summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/paged-spaces-inl.h
blob: 8c77186583dcfce770c3118dd072553082c180c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_PAGED_SPACES_INL_H_
#define V8_HEAP_PAGED_SPACES_INL_H_

#include "src/common/globals.h"
#include "src/heap/heap-inl.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/paged-spaces.h"
#include "src/objects/code-inl.h"
#include "src/objects/heap-object.h"
#include "src/objects/objects-inl.h"

namespace v8 {
namespace internal {

// -----------------------------------------------------------------------------
// PagedSpaceObjectIterator

HeapObject PagedSpaceObjectIterator::Next() {
  do {
    HeapObject next_obj = FromCurrentPage();
    if (!next_obj.is_null()) return next_obj;
  } while (AdvanceToNextPage());
  return HeapObject();
}

HeapObject PagedSpaceObjectIterator::FromCurrentPage() {
  while (cur_addr_ != cur_end_) {
    HeapObject obj = HeapObject::FromAddress(cur_addr_);
    const int obj_size = obj.Size();
    cur_addr_ += obj_size;
    DCHECK_LE(cur_addr_, cur_end_);
    if (!obj.IsFreeSpaceOrFiller()) {
      if (obj.IsCode()) {
        DCHECK_EQ(space_->identity(), CODE_SPACE);
        DCHECK_CODEOBJECT_SIZE(obj_size, space_);
      } else {
        DCHECK_OBJECT_SIZE(obj_size);
      }
      return obj;
    }
  }
  return HeapObject();
}

bool PagedSpace::Contains(Address addr) const {
  if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) {
    return true;
  }
  return Page::FromAddress(addr)->owner() == this;
}

bool PagedSpace::Contains(Object o) const {
  if (!o.IsHeapObject()) return false;
  return Page::FromAddress(o.ptr())->owner() == this;
}

void PagedSpace::UnlinkFreeListCategories(Page* page) {
  DCHECK_EQ(this, page->owner());
  page->ForAllFreeListCategories([this](FreeListCategory* category) {
    free_list()->RemoveCategory(category);
  });
}

size_t PagedSpace::RelinkFreeListCategories(Page* page) {
  DCHECK_EQ(this, page->owner());
  size_t added = 0;
  page->ForAllFreeListCategories([this, &added](FreeListCategory* category) {
    added += category->available();
    category->Relink(free_list());
  });

  DCHECK_IMPLIES(!page->IsFlagSet(Page::NEVER_ALLOCATE_ON_PAGE),
                 page->AvailableInFreeList() ==
                     page->AvailableInFreeListFromAllocatedBytes());
  return added;
}

bool PagedSpace::TryFreeLast(HeapObject object, int object_size) {
  if (allocation_info_.top() != kNullAddress) {
    const Address object_address = object.address();
    if ((allocation_info_.top() - object_size) == object_address) {
      allocation_info_.set_top(object_address);
      return true;
    }
  }
  return false;
}

bool PagedSpace::EnsureLabMain(int size_in_bytes, AllocationOrigin origin) {
  if (allocation_info_.top() + size_in_bytes <= allocation_info_.limit()) {
    return true;
  }
  return RefillLabMain(size_in_bytes, origin);
}

AllocationResult PagedSpace::AllocateFastUnaligned(int size_in_bytes) {
  Address current_top = allocation_info_.top();
  Address new_top = current_top + size_in_bytes;
  if (new_top > allocation_info_.limit())
    return AllocationResult::Retry(identity());
  DCHECK_LE(new_top, allocation_info_.limit());
  allocation_info_.set_top(new_top);

  return AllocationResult(HeapObject::FromAddress(current_top));
}

AllocationResult PagedSpace::AllocateFastAligned(
    int size_in_bytes, int* aligned_size_in_bytes,
    AllocationAlignment alignment) {
  Address current_top = allocation_info_.top();
  int filler_size = Heap::GetFillToAlign(current_top, alignment);

  Address new_top = current_top + filler_size + size_in_bytes;
  if (new_top > allocation_info_.limit())
    return AllocationResult::Retry(identity());

  allocation_info_.set_top(new_top);
  if (aligned_size_in_bytes)
    *aligned_size_in_bytes = filler_size + size_in_bytes;
  if (filler_size > 0) {
    Heap::PrecedeWithFiller(ReadOnlyRoots(heap()),
                            HeapObject::FromAddress(current_top), filler_size);
  }

  return AllocationResult(HeapObject::FromAddress(current_top + filler_size));
}

AllocationResult PagedSpace::AllocateRawUnaligned(int size_in_bytes,
                                                  AllocationOrigin origin) {
  DCHECK(!FLAG_enable_third_party_heap);
  if (!EnsureLabMain(size_in_bytes, origin)) {
    return AllocationResult::Retry(identity());
  }

  AllocationResult result = AllocateFastUnaligned(size_in_bytes);
  DCHECK(!result.IsRetry());
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(result.ToObjectChecked().address(),
                                      size_in_bytes);

  if (FLAG_trace_allocations_origins) {
    UpdateAllocationOrigins(origin);
  }

  InvokeAllocationObservers(result.ToAddress(), size_in_bytes, size_in_bytes,
                            size_in_bytes);

  return result;
}

AllocationResult PagedSpace::AllocateRawAligned(int size_in_bytes,
                                                AllocationAlignment alignment,
                                                AllocationOrigin origin) {
  DCHECK(!FLAG_enable_third_party_heap);
  DCHECK_EQ(identity(), OLD_SPACE);
  int allocation_size = size_in_bytes;
  // We don't know exactly how much filler we need to align until space is
  // allocated, so assume the worst case.
  int filler_size = Heap::GetMaximumFillToAlign(alignment);
  allocation_size += filler_size;
  if (!EnsureLabMain(allocation_size, origin)) {
    return AllocationResult::Retry(identity());
  }
  int aligned_size_in_bytes;
  AllocationResult result =
      AllocateFastAligned(size_in_bytes, &aligned_size_in_bytes, alignment);
  DCHECK(!result.IsRetry());
  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(result.ToObjectChecked().address(),
                                      size_in_bytes);

  if (FLAG_trace_allocations_origins) {
    UpdateAllocationOrigins(origin);
  }

  InvokeAllocationObservers(result.ToAddress(), size_in_bytes,
                            aligned_size_in_bytes, allocation_size);

  return result;
}

AllocationResult PagedSpace::AllocateRaw(int size_in_bytes,
                                         AllocationAlignment alignment,
                                         AllocationOrigin origin) {
  DCHECK(!FLAG_enable_third_party_heap);
  AllocationResult result;

  if (alignment != kWordAligned) {
    result = AllocateFastAligned(size_in_bytes, nullptr, alignment);
  } else {
    result = AllocateFastUnaligned(size_in_bytes);
  }

  if (!result.IsRetry()) {
    return result;
  } else {
    return AllocateRawSlow(size_in_bytes, alignment, origin);
  }
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_PAGED_SPACES_INL_H_