// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_DOUBLE_H_ #define V8_DOUBLE_H_ #include "diy-fp.h" namespace v8 { namespace internal { // We assume that doubles and uint64_t have the same endianness. static uint64_t double_to_uint64(double d) { return BitCast(d); } static double uint64_to_double(uint64_t d64) { return BitCast(d64); } // Helper functions for doubles. class Double { public: static const uint64_t kSignMask = V8_2PART_UINT64_C(0x80000000, 00000000); static const uint64_t kExponentMask = V8_2PART_UINT64_C(0x7FF00000, 00000000); static const uint64_t kSignificandMask = V8_2PART_UINT64_C(0x000FFFFF, FFFFFFFF); static const uint64_t kHiddenBit = V8_2PART_UINT64_C(0x00100000, 00000000); Double() : d64_(0) {} explicit Double(double d) : d64_(double_to_uint64(d)) {} explicit Double(uint64_t d64) : d64_(d64) {} DiyFp AsDiyFp() const { ASSERT(!IsSpecial()); return DiyFp(Significand(), Exponent()); } // this->Significand() must not be 0. DiyFp AsNormalizedDiyFp() const { uint64_t f = Significand(); int e = Exponent(); ASSERT(f != 0); // The current double could be a denormal. while ((f & kHiddenBit) == 0) { f <<= 1; e--; } // Do the final shifts in one go. Don't forget the hidden bit (the '-1'). f <<= DiyFp::kSignificandSize - kSignificandSize - 1; e -= DiyFp::kSignificandSize - kSignificandSize - 1; return DiyFp(f, e); } // Returns the double's bit as uint64. uint64_t AsUint64() const { return d64_; } int Exponent() const { if (IsDenormal()) return kDenormalExponent; uint64_t d64 = AsUint64(); int biased_e = static_cast((d64 & kExponentMask) >> kSignificandSize); return biased_e - kExponentBias; } uint64_t Significand() const { uint64_t d64 = AsUint64(); uint64_t significand = d64 & kSignificandMask; if (!IsDenormal()) { return significand + kHiddenBit; } else { return significand; } } // Returns true if the double is a denormal. bool IsDenormal() const { uint64_t d64 = AsUint64(); return (d64 & kExponentMask) == 0; } // We consider denormals not to be special. // Hence only Infinity and NaN are special. bool IsSpecial() const { uint64_t d64 = AsUint64(); return (d64 & kExponentMask) == kExponentMask; } bool IsNan() const { uint64_t d64 = AsUint64(); return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) != 0); } bool IsInfinite() const { uint64_t d64 = AsUint64(); return ((d64 & kExponentMask) == kExponentMask) && ((d64 & kSignificandMask) == 0); } int Sign() const { uint64_t d64 = AsUint64(); return (d64 & kSignMask) == 0? 1: -1; } // Returns the two boundaries of this. // The bigger boundary (m_plus) is normalized. The lower boundary has the same // exponent as m_plus. void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { DiyFp v = this->AsDiyFp(); bool significand_is_zero = (v.f() == kHiddenBit); DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); DiyFp m_minus; if (significand_is_zero && v.e() != kDenormalExponent) { // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but // at a distance of 1e8. // The only exception is for the smallest normal: the largest denormal is // at the same distance as its successor. // Note: denormals have the same exponent as the smallest normals. m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); } else { m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); } m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); m_minus.set_e(m_plus.e()); *out_m_plus = m_plus; *out_m_minus = m_minus; } double value() const { return uint64_to_double(d64_); } private: static const int kSignificandSize = 52; // Excludes the hidden bit. static const int kExponentBias = 0x3FF + kSignificandSize; static const int kDenormalExponent = -kExponentBias + 1; uint64_t d64_; }; } } // namespace v8::internal #endif // V8_DOUBLE_H_