// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- rax : number of arguments excluding receiver // -- rdi : called function (only guaranteed when // extra_args requires it) // -- rsi : context // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[8 * argc] : first argument (argc == rax) // -- rsp[8 * (argc +1)] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ pop(kScratchRegister); // Save return address. __ push(rdi); __ push(kScratchRegister); // Restore return address. } else { ASSERT(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects rax to contain the number of arguments // including the receiver and the extra arguments. __ addq(rax, Immediate(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ movq(kScratchRegister, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movq(kScratchRegister, FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset)); __ lea(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize)); __ jmp(kScratchRegister); } void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) { GenerateTailCallToSharedCode(masm); } void Builtins::Generate_ParallelRecompile(MacroAssembler* masm) { { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(rdi); // Push call kind information. __ push(rcx); __ push(rdi); // Function is also the parameter to the runtime call. __ CallRuntime(Runtime::kParallelRecompile, 1); // Restore call kind information. __ pop(rcx); // Restore receiver. __ pop(rdi); // Tear down internal frame. } GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool count_constructions) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rdi: constructor function // ----------------------------------- // Should never count constructions for api objects. ASSERT(!is_api_function || !count_constructions); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Store a smi-tagged arguments count on the stack. __ Integer32ToSmi(rax, rax); __ push(rax); // Push the function to invoke on the stack. __ push(rdi); // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { Label undo_allocation; #ifdef ENABLE_DEBUGGER_SUPPORT ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ movq(kScratchRegister, debug_step_in_fp); __ cmpq(Operand(kScratchRegister, 0), Immediate(0)); __ j(not_equal, &rt_call); #endif // Verified that the constructor is a JSFunction. // Load the initial map and verify that it is in fact a map. // rdi: constructor __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi ASSERT(kSmiTag == 0); __ JumpIfSmi(rax, &rt_call); // rdi: constructor // rax: initial map (if proven valid below) __ CmpObjectType(rax, MAP_TYPE, rbx); __ j(not_equal, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // rdi: constructor // rax: initial map __ CmpInstanceType(rax, JS_FUNCTION_TYPE); __ j(equal, &rt_call); if (count_constructions) { Label allocate; // Decrease generous allocation count. __ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ decb(FieldOperand(rcx, SharedFunctionInfo::kConstructionCountOffset)); __ j(not_zero, &allocate); __ push(rax); __ push(rdi); __ push(rdi); // constructor // The call will replace the stub, so the countdown is only done once. __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(rdi); __ pop(rax); __ bind(&allocate); } // Now allocate the JSObject on the heap. __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset)); __ shl(rdi, Immediate(kPointerSizeLog2)); // rdi: size of new object __ AllocateInNewSpace(rdi, rbx, rdi, no_reg, &rt_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields. // rax: initial map // rbx: JSObject (not HeapObject tagged - the actual address). // rdi: start of next object __ movq(Operand(rbx, JSObject::kMapOffset), rax); __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx); __ movq(Operand(rbx, JSObject::kElementsOffset), rcx); // Set extra fields in the newly allocated object. // rax: initial map // rbx: JSObject // rdi: start of next object __ lea(rcx, Operand(rbx, JSObject::kHeaderSize)); __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); if (count_constructions) { __ movzxbq(rsi, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset)); __ lea(rsi, Operand(rbx, rsi, times_pointer_size, JSObject::kHeaderSize)); // rsi: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ cmpq(rsi, rdi); __ Assert(less_equal, "Unexpected number of pre-allocated property fields."); } __ InitializeFieldsWithFiller(rcx, rsi, rdx); __ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex); } __ InitializeFieldsWithFiller(rcx, rdi, rdx); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. // rax: initial map // rbx: JSObject // rdi: start of next object __ or_(rbx, Immediate(kHeapObjectTag)); // Check if a non-empty properties array is needed. // Allocate and initialize a FixedArray if it is. // rax: initial map // rbx: JSObject // rdi: start of next object // Calculate total properties described map. __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset)); __ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset)); __ addq(rdx, rcx); // Calculate unused properties past the end of the in-object properties. __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset)); __ subq(rdx, rcx); // Done if no extra properties are to be allocated. __ j(zero, &allocated); __ Assert(positive, "Property allocation count failed."); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // rbx: JSObject // rdi: start of next object (will be start of FixedArray) // rdx: number of elements in properties array __ AllocateInNewSpace(FixedArray::kHeaderSize, times_pointer_size, rdx, rdi, rax, no_reg, &undo_allocation, RESULT_CONTAINS_TOP); // Initialize the FixedArray. // rbx: JSObject // rdi: FixedArray // rdx: number of elements // rax: start of next object __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); __ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map __ Integer32ToSmi(rdx, rdx); __ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length // Initialize the fields to undefined. // rbx: JSObject // rdi: FixedArray // rax: start of next object // rdx: number of elements { Label loop, entry; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(rcx, 0), rdx); __ addq(rcx, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(rcx, rax); __ j(below, &loop); } // Store the initialized FixedArray into the properties field of // the JSObject // rbx: JSObject // rdi: FixedArray __ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi); // Continue with JSObject being successfully allocated // rbx: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // rbx: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(rbx); } // Allocate the new receiver object using the runtime call. // rdi: function (constructor) __ bind(&rt_call); // Must restore rdi (constructor) before calling runtime. __ movq(rdi, Operand(rsp, 0)); __ push(rdi); __ CallRuntime(Runtime::kNewObject, 1); __ movq(rbx, rax); // store result in rbx // New object allocated. // rbx: newly allocated object __ bind(&allocated); // Retrieve the function from the stack. __ pop(rdi); // Retrieve smi-tagged arguments count from the stack. __ movq(rax, Operand(rsp, 0)); __ SmiToInteger32(rax, rax); // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ push(rbx); __ push(rbx); // Set up pointer to last argument. __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movq(rcx, rax); __ jmp(&entry); __ bind(&loop); __ push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decq(rcx); __ j(greater_equal, &loop); // Call the function. if (is_api_function) { __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); ParameterCount expected(0); __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } else { ParameterCount actual(rax); __ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Store offset of return address for deoptimizer. if (!is_api_function && !count_constructions) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(rax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movq(rax, Operand(rsp, 0)); // Restore the arguments count and leave the construct frame. __ bind(&exit); __ movq(rbx, Operand(rsp, kPointerSize)); // Get arguments count. // Leave construct frame. } // Remove caller arguments from the stack and return. __ pop(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ push(rcx); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1); __ ret(0); } void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Expects five C++ function parameters. // - Address entry (ignored) // - JSFunction* function ( // - Object* receiver // - int argc // - Object*** argv // (see Handle::Invoke in execution.cc). // Open a C++ scope for the FrameScope. { // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer and rsi the context. #ifdef _WIN64 // MSVC parameters in: // rcx : entry (ignored) // rdx : function // r8 : receiver // r9 : argc // [rsp+0x20] : argv // Clear the context before we push it when entering the internal frame. __ Set(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Load the function context into rsi. __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ push(rdx); __ push(r8); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, r9); // Load the previous frame pointer to access C argument on stack __ movq(kScratchRegister, Operand(rbp, 0)); __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); // Load the function pointer into rdi. __ movq(rdi, rdx); #else // _WIN64 // GCC parameters in: // rdi : entry (ignored) // rsi : function // rdx : receiver // rcx : argc // r8 : argv __ movq(rdi, rsi); // rdi : function // Clear the context before we push it when entering the internal frame. __ Set(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Push the function and receiver and setup the context. __ push(rdi); __ push(rdx); __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Load the number of arguments and setup pointer to the arguments. __ movq(rax, rcx); __ movq(rbx, r8); #endif // _WIN64 // Current stack contents: // [rsp + 2 * kPointerSize ... ]: Internal frame // [rsp + kPointerSize] : function // [rsp] : receiver // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // Copy arguments to the stack in a loop. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. Label loop, entry; __ Set(rcx, 0); // Set loop variable to 0. __ jmp(&entry); __ bind(&loop); __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ push(Operand(kScratchRegister, 0)); // dereference handle __ addq(rcx, Immediate(1)); __ bind(&entry); __ cmpq(rcx, rax); __ j(not_equal, &loop); // Invoke the code. if (is_construct) { // Expects rdi to hold function pointer. CallConstructStub stub(NO_CALL_FUNCTION_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(rax); // Function must be in rdi. __ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } // Exit the internal frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. } // TODO(X64): Is argument correct? Is there a receiver to remove? __ ret(1 * kPointerSize); // Remove receiver. } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_LazyCompile(MacroAssembler* masm) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(rdi); // Push call kind information. __ push(rcx); __ push(rdi); // Function is also the parameter to the runtime call. __ CallRuntime(Runtime::kLazyCompile, 1); // Restore call kind information. __ pop(rcx); // Restore receiver. __ pop(rdi); // Tear down internal frame. } // Do a tail-call of the compiled function. __ lea(rax, FieldOperand(rax, Code::kHeaderSize)); __ jmp(rax); } void Builtins::Generate_LazyRecompile(MacroAssembler* masm) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(rdi); // Push call kind information. __ push(rcx); __ push(rdi); // Function is also the parameter to the runtime call. __ CallRuntime(Runtime::kLazyRecompile, 1); // Restore call kind information. __ pop(rcx); // Restore function. __ pop(rdi); // Tear down internal frame. } // Do a tail-call of the compiled function. __ lea(rax, FieldOperand(rax, Code::kHeaderSize)); __ jmp(rax); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the deoptimization type to the runtime system. __ Push(Smi::FromInt(static_cast(type))); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); // Tear down internal frame. } // Get the full codegen state from the stack and untag it. __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); // Switch on the state. Label not_no_registers, not_tos_rax; __ cmpq(rcx, Immediate(FullCodeGenerator::NO_REGISTERS)); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); __ movq(rax, Operand(rsp, 2 * kPointerSize)); __ cmpq(rcx, Immediate(FullCodeGenerator::TOS_REG)); __ j(not_equal, ¬_tos_rax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, rax. __ bind(¬_tos_rax); __ Abort("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_NotifyOSR(MacroAssembler* masm) { // For now, we are relying on the fact that Runtime::NotifyOSR // doesn't do any garbage collection which allows us to save/restore // the registers without worrying about which of them contain // pointers. This seems a bit fragile. __ Pushad(); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kNotifyOSR, 0); } __ Popad(); __ ret(0); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // Stack Layout: // rsp[0]: Return address // rsp[1]: Argument n // rsp[2]: Argument n-1 // ... // rsp[n]: Argument 1 // rsp[n+1]: Receiver (function to call) // // rax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ testq(rax, rax); __ j(not_zero, &done); __ pop(rbx); __ Push(masm->isolate()->factory()->undefined_value()); __ push(rbx); __ incq(rax); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. Label slow, non_function; // The function to call is at position n+1 on the stack. __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ JumpIfSmi(rdi, &non_function); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); // 3a. Patch the first argument if necessary when calling a function. Label shift_arguments; __ Set(rdx, 0); // indicate regular JS_FUNCTION { Label convert_to_object, use_global_receiver, patch_receiver; // Change context eagerly in case we need the global receiver. __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_equal, &shift_arguments); // Do not transform the receiver for natives. // SharedFunctionInfo is already loaded into rbx. __ testb(FieldOperand(rbx, SharedFunctionInfo::kNativeByteOffset), Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ j(not_zero, &shift_arguments); // Compute the receiver in non-strict mode. __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0)); __ JumpIfSmi(rbx, &convert_to_object, Label::kNear); __ CompareRoot(rbx, Heap::kNullValueRootIndex); __ j(equal, &use_global_receiver); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(equal, &use_global_receiver); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &shift_arguments); __ bind(&convert_to_object); { // Enter an internal frame in order to preserve argument count. FrameScope scope(masm, StackFrame::INTERNAL); __ Integer32ToSmi(rax, rax); __ push(rax); __ push(rbx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rbx, rax); __ Set(rdx, 0); // indicate regular JS_FUNCTION __ pop(rax); __ SmiToInteger32(rax, rax); } // Restore the function to rdi. __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ jmp(&patch_receiver, Label::kNear); // Use the global receiver object from the called function as the // receiver. __ bind(&use_global_receiver); const int kGlobalIndex = Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; __ movq(rbx, FieldOperand(rsi, kGlobalIndex)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset)); __ movq(rbx, FieldOperand(rbx, kGlobalIndex)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); __ bind(&patch_receiver); __ movq(Operand(rsp, rax, times_pointer_size, 0), rbx); __ jmp(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ Set(rdx, 1); // indicate function proxy __ CmpInstanceType(rcx, JS_FUNCTION_PROXY_TYPE); __ j(equal, &shift_arguments); __ bind(&non_function); __ Set(rdx, 2); // indicate non-function // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. __ movq(Operand(rsp, rax, times_pointer_size, 0), rdi); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. __ bind(&shift_arguments); { Label loop; __ movq(rcx, rax); __ bind(&loop); __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0)); __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx); __ decq(rcx); __ j(not_sign, &loop); // While non-negative (to copy return address). __ pop(rbx); // Discard copy of return address. __ decq(rax); // One fewer argument (first argument is new receiver). } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. { Label function, non_proxy; __ testq(rdx, rdx); __ j(zero, &function); __ Set(rbx, 0); __ SetCallKind(rcx, CALL_AS_METHOD); __ cmpq(rdx, Immediate(1)); __ j(not_equal, &non_proxy); __ pop(rdx); // return address __ push(rdi); // re-add proxy object as additional argument __ push(rdx); __ incq(rax); __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY); __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movsxlq(rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ SetCallKind(rcx, CALL_AS_METHOD); __ cmpq(rax, rbx); __ j(not_equal, masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); ParameterCount expected(0); __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { // Stack at entry: // rsp: return address // rsp+8: arguments // rsp+16: receiver ("this") // rsp+24: function { FrameScope frame_scope(masm, StackFrame::INTERNAL); // Stack frame: // rbp: Old base pointer // rbp[1]: return address // rbp[2]: function arguments // rbp[3]: receiver // rbp[4]: function static const int kArgumentsOffset = 2 * kPointerSize; static const int kReceiverOffset = 3 * kPointerSize; static const int kFunctionOffset = 4 * kPointerSize; __ push(Operand(rbp, kFunctionOffset)); __ push(Operand(rbp, kArgumentsOffset)); __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movq(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subq(rcx, kScratchRegister); // Make rdx the space we need for the array when it is unrolled onto the // stack. __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2); // Check if the arguments will overflow the stack. __ cmpq(rcx, rdx); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ push(Operand(rbp, kFunctionOffset)); __ push(rax); __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); __ bind(&okay); // End of stack check. // Push current index and limit. const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; const int kIndexOffset = kLimitOffset - 1 * kPointerSize; __ push(rax); // limit __ push(Immediate(0)); // index // Get the receiver. __ movq(rbx, Operand(rbp, kReceiverOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver; __ movq(rdi, Operand(rbp, kFunctionOffset)); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &push_receiver); // Change context eagerly to get the right global object if necessary. __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. Label call_to_object, use_global_receiver; __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ j(not_equal, &push_receiver); // Do not transform the receiver for natives. __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset), Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ j(not_equal, &push_receiver); // Compute the receiver in non-strict mode. __ JumpIfSmi(rbx, &call_to_object, Label::kNear); __ CompareRoot(rbx, Heap::kNullValueRootIndex); __ j(equal, &use_global_receiver); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(equal, &use_global_receiver); // If given receiver is already a JavaScript object then there's no // reason for converting it. STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ CmpObjectType(rbx, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &push_receiver); // Convert the receiver to an object. __ bind(&call_to_object); __ push(rbx); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ movq(rbx, rax); __ jmp(&push_receiver, Label::kNear); // Use the current global receiver object as the receiver. __ bind(&use_global_receiver); const int kGlobalOffset = Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize; __ movq(rbx, FieldOperand(rsi, kGlobalOffset)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kNativeContextOffset)); __ movq(rbx, FieldOperand(rbx, kGlobalOffset)); __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); // Push the receiver. __ bind(&push_receiver); __ push(rbx); // Copy all arguments from the array to the stack. Label entry, loop; __ movq(rax, Operand(rbp, kIndexOffset)); __ jmp(&entry); __ bind(&loop); __ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments // Use inline caching to speed up access to arguments. Handle ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize(); __ Call(ic, RelocInfo::CODE_TARGET); // It is important that we do not have a test instruction after the // call. A test instruction after the call is used to indicate that // we have generated an inline version of the keyed load. In this // case, we know that we are not generating a test instruction next. // Push the nth argument. __ push(rax); // Update the index on the stack and in register rax. __ movq(rax, Operand(rbp, kIndexOffset)); __ SmiAddConstant(rax, rax, Smi::FromInt(1)); __ movq(Operand(rbp, kIndexOffset), rax); __ bind(&entry); __ cmpq(rax, Operand(rbp, kLimitOffset)); __ j(not_equal, &loop); // Invoke the function. Label call_proxy; ParameterCount actual(rax); __ SmiToInteger32(rax, rax); __ movq(rdi, Operand(rbp, kFunctionOffset)); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &call_proxy); __ InvokeFunction(rdi, actual, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); frame_scope.GenerateLeaveFrame(); __ ret(3 * kPointerSize); // remove this, receiver, and arguments // Invoke the function proxy. __ bind(&call_proxy); __ push(rdi); // add function proxy as last argument __ incq(rax); __ Set(rbx, 0); __ SetCallKind(rcx, CALL_AS_METHOD); __ GetBuiltinEntry(rdx, Builtins::CALL_FUNCTION_PROXY); __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Leave internal frame. } __ ret(3 * kPointerSize); // remove this, receiver, and arguments } // Allocate an empty JSArray. The allocated array is put into the result // register. If the parameter initial_capacity is larger than zero an elements // backing store is allocated with this size and filled with the hole values. // Otherwise the elements backing store is set to the empty FixedArray. static void AllocateEmptyJSArray(MacroAssembler* masm, Register array_function, Register result, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { const int initial_capacity = JSArray::kPreallocatedArrayElements; STATIC_ASSERT(initial_capacity >= 0); __ LoadInitialArrayMap(array_function, scratch2, scratch1, false); // Allocate the JSArray object together with space for a fixed array with the // requested elements. int size = JSArray::kSize; if (initial_capacity > 0) { size += FixedArray::SizeFor(initial_capacity); } __ AllocateInNewSpace(size, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // scratch1: initial map // scratch2: start of next object Factory* factory = masm->isolate()->factory(); __ movq(FieldOperand(result, JSObject::kMapOffset), scratch1); __ Move(FieldOperand(result, JSArray::kPropertiesOffset), factory->empty_fixed_array()); // Field JSArray::kElementsOffset is initialized later. __ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0)); // If no storage is requested for the elements array just set the empty // fixed array. if (initial_capacity == 0) { __ Move(FieldOperand(result, JSArray::kElementsOffset), factory->empty_fixed_array()); return; } // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // scratch2: start of next object __ lea(scratch1, Operand(result, JSArray::kSize)); __ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1); // Initialize the FixedArray and fill it with holes. FixedArray length is // stored as a smi. // result: JSObject // scratch1: elements array // scratch2: start of next object __ Move(FieldOperand(scratch1, HeapObject::kMapOffset), factory->fixed_array_map()); __ Move(FieldOperand(scratch1, FixedArray::kLengthOffset), Smi::FromInt(initial_capacity)); // Fill the FixedArray with the hole value. Inline the code if short. // Reconsider loop unfolding if kPreallocatedArrayElements gets changed. static const int kLoopUnfoldLimit = 4; __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); if (initial_capacity <= kLoopUnfoldLimit) { // Use a scratch register here to have only one reloc info when unfolding // the loop. for (int i = 0; i < initial_capacity; i++) { __ movq(FieldOperand(scratch1, FixedArray::kHeaderSize + i * kPointerSize), scratch3); } } else { Label loop, entry; __ movq(scratch2, Immediate(initial_capacity)); __ jmp(&entry); __ bind(&loop); __ movq(FieldOperand(scratch1, scratch2, times_pointer_size, FixedArray::kHeaderSize), scratch3); __ bind(&entry); __ decq(scratch2); __ j(not_sign, &loop); } } // Allocate a JSArray with the number of elements stored in a register. The // register array_function holds the built-in Array function and the register // array_size holds the size of the array as a smi. The allocated array is put // into the result register and beginning and end of the FixedArray elements // storage is put into registers elements_array and elements_array_end (see // below for when that is not the case). If the parameter fill_with_holes is // true the allocated elements backing store is filled with the hole values // otherwise it is left uninitialized. When the backing store is filled the // register elements_array is scratched. static void AllocateJSArray(MacroAssembler* masm, Register array_function, // Array function. Register array_size, // As a smi, cannot be 0. Register result, Register elements_array, Register elements_array_end, Register scratch, bool fill_with_hole, Label* gc_required) { __ LoadInitialArrayMap(array_function, scratch, elements_array, fill_with_hole); if (FLAG_debug_code) { // Assert that array size is not zero. __ testq(array_size, array_size); __ Assert(not_zero, "array size is unexpectedly 0"); } // Allocate the JSArray object together with space for a FixedArray with the // requested elements. SmiIndex index = masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2); __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize, index.scale, index.reg, result, elements_array_end, scratch, gc_required, TAG_OBJECT); // Allocated the JSArray. Now initialize the fields except for the elements // array. // result: JSObject // elements_array: initial map // elements_array_end: start of next object // array_size: size of array (smi) Factory* factory = masm->isolate()->factory(); __ movq(FieldOperand(result, JSObject::kMapOffset), elements_array); __ Move(elements_array, factory->empty_fixed_array()); __ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array); // Field JSArray::kElementsOffset is initialized later. __ movq(FieldOperand(result, JSArray::kLengthOffset), array_size); // Calculate the location of the elements array and set elements array member // of the JSArray. // result: JSObject // elements_array_end: start of next object // array_size: size of array (smi) __ lea(elements_array, Operand(result, JSArray::kSize)); __ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array); // Initialize the fixed array. FixedArray length is stored as a smi. // result: JSObject // elements_array: elements array // elements_array_end: start of next object // array_size: size of array (smi) __ Move(FieldOperand(elements_array, JSObject::kMapOffset), factory->fixed_array_map()); // For non-empty JSArrays the length of the FixedArray and the JSArray is the // same. __ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size); // Fill the allocated FixedArray with the hole value if requested. // result: JSObject // elements_array: elements array // elements_array_end: start of next object if (fill_with_hole) { Label loop, entry; __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ lea(elements_array, Operand(elements_array, FixedArray::kHeaderSize - kHeapObjectTag)); __ jmp(&entry); __ bind(&loop); __ movq(Operand(elements_array, 0), scratch); __ addq(elements_array, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(elements_array, elements_array_end); __ j(below, &loop); } } // Create a new array for the built-in Array function. This function allocates // the JSArray object and the FixedArray elements array and initializes these. // If the Array cannot be constructed in native code the runtime is called. This // function assumes the following state: // rdi: constructor (built-in Array function) // rax: argc // rsp[0]: return address // rsp[8]: last argument // This function is used for both construct and normal calls of Array. The only // difference between handling a construct call and a normal call is that for a // construct call the constructor function in rdi needs to be preserved for // entering the generic code. In both cases argc in rax needs to be preserved. // Both registers are preserved by this code so no need to differentiate between // a construct call and a normal call. static void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code) { Label argc_one_or_more, argc_two_or_more, empty_array, not_empty_array, has_non_smi_element, finish, cant_transition_map, not_double; // Check for array construction with zero arguments. __ testq(rax, rax); __ j(not_zero, &argc_one_or_more); __ bind(&empty_array); // Handle construction of an empty array. AllocateEmptyJSArray(masm, rdi, rbx, rcx, rdx, r8, call_generic_code); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->array_function_native(), 1); __ movq(rax, rbx); __ ret(kPointerSize); // Check for one argument. Bail out if argument is not smi or if it is // negative. __ bind(&argc_one_or_more); __ cmpq(rax, Immediate(1)); __ j(not_equal, &argc_two_or_more); __ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack. __ SmiTest(rdx); __ j(not_zero, ¬_empty_array); __ pop(r8); // Adjust stack. __ Drop(1); __ push(r8); __ movq(rax, Immediate(0)); // Treat this as a call with argc of zero. __ jmp(&empty_array); __ bind(¬_empty_array); __ JumpUnlessNonNegativeSmi(rdx, call_generic_code); // Handle construction of an empty array of a certain size. Bail out if size // is to large to actually allocate an elements array. __ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray)); __ j(greater_equal, call_generic_code); // rax: argc // rdx: array_size (smi) // rdi: constructor // esp[0]: return address // esp[8]: argument AllocateJSArray(masm, rdi, rdx, rbx, rcx, r8, r9, true, call_generic_code); __ IncrementCounter(counters->array_function_native(), 1); __ movq(rax, rbx); __ ret(2 * kPointerSize); // Handle construction of an array from a list of arguments. __ bind(&argc_two_or_more); __ movq(rdx, rax); __ Integer32ToSmi(rdx, rdx); // Convet argc to a smi. // rax: argc // rdx: array_size (smi) // rdi: constructor // esp[0] : return address // esp[8] : last argument AllocateJSArray(masm, rdi, rdx, rbx, rcx, r8, r9, false, call_generic_code); __ IncrementCounter(counters->array_function_native(), 1); // rax: argc // rbx: JSArray // rcx: elements_array // r8: elements_array_end (untagged) // esp[0]: return address // esp[8]: last argument // Location of the last argument __ lea(r9, Operand(rsp, kPointerSize)); // Location of the first array element (Parameter fill_with_holes to // AllocateJSArrayis false, so the FixedArray is returned in rcx). __ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag)); // rax: argc // rbx: JSArray // rdx: location of the first array element // r9: location of the last argument // esp[0]: return address // esp[8]: last argument Label loop, entry; __ movq(rcx, rax); __ jmp(&entry); __ bind(&loop); __ movq(r8, Operand(r9, rcx, times_pointer_size, 0)); if (FLAG_smi_only_arrays) { __ JumpIfNotSmi(r8, &has_non_smi_element); } __ movq(Operand(rdx, 0), r8); __ addq(rdx, Immediate(kPointerSize)); __ bind(&entry); __ decq(rcx); __ j(greater_equal, &loop); // Remove caller arguments from the stack and return. // rax: argc // rbx: JSArray // esp[0]: return address // esp[8]: last argument __ bind(&finish); __ pop(rcx); __ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); __ push(rcx); __ movq(rax, rbx); __ ret(0); __ bind(&has_non_smi_element); // Double values are handled by the runtime. __ CheckMap(r8, masm->isolate()->factory()->heap_number_map(), ¬_double, DONT_DO_SMI_CHECK); __ bind(&cant_transition_map); __ UndoAllocationInNewSpace(rbx); __ jmp(call_generic_code); __ bind(¬_double); // Transition FAST_SMI_ELEMENTS to FAST_ELEMENTS. // rbx: JSArray __ movq(r11, FieldOperand(rbx, HeapObject::kMapOffset)); __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, r11, kScratchRegister, &cant_transition_map); __ movq(FieldOperand(rbx, HeapObject::kMapOffset), r11); __ RecordWriteField(rbx, HeapObject::kMapOffset, r11, r8, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Finish the array initialization loop. Label loop2; __ bind(&loop2); __ movq(r8, Operand(r9, rcx, times_pointer_size, 0)); __ movq(Operand(rdx, 0), r8); __ addq(rdx, Immediate(kPointerSize)); __ decq(rcx); __ j(greater_equal, &loop2); __ jmp(&finish); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the InternalArray function. __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, "Unexpected initial map for InternalArray function"); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, "Unexpected initial map for InternalArray function"); } // Run the native code for the InternalArray function called as a normal // function. ArrayNativeCode(masm, &generic_array_code); // Jump to the generic array code in case the specialized code cannot handle // the construction. __ bind(&generic_array_code); Handle array_code = masm->isolate()->builtins()->InternalArrayCodeGeneric(); __ Jump(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, "Unexpected initial map for Array function"); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, "Unexpected initial map for Array function"); } // Run the native code for the Array function called as a normal function. ArrayNativeCode(masm, &generic_array_code); // Jump to the generic array code in case the specialized code cannot handle // the construction. __ bind(&generic_array_code); Handle array_code = masm->isolate()->builtins()->ArrayCodeGeneric(); __ Jump(array_code, RelocInfo::CODE_TARGET); } void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rdi : constructor // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_constructor; if (FLAG_debug_code) { // The array construct code is only set for the builtin and internal // Array functions which always have a map. // Initial map for the builtin Array function should be a map. __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, "Unexpected initial map for Array function"); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, "Unexpected initial map for Array function"); } // Run the native code for the Array function called as constructor. ArrayNativeCode(masm, &generic_constructor); // Jump to the generic construct code in case the specialized code cannot // handle the construction. __ bind(&generic_constructor); Handle generic_construct_stub = masm->isolate()->builtins()->JSConstructStubGeneric(); __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1); if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, rcx); __ cmpq(rdi, rcx); __ Assert(equal, "Unexpected String function"); } // Load the first argument into rax and get rid of the rest // (including the receiver). Label no_arguments; __ testq(rax, rax); __ j(zero, &no_arguments); __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0)); __ pop(rcx); __ lea(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ push(rcx); __ movq(rax, rbx); // Lookup the argument in the number to string cache. Label not_cached, argument_is_string; NumberToStringStub::GenerateLookupNumberStringCache( masm, rax, // Input. rbx, // Result. rcx, // Scratch 1. rdx, // Scratch 2. false, // Input is known to be smi? ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- rbx : argument converted to string // -- rdi : constructor function // -- rsp[0] : return address // ----------------------------------- // Allocate a JSValue and put the tagged pointer into rax. Label gc_required; __ AllocateInNewSpace(JSValue::kSize, rax, // Result. rcx, // New allocation top (we ignore it). no_reg, &gc_required, TAG_OBJECT); // Set the map. __ LoadGlobalFunctionInitialMap(rdi, rcx); if (FLAG_debug_code) { __ cmpb(FieldOperand(rcx, Map::kInstanceSizeOffset), Immediate(JSValue::kSize >> kPointerSizeLog2)); __ Assert(equal, "Unexpected string wrapper instance size"); __ cmpb(FieldOperand(rcx, Map::kUnusedPropertyFieldsOffset), Immediate(0)); __ Assert(equal, "Unexpected unused properties of string wrapper"); } __ movq(FieldOperand(rax, HeapObject::kMapOffset), rcx); // Set properties and elements. __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rcx); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx); // Set the value. __ movq(FieldOperand(rax, JSValue::kValueOffset), rbx); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); // We're done. Return. __ ret(0); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(rax, &convert_argument); Condition is_string = masm->IsObjectStringType(rax, rbx, rcx); __ j(NegateCondition(is_string), &convert_argument); __ movq(rbx, rax); __ IncrementCounter(counters->string_ctor_string_value(), 1); __ jmp(&argument_is_string); // Invoke the conversion builtin and put the result into rbx. __ bind(&convert_argument); __ IncrementCounter(counters->string_ctor_conversions(), 1); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(rdi); // Preserve the function. __ push(rax); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); __ pop(rdi); } __ movq(rbx, rax); __ jmp(&argument_is_string); // Load the empty string into rbx, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ LoadRoot(rbx, Heap::kEmptyStringRootIndex); __ pop(rcx); __ lea(rsp, Operand(rsp, kPointerSize)); __ push(rcx); __ jmp(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(rbx); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ ret(0); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ push(rbp); __ movq(rbp, rsp); // Store the arguments adaptor context sentinel. __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); // Push the function on the stack. __ push(rdi); // Preserve the number of arguments on the stack. Must preserve rax, // rbx and rcx because these registers are used when copying the // arguments and the receiver. __ Integer32ToSmi(r8, rax); __ push(r8); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. Number is a Smi. __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ movq(rsp, rbp); __ pop(rbp); // Remove caller arguments from the stack. __ pop(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ push(rcx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rcx : call kind information // -- rdx : code entry to call // ----------------------------------- Label invoke, dont_adapt_arguments; Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->arguments_adaptors(), 1); Label enough, too_few; __ cmpq(rax, rbx); __ j(less, &too_few); __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(rax, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incq(r8); __ push(Operand(rax, 0)); __ subq(rax, Immediate(kPointerSize)); __ cmpq(r8, rbx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incq(r8); __ push(Operand(rdi, 0)); __ subq(rdi, Immediate(kPointerSize)); __ cmpq(r8, rax); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ bind(&fill); __ incq(r8); __ push(kScratchRegister); __ cmpq(r8, rbx); __ j(less, &fill); // Restore function pointer. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ call(rdx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ jmp(rdx); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Get the loop depth of the stack guard check. This is recorded in // a test(rax, depth) instruction right after the call. Label stack_check; __ movq(rbx, Operand(rsp, 0)); // return address __ movzxbq(rbx, Operand(rbx, 1)); // depth // Get the loop nesting level at which we allow OSR from the // unoptimized code and check if we want to do OSR yet. If not we // should perform a stack guard check so we can get interrupts while // waiting for on-stack replacement. __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rcx, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset)); __ movq(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset)); __ cmpb(rbx, FieldOperand(rcx, Code::kAllowOSRAtLoopNestingLevelOffset)); __ j(greater, &stack_check); // Pass the function to optimize as the argument to the on-stack // replacement runtime function. { FrameScope scope(masm, StackFrame::INTERNAL); __ push(rax); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the result was -1 it means that we couldn't optimize the // function. Just return and continue in the unoptimized version. Label skip; __ SmiCompare(rax, Smi::FromInt(-1)); __ j(not_equal, &skip, Label::kNear); __ ret(0); // If we decide not to perform on-stack replacement we perform a // stack guard check to enable interrupts. __ bind(&stack_check); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); StackCheckStub stub; __ TailCallStub(&stub); if (FLAG_debug_code) { __ Abort("Unreachable code: returned from tail call."); } __ bind(&ok); __ ret(0); __ bind(&skip); // Untag the AST id and push it on the stack. __ SmiToInteger32(rax, rax); __ push(rax); // Generate the code for doing the frame-to-frame translation using // the deoptimizer infrastructure. Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR); generator.Generate(); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64