// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "jump-target-inl.h" #include "register-allocator-inl.h" namespace v8 { namespace internal { void JumpTarget::Jump(Result* arg) { ASSERT(cgen()->has_valid_frame()); cgen()->frame()->Push(arg); DoJump(); } void JumpTarget::Branch(Condition cc, Result* arg, Hint hint) { ASSERT(cgen()->has_valid_frame()); // We want to check that non-frame registers at the call site stay in // the same registers on the fall-through branch. #ifdef DEBUG Result::Type arg_type = arg->type(); Register arg_reg = arg->is_register() ? arg->reg() : no_reg; #endif cgen()->frame()->Push(arg); DoBranch(cc, hint); *arg = cgen()->frame()->Pop(); ASSERT(arg->type() == arg_type); ASSERT(!arg->is_register() || arg->reg().is(arg_reg)); } void JumpTarget::Branch(Condition cc, Result* arg0, Result* arg1, Hint hint) { ASSERT(cgen()->has_valid_frame()); // We want to check that non-frame registers at the call site stay in // the same registers on the fall-through branch. #ifdef DEBUG Result::Type arg0_type = arg0->type(); Register arg0_reg = arg0->is_register() ? arg0->reg() : no_reg; Result::Type arg1_type = arg1->type(); Register arg1_reg = arg1->is_register() ? arg1->reg() : no_reg; #endif cgen()->frame()->Push(arg0); cgen()->frame()->Push(arg1); DoBranch(cc, hint); *arg1 = cgen()->frame()->Pop(); *arg0 = cgen()->frame()->Pop(); ASSERT(arg0->type() == arg0_type); ASSERT(!arg0->is_register() || arg0->reg().is(arg0_reg)); ASSERT(arg1->type() == arg1_type); ASSERT(!arg1->is_register() || arg1->reg().is(arg1_reg)); } void BreakTarget::Branch(Condition cc, Result* arg, Hint hint) { ASSERT(cgen()->has_valid_frame()); int count = cgen()->frame()->height() - expected_height_; if (count > 0) { // We negate and branch here rather than using DoBranch's negate // and branch. This gives us a hook to remove statement state // from the frame. JumpTarget fall_through; // Branch to fall through will not negate, because it is a // forward-only target. fall_through.Branch(NegateCondition(cc), NegateHint(hint)); Jump(arg); // May emit merge code here. fall_through.Bind(); } else { #ifdef DEBUG Result::Type arg_type = arg->type(); Register arg_reg = arg->is_register() ? arg->reg() : no_reg; #endif cgen()->frame()->Push(arg); DoBranch(cc, hint); *arg = cgen()->frame()->Pop(); ASSERT(arg->type() == arg_type); ASSERT(!arg->is_register() || arg->reg().is(arg_reg)); } } void JumpTarget::Bind(Result* arg) { if (cgen()->has_valid_frame()) { cgen()->frame()->Push(arg); } DoBind(); *arg = cgen()->frame()->Pop(); } void JumpTarget::Bind(Result* arg0, Result* arg1) { if (cgen()->has_valid_frame()) { cgen()->frame()->Push(arg0); cgen()->frame()->Push(arg1); } DoBind(); *arg1 = cgen()->frame()->Pop(); *arg0 = cgen()->frame()->Pop(); } void JumpTarget::ComputeEntryFrame() { // Given: a collection of frames reaching by forward CFG edges and // the directionality of the block. Compute: an entry frame for the // block. Counters::compute_entry_frame.Increment(); #ifdef DEBUG if (compiling_deferred_code_) { ASSERT(reaching_frames_.length() > 1); VirtualFrame* frame = reaching_frames_[0]; bool all_identical = true; for (int i = 1; i < reaching_frames_.length(); i++) { if (!frame->Equals(reaching_frames_[i])) { all_identical = false; break; } } ASSERT(!all_identical || all_identical); } #endif // Choose an initial frame. VirtualFrame* initial_frame = reaching_frames_[0]; // A list of pointers to frame elements in the entry frame. NULL // indicates that the element has not yet been determined. int length = initial_frame->element_count(); ZoneList elements(length); // Initially populate the list of elements based on the initial // frame. for (int i = 0; i < length; i++) { FrameElement element = initial_frame->elements_[i]; // We do not allow copies or constants in bidirectional frames. if (direction_ == BIDIRECTIONAL) { if (element.is_constant() || element.is_copy()) { elements.Add(NULL); continue; } } elements.Add(&initial_frame->elements_[i]); } // Compute elements based on the other reaching frames. if (reaching_frames_.length() > 1) { for (int i = 0; i < length; i++) { FrameElement* element = elements[i]; for (int j = 1; j < reaching_frames_.length(); j++) { // Element computation is monotonic: new information will not // change our decision about undetermined or invalid elements. if (element == NULL || !element->is_valid()) break; FrameElement* other = &reaching_frames_[j]->elements_[i]; element = element->Combine(other); if (element != NULL && !element->is_copy()) { ASSERT(other != NULL); // We overwrite the number information of one of the incoming frames. // This is safe because we only use the frame for emitting merge code. // The number information of incoming frames is not used anymore. element->set_type_info(TypeInfo::Combine(element->type_info(), other->type_info())); } } elements[i] = element; } } // Build the new frame. A freshly allocated frame has memory elements // for the parameters and some platform-dependent elements (e.g., // return address). Replace those first. entry_frame_ = new VirtualFrame(); int index = 0; for (; index < entry_frame_->element_count(); index++) { FrameElement* target = elements[index]; // If the element is determined, set it now. Count registers. Mark // elements as copied exactly when they have a copy. Undetermined // elements are initially recorded as if in memory. if (target != NULL) { entry_frame_->elements_[index] = *target; InitializeEntryElement(index, target); } } // Then fill in the rest of the frame with new elements. for (; index < length; index++) { FrameElement* target = elements[index]; if (target == NULL) { entry_frame_->elements_.Add( FrameElement::MemoryElement(TypeInfo::Uninitialized())); } else { entry_frame_->elements_.Add(*target); InitializeEntryElement(index, target); } } // Allocate any still-undetermined frame elements to registers or // memory, from the top down. for (int i = length - 1; i >= 0; i--) { if (elements[i] == NULL) { // Loop over all the reaching frames to check whether the element // is synced on all frames and to count the registers it occupies. bool is_synced = true; RegisterFile candidate_registers; int best_count = kMinInt; int best_reg_num = RegisterAllocator::kInvalidRegister; TypeInfo info = TypeInfo::Uninitialized(); for (int j = 0; j < reaching_frames_.length(); j++) { FrameElement element = reaching_frames_[j]->elements_[i]; if (direction_ == BIDIRECTIONAL) { info = TypeInfo::Unknown(); } else if (!element.is_copy()) { info = TypeInfo::Combine(info, element.type_info()); } else { // New elements will not be copies, so get number information from // backing element in the reaching frame. info = TypeInfo::Combine(info, reaching_frames_[j]->elements_[element.index()].type_info()); } is_synced = is_synced && element.is_synced(); if (element.is_register() && !entry_frame_->is_used(element.reg())) { // Count the register occurrence and remember it if better // than the previous best. int num = RegisterAllocator::ToNumber(element.reg()); candidate_registers.Use(num); if (candidate_registers.count(num) > best_count) { best_count = candidate_registers.count(num); best_reg_num = num; } } } // We must have a number type information now (not for copied elements). ASSERT(entry_frame_->elements_[i].is_copy() || !info.IsUninitialized()); // If the value is synced on all frames, put it in memory. This // costs nothing at the merge code but will incur a // memory-to-register move when the value is needed later. if (is_synced) { // Already recorded as a memory element. // Set combined number info. entry_frame_->elements_[i].set_type_info(info); continue; } // Try to put it in a register. If there was no best choice // consider any free register. if (best_reg_num == RegisterAllocator::kInvalidRegister) { for (int j = 0; j < RegisterAllocator::kNumRegisters; j++) { if (!entry_frame_->is_used(j)) { best_reg_num = j; break; } } } if (best_reg_num != RegisterAllocator::kInvalidRegister) { // If there was a register choice, use it. Preserve the copied // flag on the element. bool is_copied = entry_frame_->elements_[i].is_copied(); Register reg = RegisterAllocator::ToRegister(best_reg_num); entry_frame_->elements_[i] = FrameElement::RegisterElement(reg, FrameElement::NOT_SYNCED, TypeInfo::Uninitialized()); if (is_copied) entry_frame_->elements_[i].set_copied(); entry_frame_->set_register_location(reg, i); } // Set combined number info. entry_frame_->elements_[i].set_type_info(info); } } // If we have incoming backward edges assert we forget all number information. #ifdef DEBUG if (direction_ == BIDIRECTIONAL) { for (int i = 0; i < length; ++i) { if (!entry_frame_->elements_[i].is_copy()) { ASSERT(entry_frame_->elements_[i].type_info().IsUnknown()); } } } #endif // The stack pointer is at the highest synced element or the base of // the expression stack. int stack_pointer = length - 1; while (stack_pointer >= entry_frame_->expression_base_index() && !entry_frame_->elements_[stack_pointer].is_synced()) { stack_pointer--; } entry_frame_->stack_pointer_ = stack_pointer; } DeferredCode::DeferredCode() : masm_(CodeGeneratorScope::Current()->masm()), statement_position_(masm_->current_statement_position()), position_(masm_->current_position()) { ASSERT(statement_position_ != RelocInfo::kNoPosition); ASSERT(position_ != RelocInfo::kNoPosition); CodeGeneratorScope::Current()->AddDeferred(this); #ifdef DEBUG comment_ = ""; #endif // Copy the register locations from the code generator's frame. // These are the registers that will be spilled on entry to the // deferred code and restored on exit. VirtualFrame* frame = CodeGeneratorScope::Current()->frame(); int sp_offset = frame->fp_relative(frame->stack_pointer_); for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int loc = frame->register_location(i); if (loc == VirtualFrame::kIllegalIndex) { registers_[i] = kIgnore; } else if (frame->elements_[loc].is_synced()) { // Needs to be restored on exit but not saved on entry. registers_[i] = frame->fp_relative(loc) | kSyncedFlag; } else { int offset = frame->fp_relative(loc); registers_[i] = (offset < sp_offset) ? kPush : offset; } } } } } // namespace v8::internal