summaryrefslogtreecommitdiff
path: root/deps/v8/src/base/atomicops.h
blob: cb6940ea70a39eb78c7a0cb2d16a852d37841368 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright 2010 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// The routines exported by this module are subtle.  If you use them, even if
// you get the code right, it will depend on careful reasoning about atomicity
// and memory ordering; it will be less readable, and harder to maintain.  If
// you plan to use these routines, you should have a good reason, such as solid
// evidence that performance would otherwise suffer, or there being no
// alternative.  You should assume only properties explicitly guaranteed by the
// specifications in this file.  You are almost certainly _not_ writing code
// just for the x86; if you assume x86 semantics, x86 hardware bugs and
// implementations on other archtectures will cause your code to break.  If you
// do not know what you are doing, avoid these routines, and use a Mutex.
//
// It is incorrect to make direct assignments to/from an atomic variable.
// You should use one of the Load or Store routines.  The Relaxed  versions
// are provided when no fences are needed:
//   Relaxed_Store()
//   Relaxed_Load()
// Although there are currently no compiler enforcement, you are encouraged
// to use these.
//

#ifndef V8_BASE_ATOMICOPS_H_
#define V8_BASE_ATOMICOPS_H_

#include <stdint.h>

#include <atomic>

// Small C++ header which defines implementation specific macros used to
// identify the STL implementation.
// - libc++: captures __config for _LIBCPP_VERSION
// - libstdc++: captures bits/c++config.h for __GLIBCXX__
#include <cstddef>

#include "src/base/base-export.h"
#include "src/base/build_config.h"
#include "src/base/macros.h"

#if defined(V8_OS_STARBOARD)
#include "starboard/atomic.h"

#if SB_API_VERSION < 10
#error Your version of Starboard must support SbAtomic8 in order to use V8.
#endif  // SB_API_VERSION < 10
#endif  // V8_OS_STARBOARD

namespace v8 {
namespace base {

#ifdef V8_OS_STARBOARD
using Atomic8 = SbAtomic8;
using Atomic16 = int16_t;
using Atomic32 = SbAtomic32;
#if SB_IS_64_BIT
using Atomic64 = SbAtomic64;
#endif
#else
using Atomic8 = char;
using Atomic16 = int16_t;
using Atomic32 = int32_t;
#if defined(V8_HOST_ARCH_64_BIT)
// We need to be able to go between Atomic64 and AtomicWord implicitly.  This
// means Atomic64 and AtomicWord should be the same type on 64-bit.
#if defined(__ILP32__)
using Atomic64 = int64_t;
#else
using Atomic64 = intptr_t;
#endif  // defined(__ILP32__)
#endif  // defined(V8_HOST_ARCH_64_BIT)
#endif  // V8_OS_STARBOARD

// Use AtomicWord for a machine-sized pointer.  It will use the Atomic32 or
// Atomic64 routines below, depending on your architecture.
#if defined(V8_OS_STARBOARD)
using AtomicWord = SbAtomicPtr;
#else
using AtomicWord = intptr_t;
#endif

namespace helper {
template <typename T>
volatile std::atomic<T>* to_std_atomic(volatile T* ptr) {
  return reinterpret_cast<volatile std::atomic<T>*>(ptr);
}
template <typename T>
volatile const std::atomic<T>* to_std_atomic_const(volatile const T* ptr) {
  return reinterpret_cast<volatile const std::atomic<T>*>(ptr);
}
}  // namespace helper

inline void SeqCst_MemoryFence() {
  std::atomic_thread_fence(std::memory_order_seq_cst);
}

// Atomically execute:
//   result = *ptr;
//   if (result == old_value)
//     *ptr = new_value;
//   return result;
//
// I.e. replace |*ptr| with |new_value| if |*ptr| used to be |old_value|.
// Always return the value of |*ptr| before the operation.
// Acquire, Relaxed, Release correspond to standard C++ memory orders.
inline Atomic8 Relaxed_CompareAndSwap(volatile Atomic8* ptr, Atomic8 old_value,
                                      Atomic8 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_relaxed, std::memory_order_relaxed);
  return old_value;
}

inline Atomic16 Relaxed_CompareAndSwap(volatile Atomic16* ptr,
                                       Atomic16 old_value, Atomic16 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_relaxed, std::memory_order_relaxed);
  return old_value;
}

inline Atomic32 Relaxed_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value, Atomic32 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_relaxed, std::memory_order_relaxed);
  return old_value;
}

inline Atomic32 Relaxed_AtomicExchange(volatile Atomic32* ptr,
                                       Atomic32 new_value) {
  return std::atomic_exchange_explicit(helper::to_std_atomic(ptr), new_value,
                                       std::memory_order_relaxed);
}

inline Atomic32 Relaxed_AtomicIncrement(volatile Atomic32* ptr,
                                        Atomic32 increment) {
  return increment + std::atomic_fetch_add_explicit(helper::to_std_atomic(ptr),
                                                    increment,
                                                    std::memory_order_relaxed);
}

inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value, Atomic32 new_value) {
  atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_acquire, std::memory_order_acquire);
  return old_value;
}

inline Atomic8 Release_CompareAndSwap(volatile Atomic8* ptr, Atomic8 old_value,
                                      Atomic8 new_value) {
  bool result = atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_release, std::memory_order_relaxed);
  USE(result);  // Make gcc compiler happy.
  return old_value;
}

inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
                                       Atomic32 old_value, Atomic32 new_value) {
  atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_release, std::memory_order_relaxed);
  return old_value;
}

inline Atomic32 AcquireRelease_CompareAndSwap(volatile Atomic32* ptr,
                                              Atomic32 old_value,
                                              Atomic32 new_value) {
  atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_acq_rel, std::memory_order_acquire);
  return old_value;
}

inline void Relaxed_Store(volatile Atomic8* ptr, Atomic8 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_relaxed);
}

inline void Relaxed_Store(volatile Atomic16* ptr, Atomic16 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_relaxed);
}

inline void Relaxed_Store(volatile Atomic32* ptr, Atomic32 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_relaxed);
}

inline void Release_Store(volatile Atomic8* ptr, Atomic8 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_release);
}

inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_release);
}

inline Atomic8 Relaxed_Load(volatile const Atomic8* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_relaxed);
}

inline Atomic16 Relaxed_Load(volatile const Atomic16* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_relaxed);
}

inline Atomic32 Relaxed_Load(volatile const Atomic32* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_relaxed);
}

inline Atomic8 Acquire_Load(volatile const Atomic8* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_acquire);
}

inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_acquire);
}

#if defined(V8_HOST_ARCH_64_BIT)

inline Atomic64 Relaxed_CompareAndSwap(volatile Atomic64* ptr,
                                       Atomic64 old_value, Atomic64 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_relaxed, std::memory_order_relaxed);
  return old_value;
}

inline Atomic64 Relaxed_AtomicExchange(volatile Atomic64* ptr,
                                       Atomic64 new_value) {
  return std::atomic_exchange_explicit(helper::to_std_atomic(ptr), new_value,
                                       std::memory_order_relaxed);
}

inline Atomic64 Relaxed_AtomicIncrement(volatile Atomic64* ptr,
                                        Atomic64 increment) {
  return increment + std::atomic_fetch_add_explicit(helper::to_std_atomic(ptr),
                                                    increment,
                                                    std::memory_order_relaxed);
}

inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
                                       Atomic64 old_value, Atomic64 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_acquire, std::memory_order_acquire);
  return old_value;
}

inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
                                       Atomic64 old_value, Atomic64 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_release, std::memory_order_relaxed);
  return old_value;
}

inline Atomic64 AcquireRelease_CompareAndSwap(volatile Atomic64* ptr,
                                              Atomic64 old_value,
                                              Atomic64 new_value) {
  std::atomic_compare_exchange_strong_explicit(
      helper::to_std_atomic(ptr), &old_value, new_value,
      std::memory_order_acq_rel, std::memory_order_acquire);
  return old_value;
}

inline void Relaxed_Store(volatile Atomic64* ptr, Atomic64 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_relaxed);
}

inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
  std::atomic_store_explicit(helper::to_std_atomic(ptr), value,
                             std::memory_order_release);
}

inline Atomic64 Relaxed_Load(volatile const Atomic64* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_relaxed);
}

inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
  return std::atomic_load_explicit(helper::to_std_atomic_const(ptr),
                                   std::memory_order_acquire);
}

#endif  // defined(V8_HOST_ARCH_64_BIT)

inline void Relaxed_Memcpy(volatile Atomic8* dst, volatile const Atomic8* src,
                           size_t bytes) {
  constexpr size_t kAtomicWordSize = sizeof(AtomicWord);
  while (bytes > 0 &&
         !IsAligned(reinterpret_cast<uintptr_t>(dst), kAtomicWordSize)) {
    Relaxed_Store(dst++, Relaxed_Load(src++));
    --bytes;
  }
  if (IsAligned(reinterpret_cast<uintptr_t>(src), kAtomicWordSize) &&
      IsAligned(reinterpret_cast<uintptr_t>(dst), kAtomicWordSize)) {
    while (bytes >= kAtomicWordSize) {
      Relaxed_Store(
          reinterpret_cast<volatile AtomicWord*>(dst),
          Relaxed_Load(reinterpret_cast<const volatile AtomicWord*>(src)));
      dst += kAtomicWordSize;
      src += kAtomicWordSize;
      bytes -= kAtomicWordSize;
    }
  }
  while (bytes > 0) {
    Relaxed_Store(dst++, Relaxed_Load(src++));
    --bytes;
  }
}

}  // namespace base
}  // namespace v8

// On some platforms we need additional declarations to make
// AtomicWord compatible with our other Atomic* types.
#if defined(V8_OS_MACOSX) || defined(V8_OS_OPENBSD) || defined(V8_OS_AIX)
#include "src/base/atomicops_internals_atomicword_compat.h"
#endif

#endif  // V8_BASE_ATOMICOPS_H_