// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ #define V8_X64_MACRO_ASSEMBLER_X64_H_ #include "assembler.h" namespace v8 { namespace internal { // Flags used for the AllocateInNewSpace functions. enum AllocationFlags { // No special flags. NO_ALLOCATION_FLAGS = 0, // Return the pointer to the allocated already tagged as a heap object. TAG_OBJECT = 1 << 0, // The content of the result register already contains the allocation top in // new space. RESULT_CONTAINS_TOP = 1 << 1 }; // Default scratch register used by MacroAssembler (and other code that needs // a spare register). The register isn't callee save, and not used by the // function calling convention. static const Register kScratchRegister = { 10 }; // r10. static const Register kSmiConstantRegister = { 15 }; // r15 (callee save). static const Register kRootRegister = { 13 }; // r13 (callee save). // Value of smi in kSmiConstantRegister. static const int kSmiConstantRegisterValue = 1; // Convenience for platform-independent signatures. typedef Operand MemOperand; // Forward declaration. class JumpTarget; struct SmiIndex { SmiIndex(Register index_register, ScaleFactor scale) : reg(index_register), scale(scale) {} Register reg; ScaleFactor scale; }; // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: MacroAssembler(void* buffer, int size); void LoadRoot(Register destination, Heap::RootListIndex index); void CompareRoot(Register with, Heap::RootListIndex index); void CompareRoot(Operand with, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index); void StoreRoot(Register source, Heap::RootListIndex index); // --------------------------------------------------------------------------- // GC Support // For page containing |object| mark region covering |addr| dirty. // RecordWriteHelper only works if the object is not in new // space. void RecordWriteHelper(Register object, Register addr, Register scratch); // Check if object is in new space. The condition cc can be equal or // not_equal. If it is equal a jump will be done if the object is on new // space. The register scratch can be object itself, but it will be clobbered. void InNewSpace(Register object, Register scratch, Condition cc, Label* branch); // For page containing |object| mark region covering [object+offset] // dirty. |object| is the object being stored into, |value| is the // object being stored. If |offset| is zero, then the |scratch| // register contains the array index into the elements array // represented as a Smi. All registers are clobbered by the // operation. RecordWrite filters out smis so it does not update the // write barrier if the value is a smi. void RecordWrite(Register object, int offset, Register value, Register scratch); // For page containing |object| mark region covering [address] // dirty. |object| is the object being stored into, |value| is the // object being stored. All registers are clobbered by the // operation. RecordWrite filters out smis so it does not update // the write barrier if the value is a smi. void RecordWrite(Register object, Register address, Register value); // For page containing |object| mark region covering [object+offset] dirty. // The value is known to not be a smi. // object is the object being stored into, value is the object being stored. // If offset is zero, then the scratch register contains the array index into // the elements array represented as a Smi. // All registers are clobbered by the operation. void RecordWriteNonSmi(Register object, int offset, Register value, Register scratch); #ifdef ENABLE_DEBUGGER_SUPPORT // --------------------------------------------------------------------------- // Debugger Support void SaveRegistersToMemory(RegList regs); void RestoreRegistersFromMemory(RegList regs); void PushRegistersFromMemory(RegList regs); void PopRegistersToMemory(RegList regs); void CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs); void DebugBreak(); #endif // --------------------------------------------------------------------------- // Stack limit support // Do simple test for stack overflow. This doesn't handle an overflow. void StackLimitCheck(Label* on_stack_limit_hit); // --------------------------------------------------------------------------- // Activation frames void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } // Enter specific kind of exit frame; either in normal or // debug mode. Expects the number of arguments in register rax and // sets up the number of arguments in register rdi and the pointer // to the first argument in register rsi. void EnterExitFrame(ExitFrame::Mode mode, int result_size = 1); // Leave the current exit frame. Expects/provides the return value in // register rax:rdx (untouched) and the pointer to the first // argument in register rsi. void LeaveExitFrame(ExitFrame::Mode mode, int result_size = 1); // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); void InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag); void InvokeFunction(JSFunction* function, const ParameterCount& actual, InvokeFlag flag); // Invoke specified builtin JavaScript function. Adds an entry to // the unresolved list if the name does not resolve. void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag); // Store the code object for the given builtin in the target register. void GetBuiltinEntry(Register target, Builtins::JavaScript id); // --------------------------------------------------------------------------- // Smi tagging, untagging and operations on tagged smis. void InitializeSmiConstantRegister() { movq(kSmiConstantRegister, reinterpret_cast(Smi::FromInt(kSmiConstantRegisterValue)), RelocInfo::NONE); } // Conversions between tagged smi values and non-tagged integer values. // Tag an integer value. The result must be known to be a valid smi value. // Only uses the low 32 bits of the src register. Sets the N and Z flags // based on the value of the resulting integer. void Integer32ToSmi(Register dst, Register src); // Tag an integer value if possible, or jump the integer value cannot be // represented as a smi. Only uses the low 32 bit of the src registers. // NOTICE: Destroys the dst register even if unsuccessful! void Integer32ToSmi(Register dst, Register src, Label* on_overflow); // Stores an integer32 value into a memory field that already holds a smi. void Integer32ToSmiField(const Operand& dst, Register src); // Adds constant to src and tags the result as a smi. // Result must be a valid smi. void Integer64PlusConstantToSmi(Register dst, Register src, int constant); // Convert smi to 32-bit integer. I.e., not sign extended into // high 32 bits of destination. void SmiToInteger32(Register dst, Register src); void SmiToInteger32(Register dst, const Operand& src); // Convert smi to 64-bit integer (sign extended if necessary). void SmiToInteger64(Register dst, Register src); void SmiToInteger64(Register dst, const Operand& src); // Multiply a positive smi's integer value by a power of two. // Provides result as 64-bit integer value. void PositiveSmiTimesPowerOfTwoToInteger64(Register dst, Register src, int power); // Divide a positive smi's integer value by a power of two. // Provides result as 32-bit integer value. void PositiveSmiDivPowerOfTwoToInteger32(Register dst, Register src, int power); // Simple comparison of smis. void SmiCompare(Register dst, Register src); void SmiCompare(Register dst, Smi* src); void SmiCompare(Register dst, const Operand& src); void SmiCompare(const Operand& dst, Register src); void SmiCompare(const Operand& dst, Smi* src); // Compare the int32 in src register to the value of the smi stored at dst. void SmiCompareInteger32(const Operand& dst, Register src); // Sets sign and zero flags depending on value of smi in register. void SmiTest(Register src); // Functions performing a check on a known or potential smi. Returns // a condition that is satisfied if the check is successful. // Is the value a tagged smi. Condition CheckSmi(Register src); // Is the value a positive tagged smi. Condition CheckPositiveSmi(Register src); // Are both values tagged smis. Condition CheckBothSmi(Register first, Register second); // Are both values tagged smis. Condition CheckBothPositiveSmi(Register first, Register second); // Are either value a tagged smi. Condition CheckEitherSmi(Register first, Register second); // Is the value the minimum smi value (since we are using // two's complement numbers, negating the value is known to yield // a non-smi value). Condition CheckIsMinSmi(Register src); // Checks whether an 32-bit integer value is a valid for conversion // to a smi. Condition CheckInteger32ValidSmiValue(Register src); // Checks whether an 32-bit unsigned integer value is a valid for // conversion to a smi. Condition CheckUInteger32ValidSmiValue(Register src); // Test-and-jump functions. Typically combines a check function // above with a conditional jump. // Jump if the value cannot be represented by a smi. void JumpIfNotValidSmiValue(Register src, Label* on_invalid); // Jump if the unsigned integer value cannot be represented by a smi. void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid); // Jump to label if the value is a tagged smi. void JumpIfSmi(Register src, Label* on_smi); // Jump to label if the value is not a tagged smi. void JumpIfNotSmi(Register src, Label* on_not_smi); // Jump to label if the value is not a positive tagged smi. void JumpIfNotPositiveSmi(Register src, Label* on_not_smi); // Jump to label if the value, which must be a tagged smi, has value equal // to the constant. void JumpIfSmiEqualsConstant(Register src, Smi* constant, Label* on_equals); // Jump if either or both register are not smi values. void JumpIfNotBothSmi(Register src1, Register src2, Label* on_not_both_smi); // Jump if either or both register are not positive smi values. void JumpIfNotBothPositiveSmi(Register src1, Register src2, Label* on_not_both_smi); // Operations on tagged smi values. // Smis represent a subset of integers. The subset is always equivalent to // a two's complement interpretation of a fixed number of bits. // Optimistically adds an integer constant to a supposed smi. // If the src is not a smi, or the result is not a smi, jump to // the label. void SmiTryAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result); // Add an integer constant to a tagged smi, giving a tagged smi as result. // No overflow testing on the result is done. void SmiAddConstant(Register dst, Register src, Smi* constant); // Add an integer constant to a tagged smi, giving a tagged smi as result. // No overflow testing on the result is done. void SmiAddConstant(const Operand& dst, Smi* constant); // Add an integer constant to a tagged smi, giving a tagged smi as result, // or jumping to a label if the result cannot be represented by a smi. void SmiAddConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result); // Subtract an integer constant from a tagged smi, giving a tagged smi as // result. No testing on the result is done. Sets the N and Z flags // based on the value of the resulting integer. void SmiSubConstant(Register dst, Register src, Smi* constant); // Subtract an integer constant from a tagged smi, giving a tagged smi as // result, or jumping to a label if the result cannot be represented by a smi. void SmiSubConstant(Register dst, Register src, Smi* constant, Label* on_not_smi_result); // Negating a smi can give a negative zero or too large positive value. // NOTICE: This operation jumps on success, not failure! void SmiNeg(Register dst, Register src, Label* on_smi_result); // Adds smi values and return the result as a smi. // If dst is src1, then src1 will be destroyed, even if // the operation is unsuccessful. void SmiAdd(Register dst, Register src1, Register src2, Label* on_not_smi_result); // Subtracts smi values and return the result as a smi. // If dst is src1, then src1 will be destroyed, even if // the operation is unsuccessful. void SmiSub(Register dst, Register src1, Register src2, Label* on_not_smi_result); void SmiSub(Register dst, Register src1, const Operand& src2, Label* on_not_smi_result); // Multiplies smi values and return the result as a smi, // if possible. // If dst is src1, then src1 will be destroyed, even if // the operation is unsuccessful. void SmiMul(Register dst, Register src1, Register src2, Label* on_not_smi_result); // Divides one smi by another and returns the quotient. // Clobbers rax and rdx registers. void SmiDiv(Register dst, Register src1, Register src2, Label* on_not_smi_result); // Divides one smi by another and returns the remainder. // Clobbers rax and rdx registers. void SmiMod(Register dst, Register src1, Register src2, Label* on_not_smi_result); // Bitwise operations. void SmiNot(Register dst, Register src); void SmiAnd(Register dst, Register src1, Register src2); void SmiOr(Register dst, Register src1, Register src2); void SmiXor(Register dst, Register src1, Register src2); void SmiAndConstant(Register dst, Register src1, Smi* constant); void SmiOrConstant(Register dst, Register src1, Smi* constant); void SmiXorConstant(Register dst, Register src1, Smi* constant); void SmiShiftLeftConstant(Register dst, Register src, int shift_value); void SmiShiftLogicalRightConstant(Register dst, Register src, int shift_value, Label* on_not_smi_result); void SmiShiftArithmeticRightConstant(Register dst, Register src, int shift_value); // Shifts a smi value to the left, and returns the result if that is a smi. // Uses and clobbers rcx, so dst may not be rcx. void SmiShiftLeft(Register dst, Register src1, Register src2); // Shifts a smi value to the right, shifting in zero bits at the top, and // returns the unsigned intepretation of the result if that is a smi. // Uses and clobbers rcx, so dst may not be rcx. void SmiShiftLogicalRight(Register dst, Register src1, Register src2, Label* on_not_smi_result); // Shifts a smi value to the right, sign extending the top, and // returns the signed intepretation of the result. That will always // be a valid smi value, since it's numerically smaller than the // original. // Uses and clobbers rcx, so dst may not be rcx. void SmiShiftArithmeticRight(Register dst, Register src1, Register src2); // Specialized operations // Select the non-smi register of two registers where exactly one is a // smi. If neither are smis, jump to the failure label. void SelectNonSmi(Register dst, Register src1, Register src2, Label* on_not_smis); // Converts, if necessary, a smi to a combination of number and // multiplier to be used as a scaled index. // The src register contains a *positive* smi value. The shift is the // power of two to multiply the index value by (e.g. // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2). // The returned index register may be either src or dst, depending // on what is most efficient. If src and dst are different registers, // src is always unchanged. SmiIndex SmiToIndex(Register dst, Register src, int shift); // Converts a positive smi to a negative index. SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift); // Basic Smi operations. void Move(Register dst, Smi* source) { LoadSmiConstant(dst, source); } void Move(const Operand& dst, Smi* source) { Register constant = GetSmiConstant(source); movq(dst, constant); } void Push(Smi* smi); void Test(const Operand& dst, Smi* source); // --------------------------------------------------------------------------- // String macros. void JumpIfNotBothSequentialAsciiStrings(Register first_object, Register second_object, Register scratch1, Register scratch2, Label* on_not_both_flat_ascii); // Check whether the instance type represents a flat ascii string. Jump to the // label if not. If the instance type can be scratched specify same register // for both instance type and scratch. void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type, Register scratch, Label *on_not_flat_ascii_string); void JumpIfBothInstanceTypesAreNotSequentialAscii( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, Label* on_fail); // --------------------------------------------------------------------------- // Macro instructions. // Load a register with a long value as efficiently as possible. void Set(Register dst, int64_t x); void Set(const Operand& dst, int64_t x); // Handle support void Move(Register dst, Handle source); void Move(const Operand& dst, Handle source); void Cmp(Register dst, Handle source); void Cmp(const Operand& dst, Handle source); void Push(Handle source); // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the rsp register. void Drop(int stack_elements); void Call(Label* target) { call(target); } // Control Flow void Jump(Address destination, RelocInfo::Mode rmode); void Jump(ExternalReference ext); void Jump(Handle code_object, RelocInfo::Mode rmode); void Call(Address destination, RelocInfo::Mode rmode); void Call(ExternalReference ext); void Call(Handle code_object, RelocInfo::Mode rmode); // Compare object type for heap object. // Always use unsigned comparisons: above and below, not less and greater. // Incoming register is heap_object and outgoing register is map. // They may be the same register, and may be kScratchRegister. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. // Always use unsigned comparisons: above and below, not less and greater. void CmpInstanceType(Register map, InstanceType type); // Check if the map of an object is equal to a specified map and // branch to label if not. Skip the smi check if not required // (object is known to be a heap object) void CheckMap(Register obj, Handle map, Label* fail, bool is_heap_object); // Check if the object in register heap_object is a string. Afterwards the // register map contains the object map and the register instance_type // contains the instance_type. The registers map and instance_type can be the // same in which case it contains the instance type afterwards. Either of the // registers map and instance_type can be the same as heap_object. Condition IsObjectStringType(Register heap_object, Register map, Register instance_type); // FCmp compares and pops the two values on top of the FPU stack. // The flag results are similar to integer cmp, but requires unsigned // jcc instructions (je, ja, jae, jb, jbe, je, and jz). void FCmp(); // Abort execution if argument is not a number. Used in debug code. void AbortIfNotNumber(Register object); // Abort execution if argument is not a smi. Used in debug code. void AbortIfNotSmi(Register object); // Abort execution if argument is not the root value with the given index. void AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message); // --------------------------------------------------------------------------- // Exception handling // Push a new try handler and link into try handler chain. The return // address must be pushed before calling this helper. void PushTryHandler(CodeLocation try_location, HandlerType type); // Unlink the stack handler on top of the stack from the try handler chain. void PopTryHandler(); // --------------------------------------------------------------------------- // Inline caching support // Generate code for checking access rights - used for security checks // on access to global objects across environments. The holder register // is left untouched, but the scratch register and kScratchRegister, // which must be different, are clobbered. void CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss); // --------------------------------------------------------------------------- // Allocation support // Allocate an object in new space. If the new space is exhausted control // continues at the gc_required label. The allocated object is returned in // result and end of the new object is returned in result_end. The register // scratch can be passed as no_reg in which case an additional object // reference will be added to the reloc info. The returned pointers in result // and result_end have not yet been tagged as heap objects. If // result_contains_top_on_entry is true the content of result is known to be // the allocation top on entry (could be result_end from a previous call to // AllocateInNewSpace). If result_contains_top_on_entry is true scratch // should be no_reg as it is never used. void AllocateInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void AllocateInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void AllocateInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // Undo allocation in new space. The object passed and objects allocated after // it will no longer be allocated. Make sure that no pointers are left to the // object(s) no longer allocated as they would be invalid when allocation is // un-done. void UndoAllocationInNewSpace(Register object); // Allocate a heap number in new space with undefined value. Returns // tagged pointer in result register, or jumps to gc_required if new // space is full. void AllocateHeapNumber(Register result, Register scratch, Label* gc_required); // Allocate a sequential string. All the header fields of the string object // are initialized. void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); // Allocate a raw cons string object. Only the map field of the result is // initialized. void AllocateConsString(Register result, Register scratch1, Register scratch2, Label* gc_required); void AllocateAsciiConsString(Register result, Register scratch1, Register scratch2, Label* gc_required); // --------------------------------------------------------------------------- // Support functions. // Check if result is zero and op is negative. void NegativeZeroTest(Register result, Register op, Label* then_label); // Check if result is zero and op is negative in code using jump targets. void NegativeZeroTest(CodeGenerator* cgen, Register result, Register op, JumpTarget* then_target); // Check if result is zero and any of op1 and op2 are negative. // Register scratch is destroyed, and it must be different from op2. void NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label); // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other register may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Label* miss); // Generates code for reporting that an illegal operation has // occurred. void IllegalOperation(int num_arguments); // Find the function context up the context chain. void LoadContext(Register dst, int context_chain_length); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. void CallStub(CodeStub* stub); // Tail call a code stub (jump). void TailCallStub(CodeStub* stub); // Return from a code stub after popping its arguments. void StubReturn(int argc); // Call a runtime routine. void CallRuntime(Runtime::Function* f, int num_arguments); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId id, int num_arguments); // Convenience function: call an external reference. void CallExternalReference(const ExternalReference& ext, int num_arguments); // Tail call of a runtime routine (jump). // Like JumpToExternalReference, but also takes care of passing the number // of parameters. void TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& ext, int result_size); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in esp[0], esp[4], // etc., not pushed. The argument count assumes all arguments are word sized. // The number of slots reserved for arguments depends on platform. On Windows // stack slots are reserved for the arguments passed in registers. On other // platforms stack slots are only reserved for the arguments actually passed // on the stack. void PrepareCallCFunction(int num_arguments); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); // Calculate the number of stack slots to reserve for arguments when calling a // C function. int ArgumentStackSlotsForCFunctionCall(int num_arguments); // --------------------------------------------------------------------------- // Utilities void Ret(); Handle CodeObject() { return code_object_; } // --------------------------------------------------------------------------- // StatsCounter support void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, const char* msg); // Like Assert(), but always enabled. void Check(Condition cc, const char* msg); // Print a message to stdout and abort execution. void Abort(const char* msg); // Check that the stack is aligned. void CheckStackAlignment(); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } bool allow_stub_calls() { return allow_stub_calls_; } private: bool generating_stub_; bool allow_stub_calls_; // Returns a register holding the smi value. The register MUST NOT be // modified. It may be the "smi 1 constant" register. Register GetSmiConstant(Smi* value); // Moves the smi value to the destination register. void LoadSmiConstant(Register dst, Smi* value); // This handle will be patched with the code object on installation. Handle code_object_; // Helper functions for generating invokes. void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, Label* done, InvokeFlag flag); // Activation support. void EnterFrame(StackFrame::Type type); void LeaveFrame(StackFrame::Type type); // Allocation support helpers. // Loads the top of new-space into the result register. // If flags contains RESULT_CONTAINS_TOP then result_end is valid and // already contains the top of new-space, and scratch is invalid. // Otherwise the address of the new-space top is loaded into scratch (if // scratch is valid), and the new-space top is loaded into result. void LoadAllocationTopHelper(Register result, Register result_end, Register scratch, AllocationFlags flags); // Update allocation top with value in result_end register. // If scratch is valid, it contains the address of the allocation top. void UpdateAllocationTopHelper(Register result_end, Register scratch); }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. Is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion. class CodePatcher { public: CodePatcher(byte* address, int size); virtual ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. static inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. static inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } #ifdef GENERATED_CODE_COVERAGE extern void LogGeneratedCodeCoverage(const char* file_line); #define CODE_COVERAGE_STRINGIFY(x) #x #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) #define ACCESS_MASM(masm) { \ byte* x64_coverage_function = \ reinterpret_cast(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ masm->pushfd(); \ masm->pushad(); \ masm->push(Immediate(reinterpret_cast(&__FILE_LINE__))); \ masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \ masm->pop(rax); \ masm->popad(); \ masm->popfd(); \ } \ masm-> #else #define ACCESS_MASM(masm) masm-> #endif } } // namespace v8::internal #endif // V8_X64_MACRO_ASSEMBLER_X64_H_