// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "code-stubs.h" #include "compilation-cache.h" #include "deoptimizer.h" #include "execution.h" #include "gdb-jit.h" #include "global-handles.h" #include "heap-profiler.h" #include "ic-inl.h" #include "incremental-marking.h" #include "liveobjectlist-inl.h" #include "mark-compact.h" #include "objects-visiting.h" #include "objects-visiting-inl.h" #include "stub-cache.h" namespace v8 { namespace internal { const char* Marking::kWhiteBitPattern = "00"; const char* Marking::kBlackBitPattern = "10"; const char* Marking::kGreyBitPattern = "11"; const char* Marking::kImpossibleBitPattern = "01"; // ------------------------------------------------------------------------- // MarkCompactCollector MarkCompactCollector::MarkCompactCollector() : // NOLINT #ifdef DEBUG state_(IDLE), #endif sweep_precisely_(false), reduce_memory_footprint_(false), abort_incremental_marking_(false), compacting_(false), was_marked_incrementally_(false), collect_maps_(FLAG_collect_maps), flush_monomorphic_ics_(false), tracer_(NULL), migration_slots_buffer_(NULL), heap_(NULL), code_flusher_(NULL), encountered_weak_maps_(NULL) { } #ifdef DEBUG class VerifyMarkingVisitor: public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); ASSERT(HEAP->mark_compact_collector()->IsMarked(object)); } } } }; static void VerifyMarking(Address bottom, Address top) { VerifyMarkingVisitor visitor; HeapObject* object; Address next_object_must_be_here_or_later = bottom; for (Address current = bottom; current < top; current += kPointerSize) { object = HeapObject::FromAddress(current); if (MarkCompactCollector::IsMarked(object)) { ASSERT(current >= next_object_must_be_here_or_later); object->Iterate(&visitor); next_object_must_be_here_or_later = current + object->Size(); } } } static void VerifyMarking(NewSpace* space) { Address end = space->top(); NewSpacePageIterator it(space->bottom(), end); // The bottom position is at the start of its page. Allows us to use // page->area_start() as start of range on all pages. ASSERT_EQ(space->bottom(), NewSpacePage::FromAddress(space->bottom())->area_start()); while (it.has_next()) { NewSpacePage* page = it.next(); Address limit = it.has_next() ? page->area_end() : end; ASSERT(limit == end || !page->Contains(end)); VerifyMarking(page->area_start(), limit); } } static void VerifyMarking(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); VerifyMarking(p->area_start(), p->area_end()); } } static void VerifyMarking(Heap* heap) { VerifyMarking(heap->old_pointer_space()); VerifyMarking(heap->old_data_space()); VerifyMarking(heap->code_space()); VerifyMarking(heap->cell_space()); VerifyMarking(heap->map_space()); VerifyMarking(heap->new_space()); VerifyMarkingVisitor visitor; LargeObjectIterator it(heap->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { if (MarkCompactCollector::IsMarked(obj)) { obj->Iterate(&visitor); } } heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); } class VerifyEvacuationVisitor: public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object)); } } } }; static void VerifyEvacuation(Address bottom, Address top) { VerifyEvacuationVisitor visitor; HeapObject* object; Address next_object_must_be_here_or_later = bottom; for (Address current = bottom; current < top; current += kPointerSize) { object = HeapObject::FromAddress(current); if (MarkCompactCollector::IsMarked(object)) { ASSERT(current >= next_object_must_be_here_or_later); object->Iterate(&visitor); next_object_must_be_here_or_later = current + object->Size(); } } } static void VerifyEvacuation(NewSpace* space) { NewSpacePageIterator it(space->bottom(), space->top()); VerifyEvacuationVisitor visitor; while (it.has_next()) { NewSpacePage* page = it.next(); Address current = page->area_start(); Address limit = it.has_next() ? page->area_end() : space->top(); ASSERT(limit == space->top() || !page->Contains(space->top())); while (current < limit) { HeapObject* object = HeapObject::FromAddress(current); object->Iterate(&visitor); current += object->Size(); } } } static void VerifyEvacuation(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); if (p->IsEvacuationCandidate()) continue; VerifyEvacuation(p->area_start(), p->area_end()); } } static void VerifyEvacuation(Heap* heap) { VerifyEvacuation(heap->old_pointer_space()); VerifyEvacuation(heap->old_data_space()); VerifyEvacuation(heap->code_space()); VerifyEvacuation(heap->cell_space()); VerifyEvacuation(heap->map_space()); VerifyEvacuation(heap->new_space()); VerifyEvacuationVisitor visitor; heap->IterateStrongRoots(&visitor, VISIT_ALL); } #endif void MarkCompactCollector::AddEvacuationCandidate(Page* p) { p->MarkEvacuationCandidate(); evacuation_candidates_.Add(p); } static void TraceFragmentation(PagedSpace* space) { int number_of_pages = space->CountTotalPages(); intptr_t reserved = (number_of_pages * space->AreaSize()); intptr_t free = reserved - space->SizeOfObjects(); PrintF("[%s]: %d pages, %d (%.1f%%) free\n", AllocationSpaceName(space->identity()), number_of_pages, static_cast(free), static_cast(free) * 100 / reserved); } bool MarkCompactCollector::StartCompaction(CompactionMode mode) { if (!compacting_) { ASSERT(evacuation_candidates_.length() == 0); CollectEvacuationCandidates(heap()->old_pointer_space()); CollectEvacuationCandidates(heap()->old_data_space()); if (FLAG_compact_code_space && mode == NON_INCREMENTAL_COMPACTION) { CollectEvacuationCandidates(heap()->code_space()); } else if (FLAG_trace_fragmentation) { TraceFragmentation(heap()->code_space()); } if (FLAG_trace_fragmentation) { TraceFragmentation(heap()->map_space()); TraceFragmentation(heap()->cell_space()); } heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists(); heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists(); heap()->code_space()->EvictEvacuationCandidatesFromFreeLists(); compacting_ = evacuation_candidates_.length() > 0; } return compacting_; } void MarkCompactCollector::CollectGarbage() { // Make sure that Prepare() has been called. The individual steps below will // update the state as they proceed. ASSERT(state_ == PREPARE_GC); ASSERT(encountered_weak_maps_ == Smi::FromInt(0)); MarkLiveObjects(); ASSERT(heap_->incremental_marking()->IsStopped()); if (collect_maps_) ClearNonLiveTransitions(); ClearWeakMaps(); #ifdef DEBUG if (FLAG_verify_heap) { VerifyMarking(heap_); } #endif SweepSpaces(); if (!collect_maps_) ReattachInitialMaps(); Finish(); tracer_ = NULL; } #ifdef DEBUG void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); CHECK(p->markbits()->IsClean()); CHECK_EQ(0, p->LiveBytes()); } } void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) { NewSpacePageIterator it(space->bottom(), space->top()); while (it.has_next()) { NewSpacePage* p = it.next(); CHECK(p->markbits()->IsClean()); CHECK_EQ(0, p->LiveBytes()); } } void MarkCompactCollector::VerifyMarkbitsAreClean() { VerifyMarkbitsAreClean(heap_->old_pointer_space()); VerifyMarkbitsAreClean(heap_->old_data_space()); VerifyMarkbitsAreClean(heap_->code_space()); VerifyMarkbitsAreClean(heap_->cell_space()); VerifyMarkbitsAreClean(heap_->map_space()); VerifyMarkbitsAreClean(heap_->new_space()); LargeObjectIterator it(heap_->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { MarkBit mark_bit = Marking::MarkBitFrom(obj); ASSERT(Marking::IsWhite(mark_bit)); ASSERT_EQ(0, Page::FromAddress(obj->address())->LiveBytes()); } } #endif static void ClearMarkbitsInPagedSpace(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Bitmap::Clear(it.next()); } } static void ClearMarkbitsInNewSpace(NewSpace* space) { NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd()); while (it.has_next()) { Bitmap::Clear(it.next()); } } void MarkCompactCollector::ClearMarkbits() { ClearMarkbitsInPagedSpace(heap_->code_space()); ClearMarkbitsInPagedSpace(heap_->map_space()); ClearMarkbitsInPagedSpace(heap_->old_pointer_space()); ClearMarkbitsInPagedSpace(heap_->old_data_space()); ClearMarkbitsInPagedSpace(heap_->cell_space()); ClearMarkbitsInNewSpace(heap_->new_space()); LargeObjectIterator it(heap_->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { MarkBit mark_bit = Marking::MarkBitFrom(obj); mark_bit.Clear(); mark_bit.Next().Clear(); Page::FromAddress(obj->address())->ResetLiveBytes(); } } bool Marking::TransferMark(Address old_start, Address new_start) { // This is only used when resizing an object. ASSERT(MemoryChunk::FromAddress(old_start) == MemoryChunk::FromAddress(new_start)); // If the mark doesn't move, we don't check the color of the object. // It doesn't matter whether the object is black, since it hasn't changed // size, so the adjustment to the live data count will be zero anyway. if (old_start == new_start) return false; MarkBit new_mark_bit = MarkBitFrom(new_start); MarkBit old_mark_bit = MarkBitFrom(old_start); #ifdef DEBUG ObjectColor old_color = Color(old_mark_bit); #endif if (Marking::IsBlack(old_mark_bit)) { old_mark_bit.Clear(); ASSERT(IsWhite(old_mark_bit)); Marking::MarkBlack(new_mark_bit); return true; } else if (Marking::IsGrey(old_mark_bit)) { ASSERT(heap_->incremental_marking()->IsMarking()); old_mark_bit.Clear(); old_mark_bit.Next().Clear(); ASSERT(IsWhite(old_mark_bit)); heap_->incremental_marking()->WhiteToGreyAndPush( HeapObject::FromAddress(new_start), new_mark_bit); heap_->incremental_marking()->RestartIfNotMarking(); } #ifdef DEBUG ObjectColor new_color = Color(new_mark_bit); ASSERT(new_color == old_color); #endif return false; } const char* AllocationSpaceName(AllocationSpace space) { switch (space) { case NEW_SPACE: return "NEW_SPACE"; case OLD_POINTER_SPACE: return "OLD_POINTER_SPACE"; case OLD_DATA_SPACE: return "OLD_DATA_SPACE"; case CODE_SPACE: return "CODE_SPACE"; case MAP_SPACE: return "MAP_SPACE"; case CELL_SPACE: return "CELL_SPACE"; case LO_SPACE: return "LO_SPACE"; default: UNREACHABLE(); } return NULL; } // Returns zero for pages that have so little fragmentation that it is not // worth defragmenting them. Otherwise a positive integer that gives an // estimate of fragmentation on an arbitrary scale. static int FreeListFragmentation(PagedSpace* space, Page* p) { // If page was not swept then there are no free list items on it. if (!p->WasSwept()) { if (FLAG_trace_fragmentation) { PrintF("%p [%s]: %d bytes live (unswept)\n", reinterpret_cast(p), AllocationSpaceName(space->identity()), p->LiveBytes()); } return 0; } FreeList::SizeStats sizes; space->CountFreeListItems(p, &sizes); intptr_t ratio; intptr_t ratio_threshold; intptr_t area_size = space->AreaSize(); if (space->identity() == CODE_SPACE) { ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 / area_size; ratio_threshold = 10; } else { ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 / area_size; ratio_threshold = 15; } if (FLAG_trace_fragmentation) { PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n", reinterpret_cast(p), AllocationSpaceName(space->identity()), static_cast(sizes.small_size_), static_cast(sizes.small_size_ * 100) / area_size, static_cast(sizes.medium_size_), static_cast(sizes.medium_size_ * 100) / area_size, static_cast(sizes.large_size_), static_cast(sizes.large_size_ * 100) / area_size, static_cast(sizes.huge_size_), static_cast(sizes.huge_size_ * 100) / area_size, (ratio > ratio_threshold) ? "[fragmented]" : ""); } if (FLAG_always_compact && sizes.Total() != area_size) { return 1; } if (ratio <= ratio_threshold) return 0; // Not fragmented. return static_cast(ratio - ratio_threshold); } void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) { ASSERT(space->identity() == OLD_POINTER_SPACE || space->identity() == OLD_DATA_SPACE || space->identity() == CODE_SPACE); int number_of_pages = space->CountTotalPages(); const int kMaxMaxEvacuationCandidates = 1000; int max_evacuation_candidates = Min( kMaxMaxEvacuationCandidates, static_cast(sqrt(static_cast(number_of_pages / 2)) + 1)); if (FLAG_stress_compaction || FLAG_always_compact) { max_evacuation_candidates = kMaxMaxEvacuationCandidates; } class Candidate { public: Candidate() : fragmentation_(0), page_(NULL) { } Candidate(int f, Page* p) : fragmentation_(f), page_(p) { } int fragmentation() { return fragmentation_; } Page* page() { return page_; } private: int fragmentation_; Page* page_; }; enum CompactionMode { COMPACT_FREE_LISTS, REDUCE_MEMORY_FOOTPRINT }; CompactionMode mode = COMPACT_FREE_LISTS; intptr_t reserved = number_of_pages * space->AreaSize(); intptr_t over_reserved = reserved - space->SizeOfObjects(); static const intptr_t kFreenessThreshold = 50; if (over_reserved >= 2 * space->AreaSize() && reduce_memory_footprint_) { mode = REDUCE_MEMORY_FOOTPRINT; // We expect that empty pages are easier to compact so slightly bump the // limit. max_evacuation_candidates += 2; if (FLAG_trace_fragmentation) { PrintF("Estimated over reserved memory: %.1f MB (setting threshold %d)\n", static_cast(over_reserved) / MB, static_cast(kFreenessThreshold)); } } intptr_t estimated_release = 0; Candidate candidates[kMaxMaxEvacuationCandidates]; int count = 0; int fragmentation = 0; Candidate* least = NULL; PageIterator it(space); if (it.has_next()) it.next(); // Never compact the first page. while (it.has_next()) { Page* p = it.next(); p->ClearEvacuationCandidate(); if (FLAG_stress_compaction) { int counter = space->heap()->ms_count(); uintptr_t page_number = reinterpret_cast(p) >> kPageSizeBits; if ((counter & 1) == (page_number & 1)) fragmentation = 1; } else if (mode == REDUCE_MEMORY_FOOTPRINT) { // Don't try to release too many pages. if (estimated_release >= ((over_reserved * 3) / 4)) { continue; } intptr_t free_bytes = 0; if (!p->WasSwept()) { free_bytes = (p->area_size() - p->LiveBytes()); } else { FreeList::SizeStats sizes; space->CountFreeListItems(p, &sizes); free_bytes = sizes.Total(); } int free_pct = static_cast(free_bytes * 100) / p->area_size(); if (free_pct >= kFreenessThreshold) { estimated_release += 2 * p->area_size() - free_bytes; fragmentation = free_pct; } else { fragmentation = 0; } if (FLAG_trace_fragmentation) { PrintF("%p [%s]: %d (%.2f%%) free %s\n", reinterpret_cast(p), AllocationSpaceName(space->identity()), static_cast(free_bytes), static_cast(free_bytes * 100) / p->area_size(), (fragmentation > 0) ? "[fragmented]" : ""); } } else { fragmentation = FreeListFragmentation(space, p); } if (fragmentation != 0) { if (count < max_evacuation_candidates) { candidates[count++] = Candidate(fragmentation, p); } else { if (least == NULL) { for (int i = 0; i < max_evacuation_candidates; i++) { if (least == NULL || candidates[i].fragmentation() < least->fragmentation()) { least = candidates + i; } } } if (least->fragmentation() < fragmentation) { *least = Candidate(fragmentation, p); least = NULL; } } } } for (int i = 0; i < count; i++) { AddEvacuationCandidate(candidates[i].page()); } if (count > 0 && FLAG_trace_fragmentation) { PrintF("Collected %d evacuation candidates for space %s\n", count, AllocationSpaceName(space->identity())); } } void MarkCompactCollector::AbortCompaction() { if (compacting_) { int npages = evacuation_candidates_.length(); for (int i = 0; i < npages; i++) { Page* p = evacuation_candidates_[i]; slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address()); p->ClearEvacuationCandidate(); p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION); } compacting_ = false; evacuation_candidates_.Rewind(0); invalidated_code_.Rewind(0); } ASSERT_EQ(0, evacuation_candidates_.length()); } void MarkCompactCollector::Prepare(GCTracer* tracer) { was_marked_incrementally_ = heap()->incremental_marking()->IsMarking(); // Disable collection of maps if incremental marking is enabled. // Map collection algorithm relies on a special map transition tree traversal // order which is not implemented for incremental marking. collect_maps_ = FLAG_collect_maps && !was_marked_incrementally_; // Monomorphic ICs are preserved when possible, but need to be flushed // when they might be keeping a Context alive, or when the heap is about // to be serialized. flush_monomorphic_ics_ = heap()->isolate()->context_exit_happened() || Serializer::enabled(); // Rather than passing the tracer around we stash it in a static member // variable. tracer_ = tracer; #ifdef DEBUG ASSERT(state_ == IDLE); state_ = PREPARE_GC; #endif ASSERT(!FLAG_never_compact || !FLAG_always_compact); if (collect_maps_) CreateBackPointers(); #ifdef ENABLE_GDB_JIT_INTERFACE if (FLAG_gdbjit) { // If GDBJIT interface is active disable compaction. compacting_collection_ = false; } #endif // Clear marking bits if incremental marking is aborted. if (was_marked_incrementally_ && abort_incremental_marking_) { heap()->incremental_marking()->Abort(); ClearMarkbits(); AbortCompaction(); was_marked_incrementally_ = false; } // Don't start compaction if we are in the middle of incremental // marking cycle. We did not collect any slots. if (!FLAG_never_compact && !was_marked_incrementally_) { StartCompaction(NON_INCREMENTAL_COMPACTION); } PagedSpaces spaces; for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->PrepareForMarkCompact(); } #ifdef DEBUG if (!was_marked_incrementally_ && FLAG_verify_heap) { VerifyMarkbitsAreClean(); } #endif } void MarkCompactCollector::Finish() { #ifdef DEBUG ASSERT(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS); state_ = IDLE; #endif // The stub cache is not traversed during GC; clear the cache to // force lazy re-initialization of it. This must be done after the // GC, because it relies on the new address of certain old space // objects (empty string, illegal builtin). heap()->isolate()->stub_cache()->Clear(); heap()->external_string_table_.CleanUp(); } // ------------------------------------------------------------------------- // Phase 1: tracing and marking live objects. // before: all objects are in normal state. // after: a live object's map pointer is marked as '00'. // Marking all live objects in the heap as part of mark-sweep or mark-compact // collection. Before marking, all objects are in their normal state. After // marking, live objects' map pointers are marked indicating that the object // has been found reachable. // // The marking algorithm is a (mostly) depth-first (because of possible stack // overflow) traversal of the graph of objects reachable from the roots. It // uses an explicit stack of pointers rather than recursion. The young // generation's inactive ('from') space is used as a marking stack. The // objects in the marking stack are the ones that have been reached and marked // but their children have not yet been visited. // // The marking stack can overflow during traversal. In that case, we set an // overflow flag. When the overflow flag is set, we continue marking objects // reachable from the objects on the marking stack, but no longer push them on // the marking stack. Instead, we mark them as both marked and overflowed. // When the stack is in the overflowed state, objects marked as overflowed // have been reached and marked but their children have not been visited yet. // After emptying the marking stack, we clear the overflow flag and traverse // the heap looking for objects marked as overflowed, push them on the stack, // and continue with marking. This process repeats until all reachable // objects have been marked. class CodeFlusher { public: explicit CodeFlusher(Isolate* isolate) : isolate_(isolate), jsfunction_candidates_head_(NULL), shared_function_info_candidates_head_(NULL) {} void AddCandidate(SharedFunctionInfo* shared_info) { SetNextCandidate(shared_info, shared_function_info_candidates_head_); shared_function_info_candidates_head_ = shared_info; } void AddCandidate(JSFunction* function) { ASSERT(function->code() == function->shared()->code()); SetNextCandidate(function, jsfunction_candidates_head_); jsfunction_candidates_head_ = function; } void ProcessCandidates() { ProcessSharedFunctionInfoCandidates(); ProcessJSFunctionCandidates(); } private: void ProcessJSFunctionCandidates() { Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile); JSFunction* candidate = jsfunction_candidates_head_; JSFunction* next_candidate; while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); SharedFunctionInfo* shared = candidate->shared(); Code* code = shared->code(); MarkBit code_mark = Marking::MarkBitFrom(code); if (!code_mark.Get()) { shared->set_code(lazy_compile); candidate->set_code(lazy_compile); } else { candidate->set_code(shared->code()); } // We are in the middle of a GC cycle so the write barrier in the code // setter did not record the slot update and we have to do that manually. Address slot = candidate->address() + JSFunction::kCodeEntryOffset; Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot)); isolate_->heap()->mark_compact_collector()-> RecordCodeEntrySlot(slot, target); RecordSharedFunctionInfoCodeSlot(shared); candidate = next_candidate; } jsfunction_candidates_head_ = NULL; } void ProcessSharedFunctionInfoCandidates() { Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kLazyCompile); SharedFunctionInfo* candidate = shared_function_info_candidates_head_; SharedFunctionInfo* next_candidate; while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); SetNextCandidate(candidate, NULL); Code* code = candidate->code(); MarkBit code_mark = Marking::MarkBitFrom(code); if (!code_mark.Get()) { candidate->set_code(lazy_compile); } RecordSharedFunctionInfoCodeSlot(candidate); candidate = next_candidate; } shared_function_info_candidates_head_ = NULL; } void RecordSharedFunctionInfoCodeSlot(SharedFunctionInfo* shared) { Object** slot = HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset); isolate_->heap()->mark_compact_collector()-> RecordSlot(slot, slot, HeapObject::cast(*slot)); } static JSFunction** GetNextCandidateField(JSFunction* candidate) { return reinterpret_cast( candidate->address() + JSFunction::kCodeEntryOffset); } static JSFunction* GetNextCandidate(JSFunction* candidate) { return *GetNextCandidateField(candidate); } static void SetNextCandidate(JSFunction* candidate, JSFunction* next_candidate) { *GetNextCandidateField(candidate) = next_candidate; } static SharedFunctionInfo** GetNextCandidateField( SharedFunctionInfo* candidate) { Code* code = candidate->code(); return reinterpret_cast( code->address() + Code::kGCMetadataOffset); } static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) { return reinterpret_cast( candidate->code()->gc_metadata()); } static void SetNextCandidate(SharedFunctionInfo* candidate, SharedFunctionInfo* next_candidate) { candidate->code()->set_gc_metadata(next_candidate); } Isolate* isolate_; JSFunction* jsfunction_candidates_head_; SharedFunctionInfo* shared_function_info_candidates_head_; DISALLOW_COPY_AND_ASSIGN(CodeFlusher); }; MarkCompactCollector::~MarkCompactCollector() { if (code_flusher_ != NULL) { delete code_flusher_; code_flusher_ = NULL; } } static inline HeapObject* ShortCircuitConsString(Object** p) { // Optimization: If the heap object pointed to by p is a non-symbol // cons string whose right substring is HEAP->empty_string, update // it in place to its left substring. Return the updated value. // // Here we assume that if we change *p, we replace it with a heap object // (i.e., the left substring of a cons string is always a heap object). // // The check performed is: // object->IsConsString() && !object->IsSymbol() && // (ConsString::cast(object)->second() == HEAP->empty_string()) // except the maps for the object and its possible substrings might be // marked. HeapObject* object = HeapObject::cast(*p); if (!FLAG_clever_optimizations) return object; Map* map = object->map(); InstanceType type = map->instance_type(); if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object; Object* second = reinterpret_cast(object)->unchecked_second(); Heap* heap = map->GetHeap(); if (second != heap->empty_string()) { return object; } // Since we don't have the object's start, it is impossible to update the // page dirty marks. Therefore, we only replace the string with its left // substring when page dirty marks do not change. Object* first = reinterpret_cast(object)->unchecked_first(); if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object; *p = first; return HeapObject::cast(first); } class StaticMarkingVisitor : public StaticVisitorBase { public: static inline void IterateBody(Map* map, HeapObject* obj) { table_.GetVisitor(map)(map, obj); } static void Initialize() { table_.Register(kVisitShortcutCandidate, &FixedBodyVisitor::Visit); table_.Register(kVisitConsString, &FixedBodyVisitor::Visit); table_.Register(kVisitSlicedString, &FixedBodyVisitor::Visit); table_.Register(kVisitFixedArray, &FlexibleBodyVisitor::Visit); table_.Register(kVisitGlobalContext, &VisitGlobalContext); table_.Register(kVisitFixedDoubleArray, DataObjectVisitor::Visit); table_.Register(kVisitByteArray, &DataObjectVisitor::Visit); table_.Register(kVisitFreeSpace, &DataObjectVisitor::Visit); table_.Register(kVisitSeqAsciiString, &DataObjectVisitor::Visit); table_.Register(kVisitSeqTwoByteString, &DataObjectVisitor::Visit); table_.Register(kVisitJSWeakMap, &VisitJSWeakMap); table_.Register(kVisitOddball, &FixedBodyVisitor::Visit); table_.Register(kVisitMap, &FixedBodyVisitor::Visit); table_.Register(kVisitCode, &VisitCode); table_.Register(kVisitSharedFunctionInfo, &VisitSharedFunctionInfoAndFlushCode); table_.Register(kVisitJSFunction, &VisitJSFunctionAndFlushCode); table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode); table_.Register(kVisitPropertyCell, &FixedBodyVisitor::Visit); table_.RegisterSpecializations(); table_.RegisterSpecializations(); table_.RegisterSpecializations(); } INLINE(static void VisitPointer(Heap* heap, Object** p)) { MarkObjectByPointer(heap->mark_compact_collector(), p, p); } INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) { // Mark all objects pointed to in [start, end). const int kMinRangeForMarkingRecursion = 64; if (end - start >= kMinRangeForMarkingRecursion) { if (VisitUnmarkedObjects(heap, start, end)) return; // We are close to a stack overflow, so just mark the objects. } MarkCompactCollector* collector = heap->mark_compact_collector(); for (Object** p = start; p < end; p++) { MarkObjectByPointer(collector, start, p); } } static void VisitGlobalPropertyCell(Heap* heap, RelocInfo* rinfo) { ASSERT(rinfo->rmode() == RelocInfo::GLOBAL_PROPERTY_CELL); JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(rinfo->target_cell()); MarkBit mark = Marking::MarkBitFrom(cell); heap->mark_compact_collector()->MarkObject(cell, mark); } static inline void VisitEmbeddedPointer(Heap* heap, RelocInfo* rinfo) { ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); // TODO(mstarzinger): We do not short-circuit cons strings here, verify // that there can be no such embedded pointers and add assertion here. HeapObject* object = HeapObject::cast(rinfo->target_object()); heap->mark_compact_collector()->RecordRelocSlot(rinfo, object); MarkBit mark = Marking::MarkBitFrom(object); heap->mark_compact_collector()->MarkObject(object, mark); } static inline void VisitCodeTarget(Heap* heap, RelocInfo* rinfo) { ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); if (FLAG_cleanup_code_caches_at_gc && target->is_inline_cache_stub() && (target->ic_state() == MEGAMORPHIC || heap->mark_compact_collector()->flush_monomorphic_ics_ || target->ic_age() != heap->global_ic_age())) { IC::Clear(rinfo->pc()); target = Code::GetCodeFromTargetAddress(rinfo->target_address()); } MarkBit code_mark = Marking::MarkBitFrom(target); heap->mark_compact_collector()->MarkObject(target, code_mark); heap->mark_compact_collector()->RecordRelocSlot(rinfo, target); } static inline void VisitDebugTarget(Heap* heap, RelocInfo* rinfo) { ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); Code* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); MarkBit code_mark = Marking::MarkBitFrom(target); heap->mark_compact_collector()->MarkObject(target, code_mark); heap->mark_compact_collector()->RecordRelocSlot(rinfo, target); } // Mark object pointed to by p. INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector, Object** anchor_slot, Object** p)) { if (!(*p)->IsHeapObject()) return; HeapObject* object = ShortCircuitConsString(p); collector->RecordSlot(anchor_slot, p, object); MarkBit mark = Marking::MarkBitFrom(object); collector->MarkObject(object, mark); } // Visit an unmarked object. INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector, HeapObject* obj)) { #ifdef DEBUG ASSERT(Isolate::Current()->heap()->Contains(obj)); ASSERT(!HEAP->mark_compact_collector()->IsMarked(obj)); #endif Map* map = obj->map(); Heap* heap = obj->GetHeap(); MarkBit mark = Marking::MarkBitFrom(obj); heap->mark_compact_collector()->SetMark(obj, mark); // Mark the map pointer and the body. MarkBit map_mark = Marking::MarkBitFrom(map); heap->mark_compact_collector()->MarkObject(map, map_mark); IterateBody(map, obj); } // Visit all unmarked objects pointed to by [start, end). // Returns false if the operation fails (lack of stack space). static inline bool VisitUnmarkedObjects(Heap* heap, Object** start, Object** end) { // Return false is we are close to the stack limit. StackLimitCheck check(heap->isolate()); if (check.HasOverflowed()) return false; MarkCompactCollector* collector = heap->mark_compact_collector(); // Visit the unmarked objects. for (Object** p = start; p < end; p++) { Object* o = *p; if (!o->IsHeapObject()) continue; collector->RecordSlot(start, p, o); HeapObject* obj = HeapObject::cast(o); MarkBit mark = Marking::MarkBitFrom(obj); if (mark.Get()) continue; VisitUnmarkedObject(collector, obj); } return true; } static inline void VisitExternalReference(Address* p) { } static inline void VisitExternalReference(RelocInfo* rinfo) { } static inline void VisitRuntimeEntry(RelocInfo* rinfo) { } private: class DataObjectVisitor { public: template static void VisitSpecialized(Map* map, HeapObject* object) { } static void Visit(Map* map, HeapObject* object) { } }; typedef FlexibleBodyVisitor JSObjectVisitor; typedef FlexibleBodyVisitor StructObjectVisitor; static void VisitJSWeakMap(Map* map, HeapObject* object) { MarkCompactCollector* collector = map->GetHeap()->mark_compact_collector(); JSWeakMap* weak_map = reinterpret_cast(object); // Enqueue weak map in linked list of encountered weak maps. if (weak_map->next() == Smi::FromInt(0)) { weak_map->set_next(collector->encountered_weak_maps()); collector->set_encountered_weak_maps(weak_map); } // Skip visiting the backing hash table containing the mappings. int object_size = JSWeakMap::BodyDescriptor::SizeOf(map, object); BodyVisitorBase::IteratePointers( map->GetHeap(), object, JSWeakMap::BodyDescriptor::kStartOffset, JSWeakMap::kTableOffset); BodyVisitorBase::IteratePointers( map->GetHeap(), object, JSWeakMap::kTableOffset + kPointerSize, object_size); // Mark the backing hash table without pushing it on the marking stack. Object* table_object = weak_map->table(); if (!table_object->IsHashTable()) return; ObjectHashTable* table = ObjectHashTable::cast(table_object); Object** table_slot = HeapObject::RawField(weak_map, JSWeakMap::kTableOffset); MarkBit table_mark = Marking::MarkBitFrom(table); collector->RecordSlot(table_slot, table_slot, table); if (!table_mark.Get()) collector->SetMark(table, table_mark); // Recording the map slot can be skipped, because maps are not compacted. collector->MarkObject(table->map(), Marking::MarkBitFrom(table->map())); ASSERT(MarkCompactCollector::IsMarked(table->map())); } static void VisitCode(Map* map, HeapObject* object) { Heap* heap = map->GetHeap(); Code* code = reinterpret_cast(object); if (FLAG_cleanup_code_caches_at_gc) { Object* raw_info = code->type_feedback_info(); if (raw_info->IsTypeFeedbackInfo()) { TypeFeedbackCells* type_feedback_cells = TypeFeedbackInfo::cast(raw_info)->type_feedback_cells(); for (int i = 0; i < type_feedback_cells->CellCount(); i++) { ASSERT(type_feedback_cells->AstId(i)->IsSmi()); JSGlobalPropertyCell* cell = type_feedback_cells->Cell(i); cell->set_value(TypeFeedbackCells::RawUninitializedSentinel(heap)); } } } code->CodeIterateBody(heap); } // Code flushing support. // How many collections newly compiled code object will survive before being // flushed. static const int kCodeAgeThreshold = 5; static const int kRegExpCodeThreshold = 5; inline static bool HasSourceCode(Heap* heap, SharedFunctionInfo* info) { Object* undefined = heap->undefined_value(); return (info->script() != undefined) && (reinterpret_cast(info->script())->source() != undefined); } inline static bool IsCompiled(JSFunction* function) { return function->code() != function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } inline static bool IsCompiled(SharedFunctionInfo* function) { return function->code() != function->GetIsolate()->builtins()->builtin(Builtins::kLazyCompile); } inline static bool IsFlushable(Heap* heap, JSFunction* function) { SharedFunctionInfo* shared_info = function->unchecked_shared(); // Code is either on stack, in compilation cache or referenced // by optimized version of function. MarkBit code_mark = Marking::MarkBitFrom(function->code()); if (code_mark.Get()) { if (!Marking::MarkBitFrom(shared_info).Get()) { shared_info->set_code_age(0); } return false; } // We do not flush code for optimized functions. if (function->code() != shared_info->code()) { return false; } return IsFlushable(heap, shared_info); } inline static bool IsFlushable(Heap* heap, SharedFunctionInfo* shared_info) { // Code is either on stack, in compilation cache or referenced // by optimized version of function. MarkBit code_mark = Marking::MarkBitFrom(shared_info->code()); if (code_mark.Get()) { return false; } // The function must be compiled and have the source code available, // to be able to recompile it in case we need the function again. if (!(shared_info->is_compiled() && HasSourceCode(heap, shared_info))) { return false; } // We never flush code for Api functions. Object* function_data = shared_info->function_data(); if (function_data->IsFunctionTemplateInfo()) { return false; } // Only flush code for functions. if (shared_info->code()->kind() != Code::FUNCTION) { return false; } // Function must be lazy compilable. if (!shared_info->allows_lazy_compilation()) { return false; } // If this is a full script wrapped in a function we do no flush the code. if (shared_info->is_toplevel()) { return false; } // Age this shared function info. if (shared_info->code_age() < kCodeAgeThreshold) { shared_info->set_code_age(shared_info->code_age() + 1); return false; } return true; } static bool FlushCodeForFunction(Heap* heap, JSFunction* function) { if (!IsFlushable(heap, function)) return false; // This function's code looks flushable. But we have to postpone the // decision until we see all functions that point to the same // SharedFunctionInfo because some of them might be optimized. // That would make the nonoptimized version of the code nonflushable, // because it is required for bailing out from optimized code. heap->mark_compact_collector()->code_flusher()->AddCandidate(function); return true; } static inline bool IsValidNotBuiltinContext(Object* ctx) { return ctx->IsContext() && !Context::cast(ctx)->global()->IsJSBuiltinsObject(); } static void VisitSharedFunctionInfoGeneric(Map* map, HeapObject* object) { SharedFunctionInfo* shared = reinterpret_cast(object); if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap(); FixedBodyVisitor::Visit(map, object); } static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re, bool is_ascii) { // Make sure that the fixed array is in fact initialized on the RegExp. // We could potentially trigger a GC when initializing the RegExp. if (HeapObject::cast(re->data())->map()->instance_type() != FIXED_ARRAY_TYPE) return; // Make sure this is a RegExp that actually contains code. if (re->TypeTagUnchecked() != JSRegExp::IRREGEXP) return; Object* code = re->DataAtUnchecked(JSRegExp::code_index(is_ascii)); if (!code->IsSmi() && HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) { // Save a copy that can be reinstated if we need the code again. re->SetDataAtUnchecked(JSRegExp::saved_code_index(is_ascii), code, heap); // Saving a copy might create a pointer into compaction candidate // that was not observed by marker. This might happen if JSRegExp data // was marked through the compilation cache before marker reached JSRegExp // object. FixedArray* data = FixedArray::cast(re->data()); Object** slot = data->data_start() + JSRegExp::saved_code_index(is_ascii); heap->mark_compact_collector()-> RecordSlot(slot, slot, code); // Set a number in the 0-255 range to guarantee no smi overflow. re->SetDataAtUnchecked(JSRegExp::code_index(is_ascii), Smi::FromInt(heap->sweep_generation() & 0xff), heap); } else if (code->IsSmi()) { int value = Smi::cast(code)->value(); // The regexp has not been compiled yet or there was a compilation error. if (value == JSRegExp::kUninitializedValue || value == JSRegExp::kCompilationErrorValue) { return; } // Check if we should flush now. if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) { re->SetDataAtUnchecked(JSRegExp::code_index(is_ascii), Smi::FromInt(JSRegExp::kUninitializedValue), heap); re->SetDataAtUnchecked(JSRegExp::saved_code_index(is_ascii), Smi::FromInt(JSRegExp::kUninitializedValue), heap); } } } // Works by setting the current sweep_generation (as a smi) in the // code object place in the data array of the RegExp and keeps a copy // around that can be reinstated if we reuse the RegExp before flushing. // If we did not use the code for kRegExpCodeThreshold mark sweep GCs // we flush the code. static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) { Heap* heap = map->GetHeap(); MarkCompactCollector* collector = heap->mark_compact_collector(); if (!collector->is_code_flushing_enabled()) { VisitJSRegExpFields(map, object); return; } JSRegExp* re = reinterpret_cast(object); // Flush code or set age on both ASCII and two byte code. UpdateRegExpCodeAgeAndFlush(heap, re, true); UpdateRegExpCodeAgeAndFlush(heap, re, false); // Visit the fields of the RegExp, including the updated FixedArray. VisitJSRegExpFields(map, object); } static void VisitSharedFunctionInfoAndFlushCode(Map* map, HeapObject* object) { Heap* heap = map->GetHeap(); SharedFunctionInfo* shared = reinterpret_cast(object); if (shared->ic_age() != heap->global_ic_age()) { shared->ResetForNewContext(heap->global_ic_age()); } MarkCompactCollector* collector = map->GetHeap()->mark_compact_collector(); if (!collector->is_code_flushing_enabled()) { VisitSharedFunctionInfoGeneric(map, object); return; } VisitSharedFunctionInfoAndFlushCodeGeneric(map, object, false); } static void VisitSharedFunctionInfoAndFlushCodeGeneric( Map* map, HeapObject* object, bool known_flush_code_candidate) { Heap* heap = map->GetHeap(); SharedFunctionInfo* shared = reinterpret_cast(object); if (shared->IsInobjectSlackTrackingInProgress()) shared->DetachInitialMap(); if (!known_flush_code_candidate) { known_flush_code_candidate = IsFlushable(heap, shared); if (known_flush_code_candidate) { heap->mark_compact_collector()->code_flusher()->AddCandidate(shared); } } VisitSharedFunctionInfoFields(heap, object, known_flush_code_candidate); } static void VisitCodeEntry(Heap* heap, Address entry_address) { Code* code = Code::cast(Code::GetObjectFromEntryAddress(entry_address)); MarkBit mark = Marking::MarkBitFrom(code); heap->mark_compact_collector()->MarkObject(code, mark); heap->mark_compact_collector()-> RecordCodeEntrySlot(entry_address, code); } static void VisitGlobalContext(Map* map, HeapObject* object) { FixedBodyVisitor::Visit(map, object); MarkCompactCollector* collector = map->GetHeap()->mark_compact_collector(); for (int idx = Context::FIRST_WEAK_SLOT; idx < Context::GLOBAL_CONTEXT_SLOTS; ++idx) { Object** slot = HeapObject::RawField(object, FixedArray::OffsetOfElementAt(idx)); collector->RecordSlot(slot, slot, *slot); } } static void VisitJSFunctionAndFlushCode(Map* map, HeapObject* object) { Heap* heap = map->GetHeap(); MarkCompactCollector* collector = heap->mark_compact_collector(); if (!collector->is_code_flushing_enabled()) { VisitJSFunction(map, object); return; } JSFunction* jsfunction = reinterpret_cast(object); // The function must have a valid context and not be a builtin. bool flush_code_candidate = false; if (IsValidNotBuiltinContext(jsfunction->unchecked_context())) { flush_code_candidate = FlushCodeForFunction(heap, jsfunction); } if (!flush_code_candidate) { Code* code = jsfunction->shared()->code(); MarkBit code_mark = Marking::MarkBitFrom(code); collector->MarkObject(code, code_mark); if (jsfunction->code()->kind() == Code::OPTIMIZED_FUNCTION) { collector->MarkInlinedFunctionsCode(jsfunction->code()); } } VisitJSFunctionFields(map, reinterpret_cast(object), flush_code_candidate); } static void VisitJSFunction(Map* map, HeapObject* object) { VisitJSFunctionFields(map, reinterpret_cast(object), false); } #define SLOT_ADDR(obj, offset) \ reinterpret_cast((obj)->address() + offset) static inline void VisitJSFunctionFields(Map* map, JSFunction* object, bool flush_code_candidate) { Heap* heap = map->GetHeap(); VisitPointers(heap, HeapObject::RawField(object, JSFunction::kPropertiesOffset), HeapObject::RawField(object, JSFunction::kCodeEntryOffset)); if (!flush_code_candidate) { VisitCodeEntry(heap, object->address() + JSFunction::kCodeEntryOffset); } else { // Don't visit code object. // Visit shared function info to avoid double checking of it's // flushability. SharedFunctionInfo* shared_info = object->unchecked_shared(); MarkBit shared_info_mark = Marking::MarkBitFrom(shared_info); if (!shared_info_mark.Get()) { Map* shared_info_map = shared_info->map(); MarkBit shared_info_map_mark = Marking::MarkBitFrom(shared_info_map); heap->mark_compact_collector()->SetMark(shared_info, shared_info_mark); heap->mark_compact_collector()->MarkObject(shared_info_map, shared_info_map_mark); VisitSharedFunctionInfoAndFlushCodeGeneric(shared_info_map, shared_info, true); } } VisitPointers( heap, HeapObject::RawField(object, JSFunction::kCodeEntryOffset + kPointerSize), HeapObject::RawField(object, JSFunction::kNonWeakFieldsEndOffset)); } static inline void VisitJSRegExpFields(Map* map, HeapObject* object) { int last_property_offset = JSRegExp::kSize + kPointerSize * map->inobject_properties(); VisitPointers(map->GetHeap(), SLOT_ADDR(object, JSRegExp::kPropertiesOffset), SLOT_ADDR(object, last_property_offset)); } static void VisitSharedFunctionInfoFields(Heap* heap, HeapObject* object, bool flush_code_candidate) { VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kNameOffset)); if (!flush_code_candidate) { VisitPointer(heap, SLOT_ADDR(object, SharedFunctionInfo::kCodeOffset)); } VisitPointers(heap, SLOT_ADDR(object, SharedFunctionInfo::kScopeInfoOffset), SLOT_ADDR(object, SharedFunctionInfo::kSize)); } #undef SLOT_ADDR typedef void (*Callback)(Map* map, HeapObject* object); static VisitorDispatchTable table_; }; VisitorDispatchTable StaticMarkingVisitor::table_; class MarkingVisitor : public ObjectVisitor { public: explicit MarkingVisitor(Heap* heap) : heap_(heap) { } void VisitPointer(Object** p) { StaticMarkingVisitor::VisitPointer(heap_, p); } void VisitPointers(Object** start, Object** end) { StaticMarkingVisitor::VisitPointers(heap_, start, end); } private: Heap* heap_; }; class CodeMarkingVisitor : public ThreadVisitor { public: explicit CodeMarkingVisitor(MarkCompactCollector* collector) : collector_(collector) {} void VisitThread(Isolate* isolate, ThreadLocalTop* top) { collector_->PrepareThreadForCodeFlushing(isolate, top); } private: MarkCompactCollector* collector_; }; class SharedFunctionInfoMarkingVisitor : public ObjectVisitor { public: explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector) : collector_(collector) {} void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) VisitPointer(p); } void VisitPointer(Object** slot) { Object* obj = *slot; if (obj->IsSharedFunctionInfo()) { SharedFunctionInfo* shared = reinterpret_cast(obj); MarkBit shared_mark = Marking::MarkBitFrom(shared); MarkBit code_mark = Marking::MarkBitFrom(shared->code()); collector_->MarkObject(shared->code(), code_mark); collector_->MarkObject(shared, shared_mark); } } private: MarkCompactCollector* collector_; }; void MarkCompactCollector::MarkInlinedFunctionsCode(Code* code) { // For optimized functions we should retain both non-optimized version // of it's code and non-optimized version of all inlined functions. // This is required to support bailing out from inlined code. DeoptimizationInputData* data = DeoptimizationInputData::cast(code->deoptimization_data()); FixedArray* literals = data->LiteralArray(); for (int i = 0, count = data->InlinedFunctionCount()->value(); i < count; i++) { JSFunction* inlined = JSFunction::cast(literals->get(i)); Code* inlined_code = inlined->shared()->code(); MarkBit inlined_code_mark = Marking::MarkBitFrom(inlined_code); MarkObject(inlined_code, inlined_code_mark); } } void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top) { for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) { // Note: for the frame that has a pending lazy deoptimization // StackFrame::unchecked_code will return a non-optimized code object for // the outermost function and StackFrame::LookupCode will return // actual optimized code object. StackFrame* frame = it.frame(); Code* code = frame->unchecked_code(); MarkBit code_mark = Marking::MarkBitFrom(code); MarkObject(code, code_mark); if (frame->is_optimized()) { MarkInlinedFunctionsCode(frame->LookupCode()); } } } void MarkCompactCollector::PrepareForCodeFlushing() { ASSERT(heap() == Isolate::Current()->heap()); // TODO(1609) Currently incremental marker does not support code flushing. if (!FLAG_flush_code || was_marked_incrementally_) { EnableCodeFlushing(false); return; } #ifdef ENABLE_DEBUGGER_SUPPORT if (heap()->isolate()->debug()->IsLoaded() || heap()->isolate()->debug()->has_break_points()) { EnableCodeFlushing(false); return; } #endif EnableCodeFlushing(true); // Ensure that empty descriptor array is marked. Method MarkDescriptorArray // relies on it being marked before any other descriptor array. HeapObject* descriptor_array = heap()->empty_descriptor_array(); MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array); MarkObject(descriptor_array, descriptor_array_mark); // Make sure we are not referencing the code from the stack. ASSERT(this == heap()->mark_compact_collector()); PrepareThreadForCodeFlushing(heap()->isolate(), heap()->isolate()->thread_local_top()); // Iterate the archived stacks in all threads to check if // the code is referenced. CodeMarkingVisitor code_marking_visitor(this); heap()->isolate()->thread_manager()->IterateArchivedThreads( &code_marking_visitor); SharedFunctionInfoMarkingVisitor visitor(this); heap()->isolate()->compilation_cache()->IterateFunctions(&visitor); heap()->isolate()->handle_scope_implementer()->Iterate(&visitor); ProcessMarkingDeque(); } // Visitor class for marking heap roots. class RootMarkingVisitor : public ObjectVisitor { public: explicit RootMarkingVisitor(Heap* heap) : collector_(heap->mark_compact_collector()) { } void VisitPointer(Object** p) { MarkObjectByPointer(p); } void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) MarkObjectByPointer(p); } private: void MarkObjectByPointer(Object** p) { if (!(*p)->IsHeapObject()) return; // Replace flat cons strings in place. HeapObject* object = ShortCircuitConsString(p); MarkBit mark_bit = Marking::MarkBitFrom(object); if (mark_bit.Get()) return; Map* map = object->map(); // Mark the object. collector_->SetMark(object, mark_bit); // Mark the map pointer and body, and push them on the marking stack. MarkBit map_mark = Marking::MarkBitFrom(map); collector_->MarkObject(map, map_mark); StaticMarkingVisitor::IterateBody(map, object); // Mark all the objects reachable from the map and body. May leave // overflowed objects in the heap. collector_->EmptyMarkingDeque(); } MarkCompactCollector* collector_; }; // Helper class for pruning the symbol table. class SymbolTableCleaner : public ObjectVisitor { public: explicit SymbolTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) { } virtual void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { Object* o = *p; if (o->IsHeapObject() && !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) { // Check if the symbol being pruned is an external symbol. We need to // delete the associated external data as this symbol is going away. // Since no objects have yet been moved we can safely access the map of // the object. if (o->IsExternalString()) { heap_->FinalizeExternalString(String::cast(*p)); } // Set the entry to the_hole_value (as deleted). *p = heap_->the_hole_value(); pointers_removed_++; } } } int PointersRemoved() { return pointers_removed_; } private: Heap* heap_; int pointers_removed_; }; // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects // are retained. class MarkCompactWeakObjectRetainer : public WeakObjectRetainer { public: virtual Object* RetainAs(Object* object) { if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) { return object; } else { return NULL; } } }; void MarkCompactCollector::ProcessNewlyMarkedObject(HeapObject* object) { ASSERT(IsMarked(object)); ASSERT(HEAP->Contains(object)); if (object->IsMap()) { Map* map = Map::cast(object); heap_->ClearCacheOnMap(map); // When map collection is enabled we have to mark through map's transitions // in a special way to make transition links weak. // Only maps for subclasses of JSReceiver can have transitions. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); if (collect_maps_ && map->instance_type() >= FIRST_JS_RECEIVER_TYPE) { MarkMapContents(map); } else { marking_deque_.PushBlack(map); } } else { marking_deque_.PushBlack(object); } } void MarkCompactCollector::MarkMapContents(Map* map) { // Mark prototype transitions array but don't push it into marking stack. // This will make references from it weak. We will clean dead prototype // transitions in ClearNonLiveTransitions. FixedArray* prototype_transitions = map->prototype_transitions(); MarkBit mark = Marking::MarkBitFrom(prototype_transitions); if (!mark.Get()) { mark.Set(); MemoryChunk::IncrementLiveBytesFromGC(prototype_transitions->address(), prototype_transitions->Size()); } Object** raw_descriptor_array_slot = HeapObject::RawField(map, Map::kInstanceDescriptorsOrBitField3Offset); Object* raw_descriptor_array = *raw_descriptor_array_slot; if (!raw_descriptor_array->IsSmi()) { MarkDescriptorArray( reinterpret_cast(raw_descriptor_array)); } // Mark the Object* fields of the Map. // Since the descriptor array has been marked already, it is fine // that one of these fields contains a pointer to it. Object** start_slot = HeapObject::RawField(map, Map::kPointerFieldsBeginOffset); Object** end_slot = HeapObject::RawField(map, Map::kPointerFieldsEndOffset); StaticMarkingVisitor::VisitPointers(map->GetHeap(), start_slot, end_slot); } void MarkCompactCollector::MarkAccessorPairSlot(HeapObject* accessors, int offset) { Object** slot = HeapObject::RawField(accessors, offset); HeapObject* accessor = HeapObject::cast(*slot); if (accessor->IsMap()) return; RecordSlot(slot, slot, accessor); MarkObjectAndPush(accessor); } void MarkCompactCollector::MarkDescriptorArray( DescriptorArray* descriptors) { MarkBit descriptors_mark = Marking::MarkBitFrom(descriptors); if (descriptors_mark.Get()) return; // Empty descriptor array is marked as a root before any maps are marked. ASSERT(descriptors != heap()->empty_descriptor_array()); SetMark(descriptors, descriptors_mark); FixedArray* contents = reinterpret_cast( descriptors->get(DescriptorArray::kContentArrayIndex)); ASSERT(contents->IsHeapObject()); ASSERT(!IsMarked(contents)); ASSERT(contents->IsFixedArray()); ASSERT(contents->length() >= 2); MarkBit contents_mark = Marking::MarkBitFrom(contents); SetMark(contents, contents_mark); // Contents contains (value, details) pairs. If the details say that the type // of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION, // EXTERNAL_ARRAY_TRANSITION or NULL_DESCRIPTOR, we don't mark the value as // live. Only for MAP_TRANSITION, EXTERNAL_ARRAY_TRANSITION and // CONSTANT_TRANSITION is the value an Object* (a Map*). for (int i = 0; i < contents->length(); i += 2) { // If the pair (value, details) at index i, i+1 is not // a transition or null descriptor, mark the value. PropertyDetails details(Smi::cast(contents->get(i + 1))); Object** slot = contents->data_start() + i; if (!(*slot)->IsHeapObject()) continue; HeapObject* value = HeapObject::cast(*slot); RecordSlot(slot, slot, *slot); switch (details.type()) { case NORMAL: case FIELD: case CONSTANT_FUNCTION: case HANDLER: case INTERCEPTOR: MarkObjectAndPush(value); break; case CALLBACKS: if (!value->IsAccessorPair()) { MarkObjectAndPush(value); } else if (!MarkObjectWithoutPush(value)) { MarkAccessorPairSlot(value, AccessorPair::kGetterOffset); MarkAccessorPairSlot(value, AccessorPair::kSetterOffset); } break; case ELEMENTS_TRANSITION: // For maps with multiple elements transitions, the transition maps are // stored in a FixedArray. Keep the fixed array alive but not the maps // that it refers to. if (value->IsFixedArray()) MarkObjectWithoutPush(value); break; case MAP_TRANSITION: case CONSTANT_TRANSITION: case NULL_DESCRIPTOR: break; } } // The DescriptorArray descriptors contains a pointer to its contents array, // but the contents array is already marked. marking_deque_.PushBlack(descriptors); } void MarkCompactCollector::CreateBackPointers() { HeapObjectIterator iterator(heap()->map_space()); for (HeapObject* next_object = iterator.Next(); next_object != NULL; next_object = iterator.Next()) { if (next_object->IsMap()) { // Could also be FreeSpace object on free list. Map* map = Map::cast(next_object); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); if (map->instance_type() >= FIRST_JS_RECEIVER_TYPE) { map->CreateBackPointers(); } else { ASSERT(map->instance_descriptors() == heap()->empty_descriptor_array()); } } } } // Fill the marking stack with overflowed objects returned by the given // iterator. Stop when the marking stack is filled or the end of the space // is reached, whichever comes first. template static void DiscoverGreyObjectsWithIterator(Heap* heap, MarkingDeque* marking_deque, T* it) { // The caller should ensure that the marking stack is initially not full, // so that we don't waste effort pointlessly scanning for objects. ASSERT(!marking_deque->IsFull()); Map* filler_map = heap->one_pointer_filler_map(); for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) { MarkBit markbit = Marking::MarkBitFrom(object); if ((object->map() != filler_map) && Marking::IsGrey(markbit)) { Marking::GreyToBlack(markbit); MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size()); marking_deque->PushBlack(object); if (marking_deque->IsFull()) return; } } } static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts); static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque, Page* p) { ASSERT(!marking_deque->IsFull()); ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); MarkBit::CellType* cells = p->markbits()->cells(); int last_cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(p->area_end()))); Address cell_base = p->area_start(); int cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(cell_base))); for (; cell_index < last_cell_index; cell_index++, cell_base += 32 * kPointerSize) { ASSERT((unsigned)cell_index == Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(cell_base)))); const MarkBit::CellType current_cell = cells[cell_index]; if (current_cell == 0) continue; const MarkBit::CellType next_cell = cells[cell_index + 1]; MarkBit::CellType grey_objects = current_cell & ((current_cell >> 1) | (next_cell << (Bitmap::kBitsPerCell - 1))); int offset = 0; while (grey_objects != 0) { int trailing_zeros = CompilerIntrinsics::CountTrailingZeros(grey_objects); grey_objects >>= trailing_zeros; offset += trailing_zeros; MarkBit markbit(&cells[cell_index], 1 << offset, false); ASSERT(Marking::IsGrey(markbit)); Marking::GreyToBlack(markbit); Address addr = cell_base + offset * kPointerSize; HeapObject* object = HeapObject::FromAddress(addr); MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size()); marking_deque->PushBlack(object); if (marking_deque->IsFull()) return; offset += 2; grey_objects >>= 2; } grey_objects >>= (Bitmap::kBitsPerCell - 1); } } static void DiscoverGreyObjectsInSpace(Heap* heap, MarkingDeque* marking_deque, PagedSpace* space) { if (!space->was_swept_conservatively()) { HeapObjectIterator it(space); DiscoverGreyObjectsWithIterator(heap, marking_deque, &it); } else { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); DiscoverGreyObjectsOnPage(marking_deque, p); if (marking_deque->IsFull()) return; } } } bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) { Object* o = *p; if (!o->IsHeapObject()) return false; HeapObject* heap_object = HeapObject::cast(o); MarkBit mark = Marking::MarkBitFrom(heap_object); return !mark.Get(); } void MarkCompactCollector::MarkSymbolTable() { SymbolTable* symbol_table = heap()->symbol_table(); // Mark the symbol table itself. MarkBit symbol_table_mark = Marking::MarkBitFrom(symbol_table); SetMark(symbol_table, symbol_table_mark); // Explicitly mark the prefix. MarkingVisitor marker(heap()); symbol_table->IteratePrefix(&marker); ProcessMarkingDeque(); } void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) { // Mark the heap roots including global variables, stack variables, // etc., and all objects reachable from them. heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG); // Handle the symbol table specially. MarkSymbolTable(); // There may be overflowed objects in the heap. Visit them now. while (marking_deque_.overflowed()) { RefillMarkingDeque(); EmptyMarkingDeque(); } } void MarkCompactCollector::MarkObjectGroups() { List* object_groups = heap()->isolate()->global_handles()->object_groups(); int last = 0; for (int i = 0; i < object_groups->length(); i++) { ObjectGroup* entry = object_groups->at(i); ASSERT(entry != NULL); Object*** objects = entry->objects_; bool group_marked = false; for (size_t j = 0; j < entry->length_; j++) { Object* object = *objects[j]; if (object->IsHeapObject()) { HeapObject* heap_object = HeapObject::cast(object); MarkBit mark = Marking::MarkBitFrom(heap_object); if (mark.Get()) { group_marked = true; break; } } } if (!group_marked) { (*object_groups)[last++] = entry; continue; } // An object in the group is marked, so mark as grey all white heap // objects in the group. for (size_t j = 0; j < entry->length_; ++j) { Object* object = *objects[j]; if (object->IsHeapObject()) { HeapObject* heap_object = HeapObject::cast(object); MarkBit mark = Marking::MarkBitFrom(heap_object); MarkObject(heap_object, mark); } } // Once the entire group has been colored grey, set the object group // to NULL so it won't be processed again. entry->Dispose(); object_groups->at(i) = NULL; } object_groups->Rewind(last); } void MarkCompactCollector::MarkImplicitRefGroups() { List* ref_groups = heap()->isolate()->global_handles()->implicit_ref_groups(); int last = 0; for (int i = 0; i < ref_groups->length(); i++) { ImplicitRefGroup* entry = ref_groups->at(i); ASSERT(entry != NULL); if (!IsMarked(*entry->parent_)) { (*ref_groups)[last++] = entry; continue; } Object*** children = entry->children_; // A parent object is marked, so mark all child heap objects. for (size_t j = 0; j < entry->length_; ++j) { if ((*children[j])->IsHeapObject()) { HeapObject* child = HeapObject::cast(*children[j]); MarkBit mark = Marking::MarkBitFrom(child); MarkObject(child, mark); } } // Once the entire group has been marked, dispose it because it's // not needed anymore. entry->Dispose(); } ref_groups->Rewind(last); } // Mark all objects reachable from the objects on the marking stack. // Before: the marking stack contains zero or more heap object pointers. // After: the marking stack is empty, and all objects reachable from the // marking stack have been marked, or are overflowed in the heap. void MarkCompactCollector::EmptyMarkingDeque() { while (!marking_deque_.IsEmpty()) { while (!marking_deque_.IsEmpty()) { HeapObject* object = marking_deque_.Pop(); ASSERT(object->IsHeapObject()); ASSERT(heap()->Contains(object)); ASSERT(Marking::IsBlack(Marking::MarkBitFrom(object))); Map* map = object->map(); MarkBit map_mark = Marking::MarkBitFrom(map); MarkObject(map, map_mark); StaticMarkingVisitor::IterateBody(map, object); } // Process encountered weak maps, mark objects only reachable by those // weak maps and repeat until fix-point is reached. ProcessWeakMaps(); } } // Sweep the heap for overflowed objects, clear their overflow bits, and // push them on the marking stack. Stop early if the marking stack fills // before sweeping completes. If sweeping completes, there are no remaining // overflowed objects in the heap so the overflow flag on the markings stack // is cleared. void MarkCompactCollector::RefillMarkingDeque() { ASSERT(marking_deque_.overflowed()); SemiSpaceIterator new_it(heap()->new_space()); DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &new_it); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->old_pointer_space()); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->old_data_space()); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->code_space()); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->map_space()); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->cell_space()); if (marking_deque_.IsFull()) return; LargeObjectIterator lo_it(heap()->lo_space()); DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &lo_it); if (marking_deque_.IsFull()) return; marking_deque_.ClearOverflowed(); } // Mark all objects reachable (transitively) from objects on the marking // stack. Before: the marking stack contains zero or more heap object // pointers. After: the marking stack is empty and there are no overflowed // objects in the heap. void MarkCompactCollector::ProcessMarkingDeque() { EmptyMarkingDeque(); while (marking_deque_.overflowed()) { RefillMarkingDeque(); EmptyMarkingDeque(); } } void MarkCompactCollector::ProcessExternalMarking() { bool work_to_do = true; ASSERT(marking_deque_.IsEmpty()); while (work_to_do) { MarkObjectGroups(); MarkImplicitRefGroups(); work_to_do = !marking_deque_.IsEmpty(); ProcessMarkingDeque(); } } void MarkCompactCollector::MarkLiveObjects() { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_MARK); // The recursive GC marker detects when it is nearing stack overflow, // and switches to a different marking system. JS interrupts interfere // with the C stack limit check. PostponeInterruptsScope postpone(heap()->isolate()); bool incremental_marking_overflowed = false; IncrementalMarking* incremental_marking = heap_->incremental_marking(); if (was_marked_incrementally_) { // Finalize the incremental marking and check whether we had an overflow. // Both markers use grey color to mark overflowed objects so // non-incremental marker can deal with them as if overflow // occured during normal marking. // But incremental marker uses a separate marking deque // so we have to explicitly copy it's overflow state. incremental_marking->Finalize(); incremental_marking_overflowed = incremental_marking->marking_deque()->overflowed(); incremental_marking->marking_deque()->ClearOverflowed(); } else { // Abort any pending incremental activities e.g. incremental sweeping. incremental_marking->Abort(); } #ifdef DEBUG ASSERT(state_ == PREPARE_GC); state_ = MARK_LIVE_OBJECTS; #endif // The to space contains live objects, a page in from space is used as a // marking stack. Address marking_deque_start = heap()->new_space()->FromSpacePageLow(); Address marking_deque_end = heap()->new_space()->FromSpacePageHigh(); if (FLAG_force_marking_deque_overflows) { marking_deque_end = marking_deque_start + 64 * kPointerSize; } marking_deque_.Initialize(marking_deque_start, marking_deque_end); ASSERT(!marking_deque_.overflowed()); if (incremental_marking_overflowed) { // There are overflowed objects left in the heap after incremental marking. marking_deque_.SetOverflowed(); } PrepareForCodeFlushing(); if (was_marked_incrementally_) { // There is no write barrier on cells so we have to scan them now at the end // of the incremental marking. { HeapObjectIterator cell_iterator(heap()->cell_space()); HeapObject* cell; while ((cell = cell_iterator.Next()) != NULL) { ASSERT(cell->IsJSGlobalPropertyCell()); if (IsMarked(cell)) { int offset = JSGlobalPropertyCell::kValueOffset; StaticMarkingVisitor::VisitPointer( heap(), reinterpret_cast(cell->address() + offset)); } } } } RootMarkingVisitor root_visitor(heap()); MarkRoots(&root_visitor); // The objects reachable from the roots are marked, yet unreachable // objects are unmarked. Mark objects reachable due to host // application specific logic. ProcessExternalMarking(); // The objects reachable from the roots or object groups are marked, // yet unreachable objects are unmarked. Mark objects reachable // only from weak global handles. // // First we identify nonlive weak handles and mark them as pending // destruction. heap()->isolate()->global_handles()->IdentifyWeakHandles( &IsUnmarkedHeapObject); // Then we mark the objects and process the transitive closure. heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor); while (marking_deque_.overflowed()) { RefillMarkingDeque(); EmptyMarkingDeque(); } // Repeat host application specific marking to mark unmarked objects // reachable from the weak roots. ProcessExternalMarking(); AfterMarking(); } void MarkCompactCollector::AfterMarking() { // Object literal map caches reference symbols (cache keys) and maps // (cache values). At this point still useful maps have already been // marked. Mark the keys for the alive values before we process the // symbol table. ProcessMapCaches(); // Prune the symbol table removing all symbols only pointed to by the // symbol table. Cannot use symbol_table() here because the symbol // table is marked. SymbolTable* symbol_table = heap()->symbol_table(); SymbolTableCleaner v(heap()); symbol_table->IterateElements(&v); symbol_table->ElementsRemoved(v.PointersRemoved()); heap()->external_string_table_.Iterate(&v); heap()->external_string_table_.CleanUp(); // Process the weak references. MarkCompactWeakObjectRetainer mark_compact_object_retainer; heap()->ProcessWeakReferences(&mark_compact_object_retainer); // Remove object groups after marking phase. heap()->isolate()->global_handles()->RemoveObjectGroups(); heap()->isolate()->global_handles()->RemoveImplicitRefGroups(); // Flush code from collected candidates. if (is_code_flushing_enabled()) { code_flusher_->ProcessCandidates(); } if (!FLAG_watch_ic_patching) { // Clean up dead objects from the runtime profiler. heap()->isolate()->runtime_profiler()->RemoveDeadSamples(); } } void MarkCompactCollector::ProcessMapCaches() { Object* raw_context = heap()->global_contexts_list_; while (raw_context != heap()->undefined_value()) { Context* context = reinterpret_cast(raw_context); if (IsMarked(context)) { HeapObject* raw_map_cache = HeapObject::cast(context->get(Context::MAP_CACHE_INDEX)); // A map cache may be reachable from the stack. In this case // it's already transitively marked and it's too late to clean // up its parts. if (!IsMarked(raw_map_cache) && raw_map_cache != heap()->undefined_value()) { MapCache* map_cache = reinterpret_cast(raw_map_cache); int existing_elements = map_cache->NumberOfElements(); int used_elements = 0; for (int i = MapCache::kElementsStartIndex; i < map_cache->length(); i += MapCache::kEntrySize) { Object* raw_key = map_cache->get(i); if (raw_key == heap()->undefined_value() || raw_key == heap()->the_hole_value()) continue; STATIC_ASSERT(MapCache::kEntrySize == 2); Object* raw_map = map_cache->get(i + 1); if (raw_map->IsHeapObject() && IsMarked(raw_map)) { ++used_elements; } else { // Delete useless entries with unmarked maps. ASSERT(raw_map->IsMap()); map_cache->set_the_hole(i); map_cache->set_the_hole(i + 1); } } if (used_elements == 0) { context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value()); } else { // Note: we don't actually shrink the cache here to avoid // extra complexity during GC. We rely on subsequent cache // usages (EnsureCapacity) to do this. map_cache->ElementsRemoved(existing_elements - used_elements); MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache); MarkObject(map_cache, map_cache_markbit); } } } // Move to next element in the list. raw_context = context->get(Context::NEXT_CONTEXT_LINK); } ProcessMarkingDeque(); } void MarkCompactCollector::ReattachInitialMaps() { HeapObjectIterator map_iterator(heap()->map_space()); for (HeapObject* obj = map_iterator.Next(); obj != NULL; obj = map_iterator.Next()) { if (obj->IsFreeSpace()) continue; Map* map = Map::cast(obj); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); if (map->instance_type() < FIRST_JS_RECEIVER_TYPE) continue; if (map->attached_to_shared_function_info()) { JSFunction::cast(map->constructor())->shared()->AttachInitialMap(map); } } } void MarkCompactCollector::ClearNonLiveTransitions() { HeapObjectIterator map_iterator(heap()->map_space()); // Iterate over the map space, setting map transitions that go from // a marked map to an unmarked map to null transitions. At the same time, // set all the prototype fields of maps back to their original value, // dropping the back pointers temporarily stored in the prototype field. // Setting the prototype field requires following the linked list of // back pointers, reversing them all at once. This allows us to find // those maps with map transitions that need to be nulled, and only // scan the descriptor arrays of those maps, not all maps. // All of these actions are carried out only on maps of JSObjects // and related subtypes. for (HeapObject* obj = map_iterator.Next(); obj != NULL; obj = map_iterator.Next()) { Map* map = reinterpret_cast(obj); MarkBit map_mark = Marking::MarkBitFrom(map); if (map->IsFreeSpace()) continue; ASSERT(map->IsMap()); // Only JSObject and subtypes have map transitions and back pointers. STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE); if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue; if (map_mark.Get() && map->attached_to_shared_function_info()) { // This map is used for inobject slack tracking and has been detached // from SharedFunctionInfo during the mark phase. // Since it survived the GC, reattach it now. map->unchecked_constructor()->unchecked_shared()->AttachInitialMap(map); } ClearNonLivePrototypeTransitions(map); ClearNonLiveMapTransitions(map, map_mark); } } void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) { int number_of_transitions = map->NumberOfProtoTransitions(); FixedArray* prototype_transitions = map->prototype_transitions(); int new_number_of_transitions = 0; const int header = Map::kProtoTransitionHeaderSize; const int proto_offset = header + Map::kProtoTransitionPrototypeOffset; const int map_offset = header + Map::kProtoTransitionMapOffset; const int step = Map::kProtoTransitionElementsPerEntry; for (int i = 0; i < number_of_transitions; i++) { Object* prototype = prototype_transitions->get(proto_offset + i * step); Object* cached_map = prototype_transitions->get(map_offset + i * step); if (IsMarked(prototype) && IsMarked(cached_map)) { int proto_index = proto_offset + new_number_of_transitions * step; int map_index = map_offset + new_number_of_transitions * step; if (new_number_of_transitions != i) { prototype_transitions->set_unchecked( heap_, proto_index, prototype, UPDATE_WRITE_BARRIER); prototype_transitions->set_unchecked( heap_, map_index, cached_map, SKIP_WRITE_BARRIER); } Object** slot = HeapObject::RawField(prototype_transitions, FixedArray::OffsetOfElementAt(proto_index)); RecordSlot(slot, slot, prototype); new_number_of_transitions++; } } if (new_number_of_transitions != number_of_transitions) { map->SetNumberOfProtoTransitions(new_number_of_transitions); } // Fill slots that became free with undefined value. for (int i = new_number_of_transitions * step; i < number_of_transitions * step; i++) { prototype_transitions->set_undefined(heap_, header + i); } } void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map, MarkBit map_mark) { // Follow the chain of back pointers to find the prototype. Object* real_prototype = map; while (real_prototype->IsMap()) { real_prototype = Map::cast(real_prototype)->prototype(); ASSERT(real_prototype->IsHeapObject()); } // Follow back pointers, setting them to prototype, clearing map transitions // when necessary. Map* current = map; bool current_is_alive = map_mark.Get(); bool on_dead_path = !current_is_alive; while (current->IsMap()) { Object* next = current->prototype(); // There should never be a dead map above a live map. ASSERT(on_dead_path || current_is_alive); // A live map above a dead map indicates a dead transition. This test will // always be false on the first iteration. if (on_dead_path && current_is_alive) { on_dead_path = false; current->ClearNonLiveTransitions(heap(), real_prototype); } Object** slot = HeapObject::RawField(current, Map::kPrototypeOffset); *slot = real_prototype; if (current_is_alive) RecordSlot(slot, slot, real_prototype); current = reinterpret_cast(next); current_is_alive = Marking::MarkBitFrom(current).Get(); } } void MarkCompactCollector::ProcessWeakMaps() { Object* weak_map_obj = encountered_weak_maps(); while (weak_map_obj != Smi::FromInt(0)) { ASSERT(MarkCompactCollector::IsMarked(HeapObject::cast(weak_map_obj))); JSWeakMap* weak_map = reinterpret_cast(weak_map_obj); ObjectHashTable* table = ObjectHashTable::cast(weak_map->table()); Object** anchor = reinterpret_cast(table->address()); for (int i = 0; i < table->Capacity(); i++) { if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) { Object** key_slot = HeapObject::RawField(table, FixedArray::OffsetOfElementAt( ObjectHashTable::EntryToIndex(i))); RecordSlot(anchor, key_slot, *key_slot); Object** value_slot = HeapObject::RawField(table, FixedArray::OffsetOfElementAt( ObjectHashTable::EntryToValueIndex(i))); StaticMarkingVisitor::MarkObjectByPointer(this, anchor, value_slot); } } weak_map_obj = weak_map->next(); } } void MarkCompactCollector::ClearWeakMaps() { Object* weak_map_obj = encountered_weak_maps(); while (weak_map_obj != Smi::FromInt(0)) { ASSERT(MarkCompactCollector::IsMarked(HeapObject::cast(weak_map_obj))); JSWeakMap* weak_map = reinterpret_cast(weak_map_obj); ObjectHashTable* table = ObjectHashTable::cast(weak_map->table()); for (int i = 0; i < table->Capacity(); i++) { if (!MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) { table->RemoveEntry(i); } } weak_map_obj = weak_map->next(); weak_map->set_next(Smi::FromInt(0)); } set_encountered_weak_maps(Smi::FromInt(0)); } // We scavange new space simultaneously with sweeping. This is done in two // passes. // // The first pass migrates all alive objects from one semispace to another or // promotes them to old space. Forwarding address is written directly into // first word of object without any encoding. If object is dead we write // NULL as a forwarding address. // // The second pass updates pointers to new space in all spaces. It is possible // to encounter pointers to dead new space objects during traversal of pointers // to new space. We should clear them to avoid encountering them during next // pointer iteration. This is an issue if the store buffer overflows and we // have to scan the entire old space, including dead objects, looking for // pointers to new space. void MarkCompactCollector::MigrateObject(Address dst, Address src, int size, AllocationSpace dest) { HEAP_PROFILE(heap(), ObjectMoveEvent(src, dst)); if (dest == OLD_POINTER_SPACE || dest == LO_SPACE) { Address src_slot = src; Address dst_slot = dst; ASSERT(IsAligned(size, kPointerSize)); for (int remaining = size / kPointerSize; remaining > 0; remaining--) { Object* value = Memory::Object_at(src_slot); Memory::Object_at(dst_slot) = value; if (heap_->InNewSpace(value)) { heap_->store_buffer()->Mark(dst_slot); } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) { SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_, reinterpret_cast(dst_slot), SlotsBuffer::IGNORE_OVERFLOW); } src_slot += kPointerSize; dst_slot += kPointerSize; } if (compacting_ && HeapObject::FromAddress(dst)->IsJSFunction()) { Address code_entry_slot = dst + JSFunction::kCodeEntryOffset; Address code_entry = Memory::Address_at(code_entry_slot); if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) { SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_, SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot, SlotsBuffer::IGNORE_OVERFLOW); } } } else if (dest == CODE_SPACE) { PROFILE(heap()->isolate(), CodeMoveEvent(src, dst)); heap()->MoveBlock(dst, src, size); SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_, SlotsBuffer::RELOCATED_CODE_OBJECT, dst, SlotsBuffer::IGNORE_OVERFLOW); Code::cast(HeapObject::FromAddress(dst))->Relocate(dst - src); } else { ASSERT(dest == OLD_DATA_SPACE || dest == NEW_SPACE); heap()->MoveBlock(dst, src, size); } Memory::Address_at(src) = dst; } // Visitor for updating pointers from live objects in old spaces to new space. // It does not expect to encounter pointers to dead objects. class PointersUpdatingVisitor: public ObjectVisitor { public: explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) { } void VisitPointer(Object** p) { UpdatePointer(p); } void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) UpdatePointer(p); } void VisitEmbeddedPointer(RelocInfo* rinfo) { ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); Object* target = rinfo->target_object(); VisitPointer(&target); rinfo->set_target_object(target); } void VisitCodeTarget(RelocInfo* rinfo) { ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); VisitPointer(&target); rinfo->set_target_address(Code::cast(target)->instruction_start()); } void VisitDebugTarget(RelocInfo* rinfo) { ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) && rinfo->IsPatchedReturnSequence()) || (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence())); Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address()); VisitPointer(&target); rinfo->set_call_address(Code::cast(target)->instruction_start()); } static inline void UpdateSlot(Heap* heap, Object** slot) { Object* obj = *slot; if (!obj->IsHeapObject()) return; HeapObject* heap_obj = HeapObject::cast(obj); MapWord map_word = heap_obj->map_word(); if (map_word.IsForwardingAddress()) { ASSERT(heap->InFromSpace(heap_obj) || MarkCompactCollector::IsOnEvacuationCandidate(heap_obj)); HeapObject* target = map_word.ToForwardingAddress(); *slot = target; ASSERT(!heap->InFromSpace(target) && !MarkCompactCollector::IsOnEvacuationCandidate(target)); } } private: inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); } Heap* heap_; }; static void UpdatePointer(HeapObject** p, HeapObject* object) { ASSERT(*p == object); Address old_addr = object->address(); Address new_addr = Memory::Address_at(old_addr); // The new space sweep will overwrite the map word of dead objects // with NULL. In this case we do not need to transfer this entry to // the store buffer which we are rebuilding. if (new_addr != NULL) { *p = HeapObject::FromAddress(new_addr); } else { // We have to zap this pointer, because the store buffer may overflow later, // and then we have to scan the entire heap and we don't want to find // spurious newspace pointers in the old space. *p = reinterpret_cast(Smi::FromInt(0)); } } static String* UpdateReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord map_word = HeapObject::cast(*p)->map_word(); if (map_word.IsForwardingAddress()) { return String::cast(map_word.ToForwardingAddress()); } return String::cast(*p); } bool MarkCompactCollector::TryPromoteObject(HeapObject* object, int object_size) { Object* result; if (object_size > Page::kMaxNonCodeHeapObjectSize) { MaybeObject* maybe_result = heap()->lo_space()->AllocateRaw(object_size, NOT_EXECUTABLE); if (maybe_result->ToObject(&result)) { HeapObject* target = HeapObject::cast(result); MigrateObject(target->address(), object->address(), object_size, LO_SPACE); heap()->mark_compact_collector()->tracer()-> increment_promoted_objects_size(object_size); return true; } } else { OldSpace* target_space = heap()->TargetSpace(object); ASSERT(target_space == heap()->old_pointer_space() || target_space == heap()->old_data_space()); MaybeObject* maybe_result = target_space->AllocateRaw(object_size); if (maybe_result->ToObject(&result)) { HeapObject* target = HeapObject::cast(result); MigrateObject(target->address(), object->address(), object_size, target_space->identity()); heap()->mark_compact_collector()->tracer()-> increment_promoted_objects_size(object_size); return true; } } return false; } void MarkCompactCollector::EvacuateNewSpace() { // There are soft limits in the allocation code, designed trigger a mark // sweep collection by failing allocations. But since we are already in // a mark-sweep allocation, there is no sense in trying to trigger one. AlwaysAllocateScope scope; heap()->CheckNewSpaceExpansionCriteria(); NewSpace* new_space = heap()->new_space(); // Store allocation range before flipping semispaces. Address from_bottom = new_space->bottom(); Address from_top = new_space->top(); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space->Flip(); new_space->ResetAllocationInfo(); int survivors_size = 0; // First pass: traverse all objects in inactive semispace, remove marks, // migrate live objects and write forwarding addresses. This stage puts // new entries in the store buffer and may cause some pages to be marked // scan-on-scavenge. SemiSpaceIterator from_it(from_bottom, from_top); for (HeapObject* object = from_it.Next(); object != NULL; object = from_it.Next()) { MarkBit mark_bit = Marking::MarkBitFrom(object); if (mark_bit.Get()) { mark_bit.Clear(); // Don't bother decrementing live bytes count. We'll discard the // entire page at the end. int size = object->Size(); survivors_size += size; // Aggressively promote young survivors to the old space. if (TryPromoteObject(object, size)) { continue; } // Promotion failed. Just migrate object to another semispace. MaybeObject* allocation = new_space->AllocateRaw(size); if (allocation->IsFailure()) { if (!new_space->AddFreshPage()) { // Shouldn't happen. We are sweeping linearly, and to-space // has the same number of pages as from-space, so there is // always room. UNREACHABLE(); } allocation = new_space->AllocateRaw(size); ASSERT(!allocation->IsFailure()); } Object* target = allocation->ToObjectUnchecked(); MigrateObject(HeapObject::cast(target)->address(), object->address(), size, NEW_SPACE); } else { // Process the dead object before we write a NULL into its header. LiveObjectList::ProcessNonLive(object); // Mark dead objects in the new space with null in their map field. Memory::Address_at(object->address()) = NULL; } } heap_->IncrementYoungSurvivorsCounter(survivors_size); new_space->set_age_mark(new_space->top()); } void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) { AlwaysAllocateScope always_allocate; PagedSpace* space = static_cast(p->owner()); ASSERT(p->IsEvacuationCandidate() && !p->WasSwept()); MarkBit::CellType* cells = p->markbits()->cells(); p->MarkSweptPrecisely(); int last_cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(p->area_end()))); Address cell_base = p->area_start(); int cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(cell_base))); int offsets[16]; for (; cell_index < last_cell_index; cell_index++, cell_base += 32 * kPointerSize) { ASSERT((unsigned)cell_index == Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(cell_base)))); if (cells[cell_index] == 0) continue; int live_objects = MarkWordToObjectStarts(cells[cell_index], offsets); for (int i = 0; i < live_objects; i++) { Address object_addr = cell_base + offsets[i] * kPointerSize; HeapObject* object = HeapObject::FromAddress(object_addr); ASSERT(Marking::IsBlack(Marking::MarkBitFrom(object))); int size = object->Size(); MaybeObject* target = space->AllocateRaw(size); if (target->IsFailure()) { // OS refused to give us memory. V8::FatalProcessOutOfMemory("Evacuation"); return; } Object* target_object = target->ToObjectUnchecked(); MigrateObject(HeapObject::cast(target_object)->address(), object_addr, size, space->identity()); ASSERT(object->map_word().IsForwardingAddress()); } // Clear marking bits for current cell. cells[cell_index] = 0; } p->ResetLiveBytes(); } void MarkCompactCollector::EvacuatePages() { int npages = evacuation_candidates_.length(); for (int i = 0; i < npages; i++) { Page* p = evacuation_candidates_[i]; ASSERT(p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)); if (p->IsEvacuationCandidate()) { // During compaction we might have to request a new page. // Check that space still have room for that. if (static_cast(p->owner())->CanExpand()) { EvacuateLiveObjectsFromPage(p); } else { // Without room for expansion evacuation is not guaranteed to succeed. // Pessimistically abandon unevacuated pages. for (int j = i; j < npages; j++) { Page* page = evacuation_candidates_[j]; slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address()); page->ClearEvacuationCandidate(); page->SetFlag(Page::RESCAN_ON_EVACUATION); } return; } } } } class EvacuationWeakObjectRetainer : public WeakObjectRetainer { public: virtual Object* RetainAs(Object* object) { if (object->IsHeapObject()) { HeapObject* heap_object = HeapObject::cast(object); MapWord map_word = heap_object->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } } return object; } }; static inline void UpdateSlot(ObjectVisitor* v, SlotsBuffer::SlotType slot_type, Address addr) { switch (slot_type) { case SlotsBuffer::CODE_TARGET_SLOT: { RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL); rinfo.Visit(v); break; } case SlotsBuffer::CODE_ENTRY_SLOT: { v->VisitCodeEntry(addr); break; } case SlotsBuffer::RELOCATED_CODE_OBJECT: { HeapObject* obj = HeapObject::FromAddress(addr); Code::cast(obj)->CodeIterateBody(v); break; } case SlotsBuffer::DEBUG_TARGET_SLOT: { RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL); if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(v); break; } case SlotsBuffer::JS_RETURN_SLOT: { RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL); if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(v); break; } case SlotsBuffer::EMBEDDED_OBJECT_SLOT: { RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL); rinfo.Visit(v); break; } default: UNREACHABLE(); break; } } enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS }; enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST }; // Sweep a space precisely. After this has been done the space can // be iterated precisely, hitting only the live objects. Code space // is always swept precisely because we want to be able to iterate // over it. Map space is swept precisely, because it is not compacted. // Slots in live objects pointing into evacuation candidates are updated // if requested. template static void SweepPrecisely(PagedSpace* space, Page* p, ObjectVisitor* v) { ASSERT(!p->IsEvacuationCandidate() && !p->WasSwept()); ASSERT_EQ(skip_list_mode == REBUILD_SKIP_LIST, space->identity() == CODE_SPACE); ASSERT((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST)); MarkBit::CellType* cells = p->markbits()->cells(); p->MarkSweptPrecisely(); int last_cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(p->area_end()))); Address free_start = p->area_start(); int cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(free_start))); ASSERT(reinterpret_cast(free_start) % (32 * kPointerSize) == 0); Address object_address = free_start; int offsets[16]; SkipList* skip_list = p->skip_list(); int curr_region = -1; if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) { skip_list->Clear(); } for (; cell_index < last_cell_index; cell_index++, object_address += 32 * kPointerSize) { ASSERT((unsigned)cell_index == Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(object_address)))); int live_objects = MarkWordToObjectStarts(cells[cell_index], offsets); int live_index = 0; for ( ; live_objects != 0; live_objects--) { Address free_end = object_address + offsets[live_index++] * kPointerSize; if (free_end != free_start) { space->Free(free_start, static_cast(free_end - free_start)); } HeapObject* live_object = HeapObject::FromAddress(free_end); ASSERT(Marking::IsBlack(Marking::MarkBitFrom(live_object))); Map* map = live_object->map(); int size = live_object->SizeFromMap(map); if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) { live_object->IterateBody(map->instance_type(), size, v); } if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) { int new_region_start = SkipList::RegionNumber(free_end); int new_region_end = SkipList::RegionNumber(free_end + size - kPointerSize); if (new_region_start != curr_region || new_region_end != curr_region) { skip_list->AddObject(free_end, size); curr_region = new_region_end; } } free_start = free_end + size; } // Clear marking bits for current cell. cells[cell_index] = 0; } if (free_start != p->area_end()) { space->Free(free_start, static_cast(p->area_end() - free_start)); } p->ResetLiveBytes(); } static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) { Page* p = Page::FromAddress(code->address()); if (p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) { return false; } Address code_start = code->address(); Address code_end = code_start + code->Size(); uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start); uint32_t end_index = MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize); Bitmap* b = p->markbits(); MarkBit start_mark_bit = b->MarkBitFromIndex(start_index); MarkBit end_mark_bit = b->MarkBitFromIndex(end_index); MarkBit::CellType* start_cell = start_mark_bit.cell(); MarkBit::CellType* end_cell = end_mark_bit.cell(); if (value) { MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1); MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1; if (start_cell == end_cell) { *start_cell |= start_mask & end_mask; } else { *start_cell |= start_mask; for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) { *cell = ~0; } *end_cell |= end_mask; } } else { for (MarkBit::CellType* cell = start_cell ; cell <= end_cell; cell++) { *cell = 0; } } return true; } static bool IsOnInvalidatedCodeObject(Address addr) { // We did not record any slots in large objects thus // we can safely go to the page from the slot address. Page* p = Page::FromAddress(addr); // First check owner's identity because old pointer and old data spaces // are swept lazily and might still have non-zero mark-bits on some // pages. if (p->owner()->identity() != CODE_SPACE) return false; // In code space only bits on evacuation candidates (but we don't record // any slots on them) and under invalidated code objects are non-zero. MarkBit mark_bit = p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr)); return mark_bit.Get(); } void MarkCompactCollector::InvalidateCode(Code* code) { if (heap_->incremental_marking()->IsCompacting() && !ShouldSkipEvacuationSlotRecording(code)) { ASSERT(compacting_); // If the object is white than no slots were recorded on it yet. MarkBit mark_bit = Marking::MarkBitFrom(code); if (Marking::IsWhite(mark_bit)) return; invalidated_code_.Add(code); } } bool MarkCompactCollector::MarkInvalidatedCode() { bool code_marked = false; int length = invalidated_code_.length(); for (int i = 0; i < length; i++) { Code* code = invalidated_code_[i]; if (SetMarkBitsUnderInvalidatedCode(code, true)) { code_marked = true; } } return code_marked; } void MarkCompactCollector::RemoveDeadInvalidatedCode() { int length = invalidated_code_.length(); for (int i = 0; i < length; i++) { if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL; } } void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) { int length = invalidated_code_.length(); for (int i = 0; i < length; i++) { Code* code = invalidated_code_[i]; if (code != NULL) { code->Iterate(visitor); SetMarkBitsUnderInvalidatedCode(code, false); } } invalidated_code_.Rewind(0); } void MarkCompactCollector::EvacuateNewSpaceAndCandidates() { bool code_slots_filtering_required; { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP_NEWSPACE); code_slots_filtering_required = MarkInvalidatedCode(); EvacuateNewSpace(); } { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_EVACUATE_PAGES); EvacuatePages(); } // Second pass: find pointers to new space and update them. PointersUpdatingVisitor updating_visitor(heap()); { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS); // Update pointers in to space. SemiSpaceIterator to_it(heap()->new_space()->bottom(), heap()->new_space()->top()); for (HeapObject* object = to_it.Next(); object != NULL; object = to_it.Next()) { Map* map = object->map(); object->IterateBody(map->instance_type(), object->SizeFromMap(map), &updating_visitor); } } { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS); // Update roots. heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE); LiveObjectList::IterateElements(&updating_visitor); } { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS); StoreBufferRebuildScope scope(heap_, heap_->store_buffer(), &Heap::ScavengeStoreBufferCallback); heap_->store_buffer()->IteratePointersToNewSpace(&UpdatePointer); } { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED); SlotsBuffer::UpdateSlotsRecordedIn(heap_, migration_slots_buffer_, code_slots_filtering_required); if (FLAG_trace_fragmentation) { PrintF(" migration slots buffer: %d\n", SlotsBuffer::SizeOfChain(migration_slots_buffer_)); } if (compacting_ && was_marked_incrementally_) { // It's difficult to filter out slots recorded for large objects. LargeObjectIterator it(heap_->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { // LargeObjectSpace is not swept yet thus we have to skip // dead objects explicitly. if (!IsMarked(obj)) continue; Page* p = Page::FromAddress(obj->address()); if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) { obj->Iterate(&updating_visitor); p->ClearFlag(Page::RESCAN_ON_EVACUATION); } } } } int npages = evacuation_candidates_.length(); { GCTracer::Scope gc_scope( tracer_, GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED); for (int i = 0; i < npages; i++) { Page* p = evacuation_candidates_[i]; ASSERT(p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)); if (p->IsEvacuationCandidate()) { SlotsBuffer::UpdateSlotsRecordedIn(heap_, p->slots_buffer(), code_slots_filtering_required); if (FLAG_trace_fragmentation) { PrintF(" page %p slots buffer: %d\n", reinterpret_cast(p), SlotsBuffer::SizeOfChain(p->slots_buffer())); } // Important: skip list should be cleared only after roots were updated // because root iteration traverses the stack and might have to find // code objects from non-updated pc pointing into evacuation candidate. SkipList* list = p->skip_list(); if (list != NULL) list->Clear(); } else { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n", reinterpret_cast(p)); } PagedSpace* space = static_cast(p->owner()); p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION); switch (space->identity()) { case OLD_DATA_SPACE: SweepConservatively(space, p); break; case OLD_POINTER_SPACE: SweepPrecisely( space, p, &updating_visitor); break; case CODE_SPACE: SweepPrecisely( space, p, &updating_visitor); break; default: UNREACHABLE(); break; } } } } GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_MISC_POINTERS); // Update pointers from cells. HeapObjectIterator cell_iterator(heap_->cell_space()); for (HeapObject* cell = cell_iterator.Next(); cell != NULL; cell = cell_iterator.Next()) { if (cell->IsJSGlobalPropertyCell()) { Address value_address = reinterpret_cast
(cell) + (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag); updating_visitor.VisitPointer(reinterpret_cast(value_address)); } } // Update pointer from the global contexts list. updating_visitor.VisitPointer(heap_->global_contexts_list_address()); heap_->symbol_table()->Iterate(&updating_visitor); // Update pointers from external string table. heap_->UpdateReferencesInExternalStringTable( &UpdateReferenceInExternalStringTableEntry); if (!FLAG_watch_ic_patching) { // Update JSFunction pointers from the runtime profiler. heap()->isolate()->runtime_profiler()->UpdateSamplesAfterCompact( &updating_visitor); } EvacuationWeakObjectRetainer evacuation_object_retainer; heap()->ProcessWeakReferences(&evacuation_object_retainer); // Visit invalidated code (we ignored all slots on it) and clear mark-bits // under it. ProcessInvalidatedCode(&updating_visitor); heap_->isolate()->inner_pointer_to_code_cache()->Flush(); #ifdef DEBUG if (FLAG_verify_heap) { VerifyEvacuation(heap_); } #endif slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_); ASSERT(migration_slots_buffer_ == NULL); for (int i = 0; i < npages; i++) { Page* p = evacuation_candidates_[i]; if (!p->IsEvacuationCandidate()) continue; PagedSpace* space = static_cast(p->owner()); space->Free(p->area_start(), p->area_size()); p->set_scan_on_scavenge(false); slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address()); p->ResetLiveBytes(); space->ReleasePage(p); } evacuation_candidates_.Rewind(0); compacting_ = false; } static const int kStartTableEntriesPerLine = 5; static const int kStartTableLines = 171; static const int kStartTableInvalidLine = 127; static const int kStartTableUnusedEntry = 126; #define _ kStartTableUnusedEntry #define X kStartTableInvalidLine // Mark-bit to object start offset table. // // The line is indexed by the mark bits in a byte. The first number on // the line describes the number of live object starts for the line and the // other numbers on the line describe the offsets (in words) of the object // starts. // // Since objects are at least 2 words large we don't have entries for two // consecutive 1 bits. All entries after 170 have at least 2 consecutive bits. char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = { 0, _, _, _, _, // 0 1, 0, _, _, _, // 1 1, 1, _, _, _, // 2 X, _, _, _, _, // 3 1, 2, _, _, _, // 4 2, 0, 2, _, _, // 5 X, _, _, _, _, // 6 X, _, _, _, _, // 7 1, 3, _, _, _, // 8 2, 0, 3, _, _, // 9 2, 1, 3, _, _, // 10 X, _, _, _, _, // 11 X, _, _, _, _, // 12 X, _, _, _, _, // 13 X, _, _, _, _, // 14 X, _, _, _, _, // 15 1, 4, _, _, _, // 16 2, 0, 4, _, _, // 17 2, 1, 4, _, _, // 18 X, _, _, _, _, // 19 2, 2, 4, _, _, // 20 3, 0, 2, 4, _, // 21 X, _, _, _, _, // 22 X, _, _, _, _, // 23 X, _, _, _, _, // 24 X, _, _, _, _, // 25 X, _, _, _, _, // 26 X, _, _, _, _, // 27 X, _, _, _, _, // 28 X, _, _, _, _, // 29 X, _, _, _, _, // 30 X, _, _, _, _, // 31 1, 5, _, _, _, // 32 2, 0, 5, _, _, // 33 2, 1, 5, _, _, // 34 X, _, _, _, _, // 35 2, 2, 5, _, _, // 36 3, 0, 2, 5, _, // 37 X, _, _, _, _, // 38 X, _, _, _, _, // 39 2, 3, 5, _, _, // 40 3, 0, 3, 5, _, // 41 3, 1, 3, 5, _, // 42 X, _, _, _, _, // 43 X, _, _, _, _, // 44 X, _, _, _, _, // 45 X, _, _, _, _, // 46 X, _, _, _, _, // 47 X, _, _, _, _, // 48 X, _, _, _, _, // 49 X, _, _, _, _, // 50 X, _, _, _, _, // 51 X, _, _, _, _, // 52 X, _, _, _, _, // 53 X, _, _, _, _, // 54 X, _, _, _, _, // 55 X, _, _, _, _, // 56 X, _, _, _, _, // 57 X, _, _, _, _, // 58 X, _, _, _, _, // 59 X, _, _, _, _, // 60 X, _, _, _, _, // 61 X, _, _, _, _, // 62 X, _, _, _, _, // 63 1, 6, _, _, _, // 64 2, 0, 6, _, _, // 65 2, 1, 6, _, _, // 66 X, _, _, _, _, // 67 2, 2, 6, _, _, // 68 3, 0, 2, 6, _, // 69 X, _, _, _, _, // 70 X, _, _, _, _, // 71 2, 3, 6, _, _, // 72 3, 0, 3, 6, _, // 73 3, 1, 3, 6, _, // 74 X, _, _, _, _, // 75 X, _, _, _, _, // 76 X, _, _, _, _, // 77 X, _, _, _, _, // 78 X, _, _, _, _, // 79 2, 4, 6, _, _, // 80 3, 0, 4, 6, _, // 81 3, 1, 4, 6, _, // 82 X, _, _, _, _, // 83 3, 2, 4, 6, _, // 84 4, 0, 2, 4, 6, // 85 X, _, _, _, _, // 86 X, _, _, _, _, // 87 X, _, _, _, _, // 88 X, _, _, _, _, // 89 X, _, _, _, _, // 90 X, _, _, _, _, // 91 X, _, _, _, _, // 92 X, _, _, _, _, // 93 X, _, _, _, _, // 94 X, _, _, _, _, // 95 X, _, _, _, _, // 96 X, _, _, _, _, // 97 X, _, _, _, _, // 98 X, _, _, _, _, // 99 X, _, _, _, _, // 100 X, _, _, _, _, // 101 X, _, _, _, _, // 102 X, _, _, _, _, // 103 X, _, _, _, _, // 104 X, _, _, _, _, // 105 X, _, _, _, _, // 106 X, _, _, _, _, // 107 X, _, _, _, _, // 108 X, _, _, _, _, // 109 X, _, _, _, _, // 110 X, _, _, _, _, // 111 X, _, _, _, _, // 112 X, _, _, _, _, // 113 X, _, _, _, _, // 114 X, _, _, _, _, // 115 X, _, _, _, _, // 116 X, _, _, _, _, // 117 X, _, _, _, _, // 118 X, _, _, _, _, // 119 X, _, _, _, _, // 120 X, _, _, _, _, // 121 X, _, _, _, _, // 122 X, _, _, _, _, // 123 X, _, _, _, _, // 124 X, _, _, _, _, // 125 X, _, _, _, _, // 126 X, _, _, _, _, // 127 1, 7, _, _, _, // 128 2, 0, 7, _, _, // 129 2, 1, 7, _, _, // 130 X, _, _, _, _, // 131 2, 2, 7, _, _, // 132 3, 0, 2, 7, _, // 133 X, _, _, _, _, // 134 X, _, _, _, _, // 135 2, 3, 7, _, _, // 136 3, 0, 3, 7, _, // 137 3, 1, 3, 7, _, // 138 X, _, _, _, _, // 139 X, _, _, _, _, // 140 X, _, _, _, _, // 141 X, _, _, _, _, // 142 X, _, _, _, _, // 143 2, 4, 7, _, _, // 144 3, 0, 4, 7, _, // 145 3, 1, 4, 7, _, // 146 X, _, _, _, _, // 147 3, 2, 4, 7, _, // 148 4, 0, 2, 4, 7, // 149 X, _, _, _, _, // 150 X, _, _, _, _, // 151 X, _, _, _, _, // 152 X, _, _, _, _, // 153 X, _, _, _, _, // 154 X, _, _, _, _, // 155 X, _, _, _, _, // 156 X, _, _, _, _, // 157 X, _, _, _, _, // 158 X, _, _, _, _, // 159 2, 5, 7, _, _, // 160 3, 0, 5, 7, _, // 161 3, 1, 5, 7, _, // 162 X, _, _, _, _, // 163 3, 2, 5, 7, _, // 164 4, 0, 2, 5, 7, // 165 X, _, _, _, _, // 166 X, _, _, _, _, // 167 3, 3, 5, 7, _, // 168 4, 0, 3, 5, 7, // 169 4, 1, 3, 5, 7 // 170 }; #undef _ #undef X // Takes a word of mark bits. Returns the number of objects that start in the // range. Puts the offsets of the words in the supplied array. static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) { int objects = 0; int offset = 0; // No consecutive 1 bits. ASSERT((mark_bits & 0x180) != 0x180); ASSERT((mark_bits & 0x18000) != 0x18000); ASSERT((mark_bits & 0x1800000) != 0x1800000); while (mark_bits != 0) { int byte = (mark_bits & 0xff); mark_bits >>= 8; if (byte != 0) { ASSERT(byte < kStartTableLines); // No consecutive 1 bits. char* table = kStartTable + byte * kStartTableEntriesPerLine; int objects_in_these_8_words = table[0]; ASSERT(objects_in_these_8_words != kStartTableInvalidLine); ASSERT(objects_in_these_8_words < kStartTableEntriesPerLine); for (int i = 0; i < objects_in_these_8_words; i++) { starts[objects++] = offset + table[1 + i]; } } offset += 8; } return objects; } static inline Address DigestFreeStart(Address approximate_free_start, uint32_t free_start_cell) { ASSERT(free_start_cell != 0); // No consecutive 1 bits. ASSERT((free_start_cell & (free_start_cell << 1)) == 0); int offsets[16]; uint32_t cell = free_start_cell; int offset_of_last_live; if ((cell & 0x80000000u) != 0) { // This case would overflow below. offset_of_last_live = 31; } else { // Remove all but one bit, the most significant. This is an optimization // that may or may not be worthwhile. cell |= cell >> 16; cell |= cell >> 8; cell |= cell >> 4; cell |= cell >> 2; cell |= cell >> 1; cell = (cell + 1) >> 1; int live_objects = MarkWordToObjectStarts(cell, offsets); ASSERT(live_objects == 1); offset_of_last_live = offsets[live_objects - 1]; } Address last_live_start = approximate_free_start + offset_of_last_live * kPointerSize; HeapObject* last_live = HeapObject::FromAddress(last_live_start); Address free_start = last_live_start + last_live->Size(); return free_start; } static inline Address StartOfLiveObject(Address block_address, uint32_t cell) { ASSERT(cell != 0); // No consecutive 1 bits. ASSERT((cell & (cell << 1)) == 0); int offsets[16]; if (cell == 0x80000000u) { // Avoid overflow below. return block_address + 31 * kPointerSize; } uint32_t first_set_bit = ((cell ^ (cell - 1)) + 1) >> 1; ASSERT((first_set_bit & cell) == first_set_bit); int live_objects = MarkWordToObjectStarts(first_set_bit, offsets); ASSERT(live_objects == 1); USE(live_objects); return block_address + offsets[0] * kPointerSize; } // Sweeps a space conservatively. After this has been done the larger free // spaces have been put on the free list and the smaller ones have been // ignored and left untouched. A free space is always either ignored or put // on the free list, never split up into two parts. This is important // because it means that any FreeSpace maps left actually describe a region of // memory that can be ignored when scanning. Dead objects other than free // spaces will not contain the free space map. intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space, Page* p) { ASSERT(!p->IsEvacuationCandidate() && !p->WasSwept()); MarkBit::CellType* cells = p->markbits()->cells(); p->MarkSweptConservatively(); int last_cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(p->area_end()))); int cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(p->area_start()))); intptr_t freed_bytes = 0; // This is the start of the 32 word block that we are currently looking at. Address block_address = p->area_start(); // Skip over all the dead objects at the start of the page and mark them free. for (; cell_index < last_cell_index; cell_index++, block_address += 32 * kPointerSize) { if (cells[cell_index] != 0) break; } size_t size = block_address - p->area_start(); if (cell_index == last_cell_index) { freed_bytes += static_cast(space->Free(p->area_start(), static_cast(size))); ASSERT_EQ(0, p->LiveBytes()); return freed_bytes; } // Grow the size of the start-of-page free space a little to get up to the // first live object. Address free_end = StartOfLiveObject(block_address, cells[cell_index]); // Free the first free space. size = free_end - p->area_start(); freed_bytes += space->Free(p->area_start(), static_cast(size)); // The start of the current free area is represented in undigested form by // the address of the last 32-word section that contained a live object and // the marking bitmap for that cell, which describes where the live object // started. Unless we find a large free space in the bitmap we will not // digest this pair into a real address. We start the iteration here at the // first word in the marking bit map that indicates a live object. Address free_start = block_address; uint32_t free_start_cell = cells[cell_index]; for ( ; cell_index < last_cell_index; cell_index++, block_address += 32 * kPointerSize) { ASSERT((unsigned)cell_index == Bitmap::IndexToCell( Bitmap::CellAlignIndex( p->AddressToMarkbitIndex(block_address)))); uint32_t cell = cells[cell_index]; if (cell != 0) { // We have a live object. Check approximately whether it is more than 32 // words since the last live object. if (block_address - free_start > 32 * kPointerSize) { free_start = DigestFreeStart(free_start, free_start_cell); if (block_address - free_start > 32 * kPointerSize) { // Now that we know the exact start of the free space it still looks // like we have a large enough free space to be worth bothering with. // so now we need to find the start of the first live object at the // end of the free space. free_end = StartOfLiveObject(block_address, cell); freed_bytes += space->Free(free_start, static_cast(free_end - free_start)); } } // Update our undigested record of where the current free area started. free_start = block_address; free_start_cell = cell; // Clear marking bits for current cell. cells[cell_index] = 0; } } // Handle the free space at the end of the page. if (block_address - free_start > 32 * kPointerSize) { free_start = DigestFreeStart(free_start, free_start_cell); freed_bytes += space->Free(free_start, static_cast(block_address - free_start)); } p->ResetLiveBytes(); return freed_bytes; } void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) { space->set_was_swept_conservatively(sweeper == CONSERVATIVE || sweeper == LAZY_CONSERVATIVE); space->ClearStats(); PageIterator it(space); intptr_t freed_bytes = 0; int pages_swept = 0; intptr_t newspace_size = space->heap()->new_space()->Size(); bool lazy_sweeping_active = false; bool unused_page_present = false; intptr_t old_space_size = heap()->PromotedSpaceSize(); intptr_t space_left = Min(heap()->OldGenPromotionLimit(old_space_size), heap()->OldGenAllocationLimit(old_space_size)) - old_space_size; while (it.has_next()) { Page* p = it.next(); // Clear sweeping flags indicating that marking bits are still intact. p->ClearSweptPrecisely(); p->ClearSweptConservatively(); if (p->IsEvacuationCandidate()) { ASSERT(evacuation_candidates_.length() > 0); continue; } if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) { // Will be processed in EvacuateNewSpaceAndCandidates. continue; } // One unused page is kept, all further are released before sweeping them. if (p->LiveBytes() == 0) { if (unused_page_present) { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n", reinterpret_cast(p)); } // Adjust unswept free bytes because releasing a page expects said // counter to be accurate for unswept pages. space->IncreaseUnsweptFreeBytes(p); space->ReleasePage(p); continue; } unused_page_present = true; } if (lazy_sweeping_active) { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " lazily postponed.\n", reinterpret_cast(p)); } space->IncreaseUnsweptFreeBytes(p); continue; } switch (sweeper) { case CONSERVATIVE: { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " conservatively.\n", reinterpret_cast(p)); } SweepConservatively(space, p); pages_swept++; break; } case LAZY_CONSERVATIVE: { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " conservatively as needed.\n", reinterpret_cast(p)); } freed_bytes += SweepConservatively(space, p); pages_swept++; if (space_left + freed_bytes > newspace_size) { space->SetPagesToSweep(p->next_page()); lazy_sweeping_active = true; } else { if (FLAG_gc_verbose) { PrintF("Only %" V8PRIdPTR " bytes freed. Still sweeping.\n", freed_bytes); } } break; } case PRECISE: { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " precisely.\n", reinterpret_cast(p)); } if (space->identity() == CODE_SPACE) { SweepPrecisely(space, p, NULL); } else { SweepPrecisely(space, p, NULL); } pages_swept++; break; } default: { UNREACHABLE(); } } } if (FLAG_gc_verbose) { PrintF("SweepSpace: %s (%d pages swept)\n", AllocationSpaceName(space->identity()), pages_swept); } // Give pages that are queued to be freed back to the OS. heap()->FreeQueuedChunks(); } void MarkCompactCollector::SweepSpaces() { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP); #ifdef DEBUG state_ = SWEEP_SPACES; #endif SweeperType how_to_sweep = FLAG_lazy_sweeping ? LAZY_CONSERVATIVE : CONSERVATIVE; if (FLAG_expose_gc) how_to_sweep = CONSERVATIVE; if (sweep_precisely_) how_to_sweep = PRECISE; // Noncompacting collections simply sweep the spaces to clear the mark // bits and free the nonlive blocks (for old and map spaces). We sweep // the map space last because freeing non-live maps overwrites them and // the other spaces rely on possibly non-live maps to get the sizes for // non-live objects. SweepSpace(heap()->old_pointer_space(), how_to_sweep); SweepSpace(heap()->old_data_space(), how_to_sweep); RemoveDeadInvalidatedCode(); SweepSpace(heap()->code_space(), PRECISE); SweepSpace(heap()->cell_space(), PRECISE); EvacuateNewSpaceAndCandidates(); // ClearNonLiveTransitions depends on precise sweeping of map space to // detect whether unmarked map became dead in this collection or in one // of the previous ones. SweepSpace(heap()->map_space(), PRECISE); // Deallocate unmarked objects and clear marked bits for marked objects. heap_->lo_space()->FreeUnmarkedObjects(); } void MarkCompactCollector::EnableCodeFlushing(bool enable) { if (enable) { if (code_flusher_ != NULL) return; code_flusher_ = new CodeFlusher(heap()->isolate()); } else { if (code_flusher_ == NULL) return; delete code_flusher_; code_flusher_ = NULL; } } // TODO(1466) ReportDeleteIfNeeded is not called currently. // Our profiling tools do not expect intersections between // code objects. We should either reenable it or change our tools. void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate) { #ifdef ENABLE_GDB_JIT_INTERFACE if (obj->IsCode()) { GDBJITInterface::RemoveCode(reinterpret_cast(obj)); } #endif if (obj->IsCode()) { PROFILE(isolate, CodeDeleteEvent(obj->address())); } } void MarkCompactCollector::Initialize() { StaticMarkingVisitor::Initialize(); } bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) { return reinterpret_cast(slot) < NUMBER_OF_SLOT_TYPES; } bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator, SlotsBuffer** buffer_address, SlotType type, Address addr, AdditionMode mode) { SlotsBuffer* buffer = *buffer_address; if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) { if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) { allocator->DeallocateChain(buffer_address); return false; } buffer = allocator->AllocateBuffer(buffer); *buffer_address = buffer; } ASSERT(buffer->HasSpaceForTypedSlot()); buffer->Add(reinterpret_cast(type)); buffer->Add(reinterpret_cast(addr)); return true; } static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) { if (RelocInfo::IsCodeTarget(rmode)) { return SlotsBuffer::CODE_TARGET_SLOT; } else if (RelocInfo::IsEmbeddedObject(rmode)) { return SlotsBuffer::EMBEDDED_OBJECT_SLOT; } else if (RelocInfo::IsDebugBreakSlot(rmode)) { return SlotsBuffer::DEBUG_TARGET_SLOT; } else if (RelocInfo::IsJSReturn(rmode)) { return SlotsBuffer::JS_RETURN_SLOT; } UNREACHABLE(); return SlotsBuffer::NUMBER_OF_SLOT_TYPES; } void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) { Page* target_page = Page::FromAddress(reinterpret_cast
(target)); if (target_page->IsEvacuationCandidate() && (rinfo->host() == NULL || !ShouldSkipEvacuationSlotRecording(rinfo->host()))) { if (!SlotsBuffer::AddTo(&slots_buffer_allocator_, target_page->slots_buffer_address(), SlotTypeForRMode(rinfo->rmode()), rinfo->pc(), SlotsBuffer::FAIL_ON_OVERFLOW)) { EvictEvacuationCandidate(target_page); } } } void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) { Page* target_page = Page::FromAddress(reinterpret_cast
(target)); if (target_page->IsEvacuationCandidate() && !ShouldSkipEvacuationSlotRecording(reinterpret_cast(slot))) { if (!SlotsBuffer::AddTo(&slots_buffer_allocator_, target_page->slots_buffer_address(), SlotsBuffer::CODE_ENTRY_SLOT, slot, SlotsBuffer::FAIL_ON_OVERFLOW)) { EvictEvacuationCandidate(target_page); } } } static inline SlotsBuffer::SlotType DecodeSlotType( SlotsBuffer::ObjectSlot slot) { return static_cast(reinterpret_cast(slot)); } void SlotsBuffer::UpdateSlots(Heap* heap) { PointersUpdatingVisitor v(heap); for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) { ObjectSlot slot = slots_[slot_idx]; if (!IsTypedSlot(slot)) { PointersUpdatingVisitor::UpdateSlot(heap, slot); } else { ++slot_idx; ASSERT(slot_idx < idx_); UpdateSlot(&v, DecodeSlotType(slot), reinterpret_cast
(slots_[slot_idx])); } } } void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) { PointersUpdatingVisitor v(heap); for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) { ObjectSlot slot = slots_[slot_idx]; if (!IsTypedSlot(slot)) { if (!IsOnInvalidatedCodeObject(reinterpret_cast
(slot))) { PointersUpdatingVisitor::UpdateSlot(heap, slot); } } else { ++slot_idx; ASSERT(slot_idx < idx_); Address pc = reinterpret_cast
(slots_[slot_idx]); if (!IsOnInvalidatedCodeObject(pc)) { UpdateSlot(&v, DecodeSlotType(slot), reinterpret_cast
(slots_[slot_idx])); } } } } SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) { return new SlotsBuffer(next_buffer); } void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) { delete buffer; } void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) { SlotsBuffer* buffer = *buffer_address; while (buffer != NULL) { SlotsBuffer* next_buffer = buffer->next(); DeallocateBuffer(buffer); buffer = next_buffer; } *buffer_address = NULL; } } } // namespace v8::internal