summaryrefslogtreecommitdiff
path: root/deps/v8/third_party/fdlibm/fdlibm.js
blob: 08c6f5e7207112ac80c5f420f98990e56b7468b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
//
// ====================================================
// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunSoft, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
//
// The following is a straightforward translation of fdlibm routines
// by Raymond Toy (rtoy@google.com).

// Double constants that do not have empty lower 32 bits are found in fdlibm.cc
// and exposed through kMath as typed array. We assume the compiler to convert
// from decimal to binary accurately enough to produce the intended values.
// kMath is initialized to a Float64Array during genesis and not writable.
var kMath;

const INVPIO2 = kMath[0];
const PIO2_1  = kMath[1];
const PIO2_1T = kMath[2];
const PIO2_2  = kMath[3];
const PIO2_2T = kMath[4];
const PIO2_3  = kMath[5];
const PIO2_3T = kMath[6];
const PIO4    = kMath[32];
const PIO4LO  = kMath[33];

// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
// precision, r is returned as two values y0 and y1 such that r = y0 + y1
// to more than double precision.
macro REMPIO2(X)
  var n, y0, y1;
  var hx = %_DoubleHi(X);
  var ix = hx & 0x7fffffff;

  if (ix < 0x4002d97c) {
    // |X| ~< 3*pi/4, special case with n = +/- 1
    if (hx > 0) {
      var z = X - PIO2_1;
      if (ix != 0x3ff921fb) {
        // 33+53 bit pi is good enough
        y0 = z - PIO2_1T;
        y1 = (z - y0) - PIO2_1T;
      } else {
        // near pi/2, use 33+33+53 bit pi
        z -= PIO2_2;
        y0 = z - PIO2_2T;
        y1 = (z - y0) - PIO2_2T;
      }
      n = 1;
    } else {
      // Negative X
      var z = X + PIO2_1;
      if (ix != 0x3ff921fb) {
        // 33+53 bit pi is good enough
        y0 = z + PIO2_1T;
        y1 = (z - y0) + PIO2_1T;
      } else {
        // near pi/2, use 33+33+53 bit pi
        z += PIO2_2;
        y0 = z + PIO2_2T;
        y1 = (z - y0) + PIO2_2T;
      }
      n = -1;
    }
  } else if (ix <= 0x413921fb) {
    // |X| ~<= 2^19*(pi/2), medium size
    var t = MathAbs(X);
    n = (t * INVPIO2 + 0.5) | 0;
    var r = t - n * PIO2_1;
    var w = n * PIO2_1T;
    // First round good to 85 bit
    y0 = r - w;
    if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
      // 2nd iteration needed, good to 118
      t = r;
      w = n * PIO2_2;
      r = t - w;
      w = n * PIO2_2T - ((t - r) - w);
      y0 = r - w;
      if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
        // 3rd iteration needed. 151 bits accuracy
        t = r;
        w = n * PIO2_3;
        r = t - w;
        w = n * PIO2_3T - ((t - r) - w);
        y0 = r - w;
      }
    }
    y1 = (r - y0) - w;
    if (hx < 0) {
      n = -n;
      y0 = -y0;
      y1 = -y1;
    }
  } else {
    // Need to do full Payne-Hanek reduction here.
    var r = %RemPiO2(X);
    n = r[0];
    y0 = r[1];
    y1 = r[2];
  }
endmacro


// __kernel_sin(X, Y, IY)
// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
// Input X is assumed to be bounded by ~pi/4 in magnitude.
// Input Y is the tail of X so that x = X + Y.
//
// Algorithm
//  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
//  2. ieee_sin(x) is approximated by a polynomial of degree 13 on
//     [0,pi/4]
//                           3            13
//          sin(x) ~ x + S1*x + ... + S6*x
//     where
//
//    |ieee_sin(x)    2     4     6     8     10     12  |     -58
//    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
//    |  x                                               |
//
//  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
//              ~ ieee_sin(X) + (1-X*X/2)*Y
//     For better accuracy, let
//               3      2      2      2      2
//          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
//     then                   3    2
//          sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
//
macro KSIN(x)
kMath[7+x]
endmacro

macro RETURN_KERNELSIN(X, Y, SIGN)
  var z = X * X;
  var v = z * X;
  var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
                    z * (KSIN(4) + z * KSIN(5))));
  return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
endmacro

// __kernel_cos(X, Y)
// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
// Input X is assumed to be bounded by ~pi/4 in magnitude.
// Input Y is the tail of X so that x = X + Y.
//
// Algorithm
//  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
//  2. ieee_cos(x) is approximated by a polynomial of degree 14 on
//     [0,pi/4]
//                                   4            14
//          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
//     where the remez error is
//
//  |                   2     4     6     8     10    12     14 |     -58
//  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
//  |                                                           |
//
//                 4     6     8     10    12     14
//  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
//         ieee_cos(x) = 1 - x*x/2 + r
//     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
//                    ~ ieee_cos(X) - X*Y,
//     a correction term is necessary in ieee_cos(x) and hence
//         cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
//     For better accuracy when x > 0.3, let qx = |x|/4 with
//     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
//     Then
//         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
//     Note that 1-qx and (X*X/2-qx) is EXACT here, and the
//     magnitude of the latter is at least a quarter of X*X/2,
//     thus, reducing the rounding error in the subtraction.
//
macro KCOS(x)
kMath[13+x]
endmacro

macro RETURN_KERNELCOS(X, Y, SIGN)
  var ix = %_DoubleHi(X) & 0x7fffffff;
  var z = X * X;
  var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
          z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
  if (ix < 0x3fd33333) {  // |x| ~< 0.3
    return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
  } else {
    var qx;
    if (ix > 0x3fe90000) {  // |x| > 0.78125
      qx = 0.28125;
    } else {
      qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
    }
    var hz = 0.5 * z - qx;
    return (1 - qx - (hz - (z * r - X * Y))) SIGN;
  }
endmacro


// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
// Input x is assumed to be bounded by ~pi/4 in magnitude.
// Input y is the tail of x.
// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
// is returned.
//
// Algorithm
//  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
//  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
//  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
//     [0,0.67434]
//                           3             27
//          tan(x) ~ x + T1*x + ... + T13*x
//     where
//
//     |ieee_tan(x)    2     4            26   |     -59.2
//     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
//     |  x                                    |
//
//     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
//                    ~ ieee_tan(x) + (1+x*x)*y
//     Therefore, for better accuracy in computing ieee_tan(x+y), let
//               3      2      2       2       2
//          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
//     then
//                              3    2
//          tan(x+y) = x + (T1*x + (x *(r+y)+y))
//
//  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
//          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
//                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
//
// Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal
// and will cause incorrect results.
//
macro KTAN(x)
kMath[19+x]
endmacro

function KernelTan(x, y, returnTan) {
  var z;
  var w;
  var hx = %_DoubleHi(x);
  var ix = hx & 0x7fffffff;

  if (ix < 0x3e300000) {  // |x| < 2^-28
    if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
      // x == 0 && returnTan = -1
      return 1 / MathAbs(x);
    } else {
      if (returnTan == 1) {
        return x;
      } else {
        // Compute -1/(x + y) carefully
        var w = x + y;
        var z = %_ConstructDouble(%_DoubleHi(w), 0);
        var v = y - (z - x);
        var a = -1 / w;
        var t = %_ConstructDouble(%_DoubleHi(a), 0);
        var s = 1 + t * z;
        return t + a * (s + t * v);
      }
    }
  }
  if (ix >= 0x3fe59429) {  // |x| > .6744
    if (x < 0) {
      x = -x;
      y = -y;
    }
    z = PIO4 - x;
    w = PIO4LO - y;
    x = z + w;
    y = 0;
  }
  z = x * x;
  w = z * z;

  // Break x^5 * (T1 + x^2*T2 + ...) into
  // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
  // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
  var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
                    w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
  var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
                         w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
  var s = z * x;
  r = y + z * (s * (r + v) + y);
  r = r + KTAN(0) * s;
  w = x + r;
  if (ix >= 0x3fe59428) {
    return (1 - ((hx >> 30) & 2)) *
      (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
  }
  if (returnTan == 1) {
    return w;
  } else {
    z = %_ConstructDouble(%_DoubleHi(w), 0);
    v = r - (z - x);
    var a = -1 / w;
    var t = %_ConstructDouble(%_DoubleHi(a), 0);
    s = 1 + t * z;
    return t + a * (s + t * v);
  }
}

function MathSinSlow(x) {
  REMPIO2(x);
  var sign = 1 - (n & 2);
  if (n & 1) {
    RETURN_KERNELCOS(y0, y1, * sign);
  } else {
    RETURN_KERNELSIN(y0, y1, * sign);
  }
}

function MathCosSlow(x) {
  REMPIO2(x);
  if (n & 1) {
    var sign = (n & 2) - 1;
    RETURN_KERNELSIN(y0, y1, * sign);
  } else {
    var sign = 1 - (n & 2);
    RETURN_KERNELCOS(y0, y1, * sign);
  }
}

// ECMA 262 - 15.8.2.16
function MathSin(x) {
  x = x * 1;  // Convert to number.
  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    // |x| < pi/4, approximately.  No reduction needed.
    RETURN_KERNELSIN(x, 0, /* empty */);
  }
  return MathSinSlow(x);
}

// ECMA 262 - 15.8.2.7
function MathCos(x) {
  x = x * 1;  // Convert to number.
  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    // |x| < pi/4, approximately.  No reduction needed.
    RETURN_KERNELCOS(x, 0, /* empty */);
  }
  return MathCosSlow(x);
}

// ECMA 262 - 15.8.2.18
function MathTan(x) {
  x = x * 1;  // Convert to number.
  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
    // |x| < pi/4, approximately.  No reduction needed.
    return KernelTan(x, 0, 1);
  }
  REMPIO2(x);
  return KernelTan(y0, y1, (n & 1) ? -1 : 1);
}

// ES6 draft 09-27-13, section 20.2.2.20.
// Math.log1p
//
// Method :                  
//   1. Argument Reduction: find k and f such that 
//                      1+x = 2^k * (1+f), 
//         where  sqrt(2)/2 < 1+f < sqrt(2) .
//
//      Note. If k=0, then f=x is exact. However, if k!=0, then f
//      may not be representable exactly. In that case, a correction
//      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
//      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
//      and add back the correction term c/u.
//      (Note: when x > 2**53, one can simply return log(x))
//
//   2. Approximation of log1p(f).
//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
//            = 2s + 2/3 s**3 + 2/5 s**5 + .....,
//            = 2s + s*R
//      We use a special Reme algorithm on [0,0.1716] to generate 
//      a polynomial of degree 14 to approximate R The maximum error 
//      of this polynomial approximation is bounded by 2**-58.45. In
//      other words,
//                      2      4      6      8      10      12      14
//          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
//      (the values of Lp1 to Lp7 are listed in the program)
//      and
//          |      2          14          |     -58.45
//          | Lp1*s +...+Lp7*s    -  R(z) | <= 2 
//          |                             |
//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
//      In order to guarantee error in log below 1ulp, we compute log
//      by
//              log1p(f) = f - (hfsq - s*(hfsq+R)).
//
//      3. Finally, log1p(x) = k*ln2 + log1p(f).  
//                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
//         Here ln2 is split into two floating point number: 
//                      ln2_hi + ln2_lo,
//         where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
//      log1p(x) is NaN with signal if x < -1 (including -INF) ; 
//      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
//      log1p(NaN) is that NaN with no signal.
//
// Accuracy:
//      according to an error analysis, the error is always less than
//      1 ulp (unit in the last place).
//
// Constants:
//      Constants are found in fdlibm.cc. We assume the C++ compiler to convert
//      from decimal to binary accurately enough to produce the intended values.
//
// Note: Assuming log() return accurate answer, the following
//       algorithm can be used to compute log1p(x) to within a few ULP:
//
//              u = 1+x;
//              if (u==1.0) return x ; else
//                          return log(u)*(x/(u-1.0));
//
//       See HP-15C Advanced Functions Handbook, p.193.
//
const LN2_HI    = kMath[34];
const LN2_LO    = kMath[35];
const TWO54     = kMath[36];
const TWO_THIRD = kMath[37];
macro KLOG1P(x)
(kMath[38+x])
endmacro

function MathLog1p(x) {
  x = x * 1;  // Convert to number.
  var hx = %_DoubleHi(x);
  var ax = hx & 0x7fffffff;
  var k = 1;
  var f = x;
  var hu = 1;
  var c = 0;
  var u = x;

  if (hx < 0x3fda827a) {
    // x < 0.41422
    if (ax >= 0x3ff00000) {  // |x| >= 1
      if (x === -1) {
        return -INFINITY;  // log1p(-1) = -inf
      } else {
        return NAN;  // log1p(x<-1) = NaN
      }
    } else if (ax < 0x3c900000)  {
      // For |x| < 2^-54 we can return x.
      return x;
    } else if (ax < 0x3e200000) {
      // For |x| < 2^-29 we can use a simple two-term Taylor series.
      return x - x * x * 0.5;
    }

    if ((hx > 0) || (hx <= -0x402D413D)) {  // (int) 0xbfd2bec3 = -0x402d413d
      // -.2929 < x < 0.41422
      k = 0;
    }
  }

  // Handle Infinity and NAN
  if (hx >= 0x7ff00000) return x;

  if (k !== 0) {
    if (hx < 0x43400000) {
      // x < 2^53
      u = 1 + x;
      hu = %_DoubleHi(u);
      k = (hu >> 20) - 1023;
      c = (k > 0) ? 1 - (u - x) : x - (u - 1);
      c = c / u;
    } else {
      hu = %_DoubleHi(u);
      k = (hu >> 20) - 1023;
    }
    hu = hu & 0xfffff;
    if (hu < 0x6a09e) {
      u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u));  // Normalize u.
    } else {
      ++k;
      u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u));  // Normalize u/2.
      hu = (0x00100000 - hu) >> 2;
    }
    f = u - 1;
  }

  var hfsq = 0.5 * f * f;
  if (hu === 0) {
    // |f| < 2^-20;
    if (f === 0) {
      if (k === 0) {
        return 0.0;
      } else {
        return k * LN2_HI + (c + k * LN2_LO);
      }
    }
    var R = hfsq * (1 - TWO_THIRD * f);
    if (k === 0) {
      return f - R;
    } else {
      return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
    }
  }

  var s = f / (2 + f); 
  var z = s * s;
  var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
              (KLOG1P(2) + z * (KLOG1P(3) + z *
              (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
  if (k === 0) {
    return f - (hfsq - s * (hfsq + R));
  } else {
    return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
  }
}

// ES6 draft 09-27-13, section 20.2.2.14.
// Math.expm1
// Returns exp(x)-1, the exponential of x minus 1.
//
// Method
//   1. Argument reduction:
//      Given x, find r and integer k such that
//
//               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658  
//
//      Here a correction term c will be computed to compensate 
//      the error in r when rounded to a floating-point number.
//
//   2. Approximating expm1(r) by a special rational function on
//      the interval [0,0.34658]:
//      Since
//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
//      we define R1(r*r) by
//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
//      That is,
//          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
//                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
//                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
//      We use a special Remes algorithm on [0,0.347] to generate 
//      a polynomial of degree 5 in r*r to approximate R1. The 
//      maximum error of this polynomial approximation is bounded 
//      by 2**-61. In other words,
//          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
//      where   Q1  =  -1.6666666666666567384E-2,
//              Q2  =   3.9682539681370365873E-4,
//              Q3  =  -9.9206344733435987357E-6,
//              Q4  =   2.5051361420808517002E-7,
//              Q5  =  -6.2843505682382617102E-9;
//      (where z=r*r, and the values of Q1 to Q5 are listed below)
//      with error bounded by
//          |                  5           |     -61
//          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2 
//          |                              |
//
//      expm1(r) = exp(r)-1 is then computed by the following 
//      specific way which minimize the accumulation rounding error: 
//                             2     3
//                            r     r    [ 3 - (R1 + R1*r/2)  ]
//            expm1(r) = r + --- + --- * [--------------------]
//                            2     2    [ 6 - r*(3 - R1*r/2) ]
//
//      To compensate the error in the argument reduction, we use
//              expm1(r+c) = expm1(r) + c + expm1(r)*c 
//                         ~ expm1(r) + c + r*c 
//      Thus c+r*c will be added in as the correction terms for
//      expm1(r+c). Now rearrange the term to avoid optimization 
//      screw up:
//                      (      2                                    2 )
//                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
//       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
//                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
//                      (                                             )
//
//                 = r - E
//   3. Scale back to obtain expm1(x):
//      From step 1, we have
//         expm1(x) = either 2^k*[expm1(r)+1] - 1
//                  = or     2^k*[expm1(r) + (1-2^-k)]
//   4. Implementation notes:
//      (A). To save one multiplication, we scale the coefficient Qi
//           to Qi*2^i, and replace z by (x^2)/2.
//      (B). To achieve maximum accuracy, we compute expm1(x) by
//        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
//        (ii)  if k=0, return r-E
//        (iii) if k=-1, return 0.5*(r-E)-0.5
//        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
//                     else          return  1.0+2.0*(r-E);
//        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
//        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
//        (vii) return 2^k(1-((E+2^-k)-r)) 
//
// Special cases:
//      expm1(INF) is INF, expm1(NaN) is NaN;
//      expm1(-INF) is -1, and
//      for finite argument, only expm1(0)=0 is exact.
//
// Accuracy:
//      according to an error analysis, the error is always less than
//      1 ulp (unit in the last place).
//
// Misc. info.
//      For IEEE double 
//          if x > 7.09782712893383973096e+02 then expm1(x) overflow
//
const KEXPM1_OVERFLOW = kMath[45];
const INVLN2          = kMath[46];
macro KEXPM1(x)
(kMath[47+x])
endmacro

function MathExpm1(x) {
  x = x * 1;  // Convert to number.
  var y;
  var hi;
  var lo;
  var k;
  var t;
  var c;
    
  var hx = %_DoubleHi(x);
  var xsb = hx & 0x80000000;     // Sign bit of x
  var y = (xsb === 0) ? x : -x;  // y = |x|
  hx &= 0x7fffffff;              // High word of |x|

  // Filter out huge and non-finite argument
  if (hx >= 0x4043687a) {     // if |x| ~=> 56 * ln2
    if (hx >= 0x40862e42) {   // if |x| >= 709.78
      if (hx >= 0x7ff00000) {
        // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
        return (x === -INFINITY) ? -1 : x;
      }
      if (x > KEXPM1_OVERFLOW) return INFINITY;  // Overflow
    }
    if (xsb != 0) return -1;  // x < -56 * ln2, return -1.
  }

  // Argument reduction
  if (hx > 0x3fd62e42) {    // if |x| > 0.5 * ln2
    if (hx < 0x3ff0a2b2) {  // and |x| < 1.5 * ln2
      if (xsb === 0) {
        hi = x - LN2_HI;
        lo = LN2_LO;
        k = 1;
      } else {
        hi = x + LN2_HI;
        lo = -LN2_LO;
        k = -1;
      }
    } else {
      k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
      t = k;
      // t * ln2_hi is exact here.
      hi = x - t * LN2_HI;
      lo = t * LN2_LO;
    }
    x = hi - lo;
    c = (hi - x) - lo;
  } else if (hx < 0x3c900000)	{
    // When |x| < 2^-54, we can return x.
    return x;
  } else {
    // Fall through.
    k = 0;
  }

  // x is now in primary range
  var hfx = 0.5 * x;
  var hxs = x * hfx;
  var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
                     (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
  t = 3 - r1 * hfx;
  var e = hxs * ((r1 - t) / (6 - x * t));
  if (k === 0) {  // c is 0
    return x - (x*e - hxs);
  } else {
    e = (x * (e - c) - c);
    e -= hxs;
    if (k === -1) return 0.5 * (x - e) - 0.5;
    if (k === 1) {
      if (x < -0.25) return -2 * (e - (x + 0.5));
      return 1 + 2 * (x - e);
    }

    if (k <= -2 || k > 56) {
      // suffice to return exp(x) + 1
      y = 1 - (e - x);
      // Add k to y's exponent
      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
      return y - 1;
    }
    if (k < 20) {
      // t = 1 - 2^k
      t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
      y = t - (e - x);
      // Add k to y's exponent
      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
    } else {
      // t = 2^-k
      t = %_ConstructDouble((0x3ff - k) << 20, 0);
      y = x - (e + t);
      y += 1;
      // Add k to y's exponent
      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
    }
  }
  return y;
}


// ES6 draft 09-27-13, section 20.2.2.30.
// Math.sinh
// Method :
// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
//      1. Replace x by |x| (sinh(-x) = -sinh(x)).
//      2.
//                                                  E + E/(E+1)
//          0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
//                                                      2
//
//          22       <= x <= lnovft :  sinh(x) := exp(x)/2 
//          lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
//          ln2ovft  <  x           :  sinh(x) := x*shuge (overflow)
//
// Special cases:
//      sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
//      only sinh(0)=0 is exact for finite x.
//
const KSINH_OVERFLOW = kMath[52];
const TWO_M28 = 3.725290298461914e-9;  // 2^-28, empty lower half
const LOG_MAXD = 709.7822265625;  // 0x40862e42 00000000, empty lower half

function MathSinh(x) {
  x = x * 1;  // Convert to number.
  var h = (x < 0) ? -0.5 : 0.5;
  // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
  var ax = MathAbs(x);
  if (ax < 22) {
    // For |x| < 2^-28, sinh(x) = x
    if (ax < TWO_M28) return x;
    var t = MathExpm1(ax);
    if (ax < 1) return h * (2 * t - t * t / (t + 1));
    return h * (t + t / (t + 1));
  }
  // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
  if (ax < LOG_MAXD) return h * MathExp(ax);
  // |x| in [log(maxdouble), overflowthreshold]
  // overflowthreshold = 710.4758600739426
  if (ax <= KSINH_OVERFLOW) {
    var w = MathExp(0.5 * ax);
    var t = h * w;
    return t * w;
  }
  // |x| > overflowthreshold or is NaN.
  // Return Infinity of the appropriate sign or NaN.
  return x * INFINITY;
}


// ES6 draft 09-27-13, section 20.2.2.12.
// Math.cosh
// Method : 
// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
//      1. Replace x by |x| (cosh(x) = cosh(-x)). 
//      2.
//                                                      [ exp(x) - 1 ]^2 
//          0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
//                                                         2*exp(x)
//
//                                                 exp(x) + 1/exp(x)
//          ln2/2    <= x <= 22     :  cosh(x) := -------------------
//                                                        2
//          22       <= x <= lnovft :  cosh(x) := exp(x)/2 
//          lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
//          ln2ovft  <  x           :  cosh(x) := huge*huge (overflow)
//
// Special cases:
//      cosh(x) is |x| if x is +INF, -INF, or NaN.
//      only cosh(0)=1 is exact for finite x.
//
const KCOSH_OVERFLOW = kMath[52];

function MathCosh(x) {
  x = x * 1;  // Convert to number.
  var ix = %_DoubleHi(x) & 0x7fffffff;
  // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
  if (ix < 0x3fd62e43) {
    var t = MathExpm1(MathAbs(x));
    var w = 1 + t;
    // For |x| < 2^-55, cosh(x) = 1
    if (ix < 0x3c800000) return w;
    return 1 + (t * t) / (w + w);
  }
  // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
  if (ix < 0x40360000) {
    var t = MathExp(MathAbs(x));
    return 0.5 * t + 0.5 / t;
  }
  // |x| in [22, log(maxdouble)], return half*exp(|x|)
  if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x));
  // |x| in [log(maxdouble), overflowthreshold]
  if (MathAbs(x) <= KCOSH_OVERFLOW) {
    var w = MathExp(0.5 * MathAbs(x));
    var t = 0.5 * w;
    return t * w;
  }
  if (NUMBER_IS_NAN(x)) return x;
  // |x| > overflowthreshold.
  return INFINITY;
}