */ /* {{{ mpl_rsh(a, b, d) */ mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d) { mp_err res; ARGCHK(a != NULL && b != NULL, MP_BADARG); if ((res = mp_copy(a, b)) != MP_OKAY) return res; s_mp_div_2d(b, d); return MP_OKAY; } /* end mpl_rsh() */ /* }}} */ /* {{{ mpl_lsh(a, b, d) */ mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d) { mp_err res; ARGCHK(a != NULL && b != NULL, MP_BADARG); if ((res = mp_copy(a, b)) != MP_OKAY) return res; return s_mp_mul_2d(b, d); } /* end mpl_lsh() */ /* }}} */ /*------------------------------------------------------------------------*/ /* mpl_num_set(a, num) Count the number of set bits in the binary representation of a. Returns MP_OKAY and sets 'num' to be the number of such bits, if possible. If num is NULL, the result is thrown away, but it is not considered an error. mpl_num_clear() does basically the same thing for clear bits. */ /* {{{ mpl_num_set(a, num) */ mp_err mpl_num_set(mp_int *a, int *num) { unsigned int ix; int db, nset = 0; mp_digit cur; unsigned char reg; ARGCHK(a != NULL, MP_BADARG); for (ix = 0; ix < USED(a); ix++) { cur = DIGIT(a, ix); for (db = 0; db < sizeof(mp_digit); db++) { reg = (unsigned char)(cur >> (CHAR_BIT * db)); nset += bitc[reg]; } } if (num) *num = nset; return MP_OKAY; } /* end mpl_num_set() */ /* }}} */ /* {{{ mpl_num_clear(a, num) */ mp_err mpl_num_clear(mp_int *a, int *num) { unsigned int ix; int db, nset = 0; mp_digit cur; unsigned char reg; ARGCHK(a != NULL, MP_BADARG); for (ix = 0; ix < USED(a); ix++) { cur = DIGIT(a, ix); for (db = 0; db < sizeof(mp_digit); db++) { reg = (unsigned char)(cur >> (CHAR_BIT * db)); nset += bitc[UCHAR_MAX - reg]; } } if (num) *num = nset; return MP_OKAY; } /* end mpl_num_clear() */ /* }}} */ /*------------------------------------------------------------------------*/ /* mpl_parity(a) Determines the bitwise parity of the value given. Returns MP_EVEN if an even number of digits are set, MP_ODD if an odd number are set. */ /* {{{ mpl_parity(a) */ mp_err mpl_parity(mp_int *a) { unsigned int ix; int par = 0; mp_digit cur; ARGCHK(a != NULL, MP_BADARG); for (ix = 0; ix < USED(a); ix++) { int shft = (sizeof(mp_digit) * CHAR_BIT) / 2; cur = DIGIT(a, ix); /* Compute parity for current digit */ while (shft != 0) { cur ^= (cur >> shft); shft >>= 1; } cur &= 1; /* XOR with running parity so far */ par ^= cur; } if (par) return MP_ODD; else return MP_EVEN; } /* end mpl_parity() */ /* }}} */ /* mpl_set_bit Returns MP_OKAY or some error code. Grows a if needed to set a bit to 1. */ mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value) { mp_size ix; mp_err rv; mp_digit mask; ARGCHK(a != NULL, MP_BADARG); ix = bitNum / MP_DIGIT_BIT; if (ix + 1 > MP_USED(a)) { rv = s_mp_pad(a, ix + 1); if (rv != MP_OKAY) return rv; } bitNum = bitNum % MP_DIGIT_BIT; mask = (mp_digit)1 << bitNum; if (value) MP_DIGIT(a, ix) |= mask; else MP_DIGIT(a, ix) &= ~mask; s_mp_clamp(a); return MP_OKAY; } /* mpl_get_bit returns 0 or 1 or some (negative) error code. */ mp_err mpl_get_bit(const mp_int *a, mp_size bitNum) { mp_size bit, ix; mp_err rv; ARGCHK(a != NULL, MP_BADARG); ix = bitNum / MP_DIGIT_BIT; ARGCHK(ix <= MP_USED(a) - 1, MP_RANGE); bit = bitNum % MP_DIGIT_BIT; rv = (mp_err)(MP_DIGIT(a, ix) >> bit) & 1; return rv; } /* mpl_get_bits - Extracts numBits bits from a, where the least significant extracted bit is bit lsbNum. Returns a negative value if error occurs. - Because sign bit is used to indicate error, maximum number of bits to be returned is the lesser of (a) the number of bits in an mp_digit, or (b) one less than the number of bits in an mp_err. - lsbNum + numbits can be greater than the number of significant bits in integer a, as long as bit lsbNum is in the high order digit of a. */ mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits) { mp_size rshift = (lsbNum % MP_DIGIT_BIT); mp_size lsWndx = (lsbNum / MP_DIGIT_BIT); mp_digit *digit = MP_DIGITS(a) + lsWndx; mp_digit mask = ((1 << numBits) - 1); ARGCHK(numBits < CHAR_BIT * sizeof mask, MP_BADARG); ARGCHK(MP_HOWMANY(lsbNum, MP_DIGIT_BIT) <= MP_USED(a), MP_RANGE); if ((numBits + lsbNum % MP_DIGIT_BIT <= MP_DIGIT_BIT) || (lsWndx + 1 >= MP_USED(a))) { mask &= (digit[0] >> rshift); } else { mask &= ((digit[0] >> rshift) | (digit[1] << (MP_DIGIT_BIT - rshift))); } return (mp_err)mask; } /* mpl_significant_bits returns number of significnant bits in abs(a). returns 1 if value is zero. */ mp_size mpl_significant_bits(const mp_int *a) { mp_size bits = 0; int ix; ARGCHK(a != NULL, MP_BADARG); for (ix = MP_USED(a); ix > 0;) { mp_digit d; d = MP_DIGIT(a, --ix); if (d) { while (d) { ++bits; d >>= 1; } break; } } bits += ix * MP_DIGIT_BIT; if (!bits) bits = 1; return bits; } /*------------------------------------------------------------------------*/ /* HERE THERE BE DRAGONS */