// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "func-name-inferrer.h" #include "scopes.h" #include "rewriter.h" namespace v8 { namespace internal { class AstOptimizer: public AstVisitor { public: explicit AstOptimizer() : has_function_literal_(false) {} explicit AstOptimizer(Handle enclosing_name) : has_function_literal_(false) { func_name_inferrer_.PushEnclosingName(enclosing_name); } void Optimize(ZoneList* statements); private: // Used for loop condition analysis. Cleared before visiting a loop // condition, set when a function literal is visited. bool has_function_literal_; // Helper object for function name inferring. FuncNameInferrer func_name_inferrer_; // Helpers void OptimizeArguments(ZoneList* arguments); // Node visitors. #define DEF_VISIT(type) \ virtual void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT DISALLOW_COPY_AND_ASSIGN(AstOptimizer); }; void AstOptimizer::Optimize(ZoneList* statements) { int len = statements->length(); for (int i = 0; i < len; i++) { Visit(statements->at(i)); } } void AstOptimizer::OptimizeArguments(ZoneList* arguments) { for (int i = 0; i < arguments->length(); i++) { Visit(arguments->at(i)); } } void AstOptimizer::VisitBlock(Block* node) { Optimize(node->statements()); } void AstOptimizer::VisitExpressionStatement(ExpressionStatement* node) { node->expression()->set_no_negative_zero(true); Visit(node->expression()); } void AstOptimizer::VisitIfStatement(IfStatement* node) { node->condition()->set_no_negative_zero(true); Visit(node->condition()); Visit(node->then_statement()); if (node->HasElseStatement()) { Visit(node->else_statement()); } } void AstOptimizer::VisitDoWhileStatement(DoWhileStatement* node) { node->cond()->set_no_negative_zero(true); Visit(node->cond()); Visit(node->body()); } void AstOptimizer::VisitWhileStatement(WhileStatement* node) { has_function_literal_ = false; node->cond()->set_no_negative_zero(true); Visit(node->cond()); node->may_have_function_literal_ = has_function_literal_; Visit(node->body()); } void AstOptimizer::VisitForStatement(ForStatement* node) { if (node->init() != NULL) { Visit(node->init()); } if (node->cond() != NULL) { has_function_literal_ = false; node->cond()->set_no_negative_zero(true); Visit(node->cond()); node->may_have_function_literal_ = has_function_literal_; } Visit(node->body()); if (node->next() != NULL) { Visit(node->next()); } } void AstOptimizer::VisitForInStatement(ForInStatement* node) { Visit(node->each()); Visit(node->enumerable()); Visit(node->body()); } void AstOptimizer::VisitTryCatchStatement(TryCatchStatement* node) { Visit(node->try_block()); Visit(node->catch_var()); Visit(node->catch_block()); } void AstOptimizer::VisitTryFinallyStatement(TryFinallyStatement* node) { Visit(node->try_block()); Visit(node->finally_block()); } void AstOptimizer::VisitSwitchStatement(SwitchStatement* node) { node->tag()->set_no_negative_zero(true); Visit(node->tag()); for (int i = 0; i < node->cases()->length(); i++) { CaseClause* clause = node->cases()->at(i); if (!clause->is_default()) { Visit(clause->label()); } Optimize(clause->statements()); } } void AstOptimizer::VisitContinueStatement(ContinueStatement* node) { USE(node); } void AstOptimizer::VisitBreakStatement(BreakStatement* node) { USE(node); } void AstOptimizer::VisitDeclaration(Declaration* node) { // Will not be reached by the current optimizations. USE(node); } void AstOptimizer::VisitEmptyStatement(EmptyStatement* node) { USE(node); } void AstOptimizer::VisitReturnStatement(ReturnStatement* node) { Visit(node->expression()); } void AstOptimizer::VisitWithEnterStatement(WithEnterStatement* node) { Visit(node->expression()); } void AstOptimizer::VisitWithExitStatement(WithExitStatement* node) { USE(node); } void AstOptimizer::VisitDebuggerStatement(DebuggerStatement* node) { USE(node); } void AstOptimizer::VisitFunctionLiteral(FunctionLiteral* node) { has_function_literal_ = true; if (node->name()->length() == 0) { // Anonymous function. func_name_inferrer_.AddFunction(node); } } void AstOptimizer::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* node) { USE(node); } void AstOptimizer::VisitConditional(Conditional* node) { node->condition()->set_no_negative_zero(true); Visit(node->condition()); Visit(node->then_expression()); Visit(node->else_expression()); } void AstOptimizer::VisitSlot(Slot* node) { USE(node); } void AstOptimizer::VisitVariableProxy(VariableProxy* node) { Variable* var = node->AsVariable(); if (var != NULL) { if (var->type()->IsKnown()) { node->type()->CopyFrom(var->type()); } else if (node->type()->IsLikelySmi()) { var->type()->SetAsLikelySmi(); } if (!var->is_this() && !Heap::result_symbol()->Equals(*var->name())) { func_name_inferrer_.PushName(var->name()); } if (FLAG_safe_int32_compiler) { if (var->IsStackAllocated() && !var->is_arguments() && var->mode() != Variable::CONST) { node->set_side_effect_free(true); } } } } void AstOptimizer::VisitLiteral(Literal* node) { Handle literal = node->handle(); if (literal->IsSmi()) { node->type()->SetAsLikelySmi(); node->set_side_effect_free(true); } else if (literal->IsString()) { Handle lit_str(Handle::cast(literal)); if (!Heap::prototype_symbol()->Equals(*lit_str)) { func_name_inferrer_.PushName(lit_str); } } else if (literal->IsHeapNumber()) { if (node->to_int32()) { // Any HeapNumber has an int32 value if it is the input to a bit op. node->set_side_effect_free(true); } else { double double_value = HeapNumber::cast(*literal)->value(); int32_t int32_value = DoubleToInt32(double_value); node->set_side_effect_free(double_value == int32_value); } } } void AstOptimizer::VisitRegExpLiteral(RegExpLiteral* node) { USE(node); } void AstOptimizer::VisitArrayLiteral(ArrayLiteral* node) { for (int i = 0; i < node->values()->length(); i++) { Visit(node->values()->at(i)); } } void AstOptimizer::VisitObjectLiteral(ObjectLiteral* node) { for (int i = 0; i < node->properties()->length(); i++) { ScopedFuncNameInferrer scoped_fni(&func_name_inferrer_); scoped_fni.Enter(); Visit(node->properties()->at(i)->key()); Visit(node->properties()->at(i)->value()); } } void AstOptimizer::VisitCatchExtensionObject(CatchExtensionObject* node) { Visit(node->key()); Visit(node->value()); } void AstOptimizer::VisitAssignment(Assignment* node) { ScopedFuncNameInferrer scoped_fni(&func_name_inferrer_); switch (node->op()) { case Token::INIT_VAR: case Token::INIT_CONST: case Token::ASSIGN: // No type can be infered from the general assignment. // Don't infer if it is "a = function(){...}();"-like expression. if (node->value()->AsCall() == NULL) { scoped_fni.Enter(); } break; case Token::ASSIGN_BIT_OR: case Token::ASSIGN_BIT_XOR: case Token::ASSIGN_BIT_AND: case Token::ASSIGN_SHL: case Token::ASSIGN_SAR: case Token::ASSIGN_SHR: node->type()->SetAsLikelySmiIfUnknown(); node->target()->type()->SetAsLikelySmiIfUnknown(); node->value()->type()->SetAsLikelySmiIfUnknown(); node->value()->set_to_int32(true); node->value()->set_no_negative_zero(true); break; case Token::ASSIGN_ADD: case Token::ASSIGN_SUB: case Token::ASSIGN_MUL: case Token::ASSIGN_DIV: case Token::ASSIGN_MOD: if (node->type()->IsLikelySmi()) { node->target()->type()->SetAsLikelySmiIfUnknown(); node->value()->type()->SetAsLikelySmiIfUnknown(); } break; default: UNREACHABLE(); break; } Visit(node->target()); Visit(node->value()); switch (node->op()) { case Token::INIT_VAR: case Token::INIT_CONST: case Token::ASSIGN: // Pure assignment copies the type from the value. node->type()->CopyFrom(node->value()->type()); break; case Token::ASSIGN_BIT_OR: case Token::ASSIGN_BIT_XOR: case Token::ASSIGN_BIT_AND: case Token::ASSIGN_SHL: case Token::ASSIGN_SAR: case Token::ASSIGN_SHR: // Should have been setup above already. break; case Token::ASSIGN_ADD: case Token::ASSIGN_SUB: case Token::ASSIGN_MUL: case Token::ASSIGN_DIV: case Token::ASSIGN_MOD: if (node->type()->IsUnknown()) { if (node->target()->type()->IsLikelySmi() || node->value()->type()->IsLikelySmi()) { node->type()->SetAsLikelySmi(); } } break; default: UNREACHABLE(); break; } // Since this is an assignment. We have to propagate this node's type to the // variable. VariableProxy* proxy = node->target()->AsVariableProxy(); if (proxy != NULL) { Variable* var = proxy->AsVariable(); if (var != NULL) { StaticType* var_type = var->type(); if (var_type->IsUnknown()) { var_type->CopyFrom(node->type()); } else if (var_type->IsLikelySmi()) { // We do not reset likely types to Unknown. } } } } void AstOptimizer::VisitThrow(Throw* node) { Visit(node->exception()); } void AstOptimizer::VisitProperty(Property* node) { node->key()->set_no_negative_zero(true); Visit(node->obj()); Visit(node->key()); } void AstOptimizer::VisitCall(Call* node) { Visit(node->expression()); OptimizeArguments(node->arguments()); } void AstOptimizer::VisitCallNew(CallNew* node) { Visit(node->expression()); OptimizeArguments(node->arguments()); } void AstOptimizer::VisitCallRuntime(CallRuntime* node) { ScopedFuncNameInferrer scoped_fni(&func_name_inferrer_); if (Factory::InitializeVarGlobal_symbol()->Equals(*node->name()) && node->arguments()->length() >= 2 && node->arguments()->at(1)->AsFunctionLiteral() != NULL) { scoped_fni.Enter(); } OptimizeArguments(node->arguments()); } void AstOptimizer::VisitUnaryOperation(UnaryOperation* node) { if (node->op() == Token::ADD || node->op() == Token::SUB) { node->expression()->set_no_negative_zero(node->no_negative_zero()); } else { node->expression()->set_no_negative_zero(true); } Visit(node->expression()); if (FLAG_safe_int32_compiler) { switch (node->op()) { case Token::BIT_NOT: node->expression()->set_no_negative_zero(true); node->expression()->set_to_int32(true); // Fall through. case Token::ADD: case Token::SUB: node->set_side_effect_free(node->expression()->side_effect_free()); break; case Token::NOT: case Token::DELETE: case Token::TYPEOF: case Token::VOID: break; default: UNREACHABLE(); break; } } else if (node->op() == Token::BIT_NOT) { node->expression()->set_to_int32(true); } } void AstOptimizer::VisitCountOperation(CountOperation* node) { // Count operations assume that they work on Smis. node->expression()->set_no_negative_zero(node->is_prefix() ? true : node->no_negative_zero()); node->type()->SetAsLikelySmiIfUnknown(); node->expression()->type()->SetAsLikelySmiIfUnknown(); Visit(node->expression()); } static bool CouldBeNegativeZero(AstNode* node) { Literal* literal = node->AsLiteral(); if (literal != NULL) { Handle handle = literal->handle(); if (handle->IsString() || handle->IsSmi()) { return false; } else if (handle->IsHeapNumber()) { double double_value = HeapNumber::cast(*handle)->value(); if (double_value != 0) { return false; } } } BinaryOperation* binary = node->AsBinaryOperation(); if (binary != NULL && Token::IsBitOp(binary->op())) { return false; } return true; } static bool CouldBePositiveZero(AstNode* node) { Literal* literal = node->AsLiteral(); if (literal != NULL) { Handle handle = literal->handle(); if (handle->IsSmi()) { if (Smi::cast(*handle) != Smi::FromInt(0)) { return false; } } else if (handle->IsHeapNumber()) { // Heap number literal can't be +0, because that's a Smi. return false; } } return true; } void AstOptimizer::VisitBinaryOperation(BinaryOperation* node) { // Depending on the operation we can propagate this node's type down the // AST nodes. Token::Value op = node->op(); switch (op) { case Token::COMMA: case Token::OR: node->left()->set_no_negative_zero(true); node->right()->set_no_negative_zero(node->no_negative_zero()); break; case Token::AND: node->left()->set_no_negative_zero(node->no_negative_zero()); node->right()->set_no_negative_zero(node->no_negative_zero()); break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SHL: case Token::SAR: case Token::SHR: node->type()->SetAsLikelySmiIfUnknown(); node->left()->type()->SetAsLikelySmiIfUnknown(); node->right()->type()->SetAsLikelySmiIfUnknown(); node->left()->set_to_int32(true); node->right()->set_to_int32(true); node->left()->set_no_negative_zero(true); node->right()->set_no_negative_zero(true); break; case Token::MUL: { VariableProxy* lvar_proxy = node->left()->AsVariableProxy(); VariableProxy* rvar_proxy = node->right()->AsVariableProxy(); if (lvar_proxy != NULL && rvar_proxy != NULL) { Variable* lvar = lvar_proxy->AsVariable(); Variable* rvar = rvar_proxy->AsVariable(); if (lvar != NULL && rvar != NULL) { if (lvar->mode() == Variable::VAR && rvar->mode() == Variable::VAR) { Slot* lslot = lvar->slot(); Slot* rslot = rvar->slot(); if (lslot->type() == rslot->type() && (lslot->type() == Slot::PARAMETER || lslot->type() == Slot::LOCAL) && lslot->index() == rslot->index()) { // A number squared doesn't give negative zero. node->set_no_negative_zero(true); } } } } } case Token::ADD: case Token::SUB: case Token::DIV: case Token::MOD: { if (node->type()->IsLikelySmi()) { node->left()->type()->SetAsLikelySmiIfUnknown(); node->right()->type()->SetAsLikelySmiIfUnknown(); } if (op == Token::ADD && (!CouldBeNegativeZero(node->left()) || !CouldBeNegativeZero(node->right()))) { node->left()->set_no_negative_zero(true); node->right()->set_no_negative_zero(true); } else if (op == Token::SUB && (!CouldBeNegativeZero(node->left()) || !CouldBePositiveZero(node->right()))) { node->left()->set_no_negative_zero(true); node->right()->set_no_negative_zero(true); } else { node->left()->set_no_negative_zero(node->no_negative_zero()); node->right()->set_no_negative_zero(node->no_negative_zero()); } if (node->op() == Token::DIV) { node->right()->set_no_negative_zero(false); } else if (node->op() == Token::MOD) { node->right()->set_no_negative_zero(true); } break; } default: UNREACHABLE(); break; } Visit(node->left()); Visit(node->right()); // After visiting the operand nodes we have to check if this node's type // can be updated. If it does, then we can push that information down // towards the leaves again if the new information is an upgrade over the // previous type of the operand nodes. if (node->type()->IsUnknown()) { if (node->left()->type()->IsLikelySmi() || node->right()->type()->IsLikelySmi()) { node->type()->SetAsLikelySmi(); } if (node->type()->IsLikelySmi()) { // The type of this node changed to LIKELY_SMI. Propagate this knowledge // down through the nodes. if (node->left()->type()->IsUnknown()) { node->left()->type()->SetAsLikelySmi(); Visit(node->left()); } if (node->right()->type()->IsUnknown()) { node->right()->type()->SetAsLikelySmi(); Visit(node->right()); } } } if (FLAG_safe_int32_compiler) { switch (node->op()) { case Token::COMMA: case Token::OR: case Token::AND: break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SHL: case Token::SAR: case Token::SHR: // Add one to the number of bit operations in this expression. node->set_num_bit_ops(1); // Fall through. case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: node->set_side_effect_free(node->left()->side_effect_free() && node->right()->side_effect_free()); node->set_num_bit_ops(node->num_bit_ops() + node->left()->num_bit_ops() + node->right()->num_bit_ops()); if (!node->no_negative_zero() && node->op() == Token::MUL) { node->set_side_effect_free(false); } break; default: UNREACHABLE(); break; } } } void AstOptimizer::VisitCompareOperation(CompareOperation* node) { if (node->type()->IsKnown()) { // Propagate useful information down towards the leaves. node->left()->type()->SetAsLikelySmiIfUnknown(); node->right()->type()->SetAsLikelySmiIfUnknown(); } node->left()->set_no_negative_zero(true); // Only [[HasInstance]] has the right argument passed unchanged to it. node->right()->set_no_negative_zero(true); Visit(node->left()); Visit(node->right()); // After visiting the operand nodes we have to check if this node's type // can be updated. If it does, then we can push that information down // towards the leaves again if the new information is an upgrade over the // previous type of the operand nodes. if (node->type()->IsUnknown()) { if (node->left()->type()->IsLikelySmi() || node->right()->type()->IsLikelySmi()) { node->type()->SetAsLikelySmi(); } if (node->type()->IsLikelySmi()) { // The type of this node changed to LIKELY_SMI. Propagate this knowledge // down through the nodes. if (node->left()->type()->IsUnknown()) { node->left()->type()->SetAsLikelySmi(); Visit(node->left()); } if (node->right()->type()->IsUnknown()) { node->right()->type()->SetAsLikelySmi(); Visit(node->right()); } } } } void AstOptimizer::VisitThisFunction(ThisFunction* node) { USE(node); } class Processor: public AstVisitor { public: explicit Processor(VariableProxy* result) : result_(result), result_assigned_(false), is_set_(false), in_try_(false) { } void Process(ZoneList* statements); bool result_assigned() const { return result_assigned_; } private: VariableProxy* result_; // We are not tracking result usage via the result_'s use // counts (we leave the accurate computation to the // usage analyzer). Instead we simple remember if // there was ever an assignment to result_. bool result_assigned_; // To avoid storing to .result all the time, we eliminate some of // the stores by keeping track of whether or not we're sure .result // will be overwritten anyway. This is a bit more tricky than what I // was hoping for bool is_set_; bool in_try_; Expression* SetResult(Expression* value) { result_assigned_ = true; return new Assignment(Token::ASSIGN, result_, value, RelocInfo::kNoPosition); } // Node visitors. #define DEF_VISIT(type) \ virtual void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT void VisitIterationStatement(IterationStatement* stmt); }; void Processor::Process(ZoneList* statements) { for (int i = statements->length() - 1; i >= 0; --i) { Visit(statements->at(i)); } } void Processor::VisitBlock(Block* node) { // An initializer block is the rewritten form of a variable declaration // with initialization expressions. The initializer block contains the // list of assignments corresponding to the initialization expressions. // While unclear from the spec (ECMA-262, 3rd., 12.2), the value of // a variable declaration with initialization expression is 'undefined' // with some JS VMs: For instance, using smjs, print(eval('var x = 7')) // returns 'undefined'. To obtain the same behavior with v8, we need // to prevent rewriting in that case. if (!node->is_initializer_block()) Process(node->statements()); } void Processor::VisitExpressionStatement(ExpressionStatement* node) { // Rewrite : ; -> .result = ; if (!is_set_) { node->set_expression(SetResult(node->expression())); if (!in_try_) is_set_ = true; } } void Processor::VisitIfStatement(IfStatement* node) { // Rewrite both then and else parts (reversed). bool save = is_set_; Visit(node->else_statement()); bool set_after_then = is_set_; is_set_ = save; Visit(node->then_statement()); is_set_ = is_set_ && set_after_then; } void Processor::VisitIterationStatement(IterationStatement* node) { // Rewrite the body. bool set_after_loop = is_set_; Visit(node->body()); is_set_ = is_set_ && set_after_loop; } void Processor::VisitDoWhileStatement(DoWhileStatement* node) { VisitIterationStatement(node); } void Processor::VisitWhileStatement(WhileStatement* node) { VisitIterationStatement(node); } void Processor::VisitForStatement(ForStatement* node) { VisitIterationStatement(node); } void Processor::VisitForInStatement(ForInStatement* node) { VisitIterationStatement(node); } void Processor::VisitTryCatchStatement(TryCatchStatement* node) { // Rewrite both try and catch blocks (reversed order). bool set_after_catch = is_set_; Visit(node->catch_block()); is_set_ = is_set_ && set_after_catch; bool save = in_try_; in_try_ = true; Visit(node->try_block()); in_try_ = save; } void Processor::VisitTryFinallyStatement(TryFinallyStatement* node) { // Rewrite both try and finally block (reversed order). Visit(node->finally_block()); bool save = in_try_; in_try_ = true; Visit(node->try_block()); in_try_ = save; } void Processor::VisitSwitchStatement(SwitchStatement* node) { // Rewrite statements in all case clauses in reversed order. ZoneList* clauses = node->cases(); bool set_after_switch = is_set_; for (int i = clauses->length() - 1; i >= 0; --i) { CaseClause* clause = clauses->at(i); Process(clause->statements()); } is_set_ = is_set_ && set_after_switch; } void Processor::VisitContinueStatement(ContinueStatement* node) { is_set_ = false; } void Processor::VisitBreakStatement(BreakStatement* node) { is_set_ = false; } // Do nothing: void Processor::VisitDeclaration(Declaration* node) {} void Processor::VisitEmptyStatement(EmptyStatement* node) {} void Processor::VisitReturnStatement(ReturnStatement* node) {} void Processor::VisitWithEnterStatement(WithEnterStatement* node) {} void Processor::VisitWithExitStatement(WithExitStatement* node) {} void Processor::VisitDebuggerStatement(DebuggerStatement* node) {} // Expressions are never visited yet. void Processor::VisitFunctionLiteral(FunctionLiteral* node) { USE(node); UNREACHABLE(); } void Processor::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* node) { USE(node); UNREACHABLE(); } void Processor::VisitConditional(Conditional* node) { USE(node); UNREACHABLE(); } void Processor::VisitSlot(Slot* node) { USE(node); UNREACHABLE(); } void Processor::VisitVariableProxy(VariableProxy* node) { USE(node); UNREACHABLE(); } void Processor::VisitLiteral(Literal* node) { USE(node); UNREACHABLE(); } void Processor::VisitRegExpLiteral(RegExpLiteral* node) { USE(node); UNREACHABLE(); } void Processor::VisitArrayLiteral(ArrayLiteral* node) { USE(node); UNREACHABLE(); } void Processor::VisitObjectLiteral(ObjectLiteral* node) { USE(node); UNREACHABLE(); } void Processor::VisitCatchExtensionObject(CatchExtensionObject* node) { USE(node); UNREACHABLE(); } void Processor::VisitAssignment(Assignment* node) { USE(node); UNREACHABLE(); } void Processor::VisitThrow(Throw* node) { USE(node); UNREACHABLE(); } void Processor::VisitProperty(Property* node) { USE(node); UNREACHABLE(); } void Processor::VisitCall(Call* node) { USE(node); UNREACHABLE(); } void Processor::VisitCallNew(CallNew* node) { USE(node); UNREACHABLE(); } void Processor::VisitCallRuntime(CallRuntime* node) { USE(node); UNREACHABLE(); } void Processor::VisitUnaryOperation(UnaryOperation* node) { USE(node); UNREACHABLE(); } void Processor::VisitCountOperation(CountOperation* node) { USE(node); UNREACHABLE(); } void Processor::VisitBinaryOperation(BinaryOperation* node) { USE(node); UNREACHABLE(); } void Processor::VisitCompareOperation(CompareOperation* node) { USE(node); UNREACHABLE(); } void Processor::VisitThisFunction(ThisFunction* node) { USE(node); UNREACHABLE(); } bool Rewriter::Process(FunctionLiteral* function) { HistogramTimerScope timer(&Counters::rewriting); Scope* scope = function->scope(); if (scope->is_function_scope()) return true; ZoneList* body = function->body(); if (body->is_empty()) return true; VariableProxy* result = scope->NewTemporary(Factory::result_symbol()); Processor processor(result); processor.Process(body); if (processor.HasStackOverflow()) return false; if (processor.result_assigned()) body->Add(new ReturnStatement(result)); return true; } bool Rewriter::Optimize(FunctionLiteral* function) { ZoneList* body = function->body(); if (FLAG_optimize_ast && !body->is_empty()) { HistogramTimerScope timer(&Counters::ast_optimization); AstOptimizer optimizer(function->name()); optimizer.Optimize(body); if (optimizer.HasStackOverflow()) { return false; } } return true; } } } // namespace v8::internal