// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_PPC #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/isolate.h" #include "src/jsregexp.h" #include "src/regexp-macro-assembler.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { static void InitializeArrayConstructorDescriptor( Isolate* isolate, CodeStubDescriptor* descriptor, int constant_stack_parameter_count) { Address deopt_handler = Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { descriptor->Initialize(deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); } } static void InitializeInternalArrayConstructorDescriptor( Isolate* isolate, CodeStubDescriptor* descriptor, int constant_stack_parameter_count) { Address deopt_handler = Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { descriptor->Initialize(deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); } } void ArrayNoArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); } void ArraySingleArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, 1); } void ArrayNArgumentsConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, -1); } void InternalArrayNoArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0); } void InternalArraySingleArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1); } void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); } #define __ ACCESS_MASM(masm) static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetEnvironmentParameterCount(); { // Call the runtime system in a fresh internal frame. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); DCHECK(param_count == 0 || r3.is(descriptor.GetEnvironmentParameterRegister(param_count - 1))); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor.GetEnvironmentParameterRegister(i)); } __ CallExternalReference(miss, param_count); } __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done, fastpath_done; Register input_reg = source(); Register result_reg = destination(); DCHECK(is_truncating()); int double_offset = offset(); // Immediate values for this stub fit in instructions, so it's safe to use ip. Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); DoubleRegister double_scratch = kScratchDoubleReg; __ push(scratch); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += kPointerSize; if (!skip_fastpath()) { // Load double input. __ lfd(double_scratch, MemOperand(input_reg, double_offset)); // Do fast-path convert from double to int. __ ConvertDoubleToInt64(double_scratch, #if !V8_TARGET_ARCH_PPC64 scratch, #endif result_reg, d0); // Test for overflow #if V8_TARGET_ARCH_PPC64 __ TestIfInt32(result_reg, scratch, r0); #else __ TestIfInt32(scratch, result_reg, r0); #endif __ beq(&fastpath_done); } __ Push(scratch_high, scratch_low); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += 2 * kPointerSize; __ lwz(scratch_high, MemOperand(input_reg, double_offset + Register::kExponentOffset)); __ lwz(scratch_low, MemOperand(input_reg, double_offset + Register::kMantissaOffset)); __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmpi(scratch, Operand(83)); __ bge(&out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ subfic(scratch, scratch, Operand(51)); __ cmpi(scratch, Operand::Zero()); __ ble(&only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ srw(scratch_low, scratch_low, scratch); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ subfic(scratch, scratch, Operand(32)); __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); // Set the implicit 1 before the mantissa part in scratch_high. STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); __ oris(result_reg, result_reg, Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16))); __ slw(r0, result_reg, scratch); __ orx(result_reg, scratch_low, r0); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ neg(scratch, scratch); __ slw(result_reg, scratch_low, scratch); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. // New result = (result eor 0xffffffff) + 1 = 0 - result. __ srawi(r0, scratch_high, 31); #if V8_TARGET_ARCH_PPC64 __ srdi(r0, r0, Operand(32)); #endif __ xor_(result_reg, result_reg, r0); __ srwi(r0, scratch_high, Operand(31)); __ add(result_reg, result_reg, r0); __ bind(&done); __ Pop(scratch_high, scratch_low); __ bind(&fastpath_done); __ pop(scratch); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond) { Label not_identical; Label heap_number, return_equal; __ cmp(r3, r4); __ bne(¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. if (cond == lt || cond == gt) { __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE); __ bge(slow); } else { __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE); __ beq(&heap_number); // Comparing JS objects with <=, >= is complicated. if (cond != eq) { __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE)); __ bge(slow); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cond == le || cond == ge) { __ cmpi(r7, Operand(ODDBALL_TYPE)); __ bne(&return_equal); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ cmp(r3, r5); __ bne(&return_equal); if (cond == le) { // undefined <= undefined should fail. __ li(r3, Operand(GREATER)); } else { // undefined >= undefined should fail. __ li(r3, Operand(LESS)); } __ Ret(); } } } __ bind(&return_equal); if (cond == lt) { __ li(r3, Operand(GREATER)); // Things aren't less than themselves. } else if (cond == gt) { __ li(r3, Operand(LESS)); // Things aren't greater than themselves. } else { __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. } __ Ret(); // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cond != lt && cond != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u); __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask); __ cmpli(r6, Operand(0x7ff)); __ bne(&return_equal); // Shift out flag and all exponent bits, retaining only mantissa. __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord)); // Or with all low-bits of mantissa. __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); __ orx(r3, r6, r5); __ cmpi(r3, Operand::Zero()); // For equal we already have the right value in r3: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load r0 with the failing // value if it's a NaN. if (cond != eq) { Label not_equal; __ bne(¬_equal); // All-zero means Infinity means equal. __ Ret(); __ bind(¬_equal); if (cond == le) { __ li(r3, Operand(GREATER)); // NaN <= NaN should fail. } else { __ li(r3, Operand(LESS)); // NaN >= NaN should fail. } } __ Ret(); } // No fall through here. __ bind(¬_identical); } // See comment at call site. static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); Label rhs_is_smi; __ JumpIfSmi(rhs, &rhs_is_smi); // Lhs is a Smi. Check whether the rhs is a heap number. __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE); if (strict) { // If rhs is not a number and lhs is a Smi then strict equality cannot // succeed. Return non-equal // If rhs is r3 then there is already a non zero value in it. Label skip; __ beq(&skip); if (!rhs.is(r3)) { __ mov(r3, Operand(NOT_EQUAL)); } __ Ret(); __ bind(&skip); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ bne(slow); } // Lhs is a smi, rhs is a number. // Convert lhs to a double in d7. __ SmiToDouble(d7, lhs); // Load the double from rhs, tagged HeapNumber r3, to d6. __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); // We now have both loaded as doubles but we can skip the lhs nan check // since it's a smi. __ b(lhs_not_nan); __ bind(&rhs_is_smi); // Rhs is a smi. Check whether the non-smi lhs is a heap number. __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE); if (strict) { // If lhs is not a number and rhs is a smi then strict equality cannot // succeed. Return non-equal. // If lhs is r3 then there is already a non zero value in it. Label skip; __ beq(&skip); if (!lhs.is(r3)) { __ mov(r3, Operand(NOT_EQUAL)); } __ Ret(); __ bind(&skip); } else { // Smi compared non-strictly with a non-smi non-heap-number. Call // the runtime. __ bne(slow); } // Rhs is a smi, lhs is a heap number. // Load the double from lhs, tagged HeapNumber r4, to d7. __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); // Convert rhs to a double in d6. __ SmiToDouble(d6, rhs); // Fall through to both_loaded_as_doubles. } // See comment at call site. static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); Label first_non_object; // Get the type of the first operand into r5 and compare it with // FIRST_SPEC_OBJECT_TYPE. __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE); __ blt(&first_non_object); // Return non-zero (r3 is not zero) Label return_not_equal; __ bind(&return_not_equal); __ Ret(); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmpi(r5, Operand(ODDBALL_TYPE)); __ beq(&return_not_equal); __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE); __ bge(&return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmpi(r6, Operand(ODDBALL_TYPE)); __ beq(&return_not_equal); // Now that we have the types we might as well check for // internalized-internalized. STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orx(r5, r5, r6); __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ beq(&return_not_equal, cr0); } // See comment at call site. static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE); __ bne(not_heap_numbers); __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ cmp(r5, r6); __ bne(slow); // First was a heap number, second wasn't. Go slow case. // Both are heap numbers. Load them up then jump to the code we have // for that. __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ b(both_loaded_as_doubles); } // Fast negative check for internalized-to-internalized equality. static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* not_both_strings) { DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); // r5 is object type of rhs. Label object_test; STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ andi(r0, r5, Operand(kIsNotStringMask)); __ bne(&object_test, cr0); __ andi(r0, r5, Operand(kIsNotInternalizedMask)); __ bne(possible_strings, cr0); __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE); __ bge(not_both_strings); __ andi(r0, r6, Operand(kIsNotInternalizedMask)); __ bne(possible_strings, cr0); // Both are internalized. We already checked they weren't the same pointer // so they are not equal. __ li(r3, Operand(NOT_EQUAL)); __ Ret(); __ bind(&object_test); __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE)); __ blt(not_both_strings); __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE); __ blt(not_both_strings); // If both objects are undetectable, they are equal. Otherwise, they // are not equal, since they are different objects and an object is not // equal to undefined. __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset)); __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); __ and_(r3, r5, r6); __ andi(r3, r3, Operand(1 << Map::kIsUndetectable)); __ xori(r3, r3, Operand(1 << Map::kIsUndetectable)); __ Ret(); } static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry r4 and r5 are the values to be compared. // On exit r3 is 0, positive or negative to indicate the result of // the comparison. void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = r4; Register rhs = r3; Condition cc = GetCondition(); Label miss; CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss); CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles, lhs_not_nan; Label not_two_smis, smi_done; __ orx(r5, r4, r3); __ JumpIfNotSmi(r5, ¬_two_smis); __ SmiUntag(r4); __ SmiUntag(r3); __ sub(r3, r4, r3); __ Ret(); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(0, Smi::FromInt(0)); __ and_(r5, lhs, rhs); __ JumpIfNotSmi(r5, ¬_smis); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to lhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison. The double values of the numbers have been loaded // into d7 and d6. EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); __ bind(&both_loaded_as_doubles); // The arguments have been converted to doubles and stored in d6 and d7 __ bind(&lhs_not_nan); Label no_nan; __ fcmpu(d7, d6); Label nan, equal, less_than; __ bunordered(&nan); __ beq(&equal); __ blt(&less_than); __ li(r3, Operand(GREATER)); __ Ret(); __ bind(&equal); __ li(r3, Operand(EQUAL)); __ Ret(); __ bind(&less_than); __ li(r3, Operand(LESS)); __ Ret(); __ bind(&nan); // If one of the sides was a NaN then the v flag is set. Load r3 with // whatever it takes to make the comparison fail, since comparisons with NaN // always fail. if (cc == lt || cc == le) { __ li(r3, Operand(GREATER)); } else { __ li(r3, Operand(LESS)); } __ Ret(); __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in rhs_ and lhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles into r3, r4, r5, r6 and jump to the code that handles // that case. If the inputs are not doubles then jumps to // check_for_internalized_strings. // In this case r5 will contain the type of rhs_. Never falls through. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_internalized_strings, &flat_string_check); __ bind(&check_for_internalized_strings); // In the strict case the EmitStrictTwoHeapObjectCompare already took care of // internalized strings. if (cc == eq && !strict()) { // Returns an answer for two internalized strings or two detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that r5 is the type of rhs_ on entry. EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential one-byte strings, // and inline if that is the case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5, r6); if (cc == eq) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7); } // Never falls through to here. __ bind(&slow); __ Push(lhs, rhs); // Figure out which native to call and setup the arguments. Builtins::JavaScript native; if (cc == eq) { native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { native = Builtins::COMPARE; int ncr; // NaN compare result if (cc == lt || cc == le) { ncr = GREATER; } else { DCHECK(cc == gt || cc == ge); // remaining cases ncr = LESS; } __ LoadSmiLiteral(r3, Smi::FromInt(ncr)); __ push(r3); } // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(native, JUMP_FUNCTION); __ bind(&miss); GenerateMiss(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ mflr(r0); __ MultiPush(kJSCallerSaved | r0.bit()); if (save_doubles()) { __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); } const int argument_count = 1; const int fp_argument_count = 0; const Register scratch = r4; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); } __ MultiPop(kJSCallerSaved | r0.bit()); __ mtlr(r0); __ Ret(); } void StoreRegistersStateStub::Generate(MacroAssembler* masm) { __ PushSafepointRegisters(); __ blr(); } void RestoreRegistersStateStub::Generate(MacroAssembler* masm) { __ PopSafepointRegisters(); __ blr(); } void MathPowStub::Generate(MacroAssembler* masm) { const Register base = r4; const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(r5)); const Register heapnumbermap = r8; const Register heapnumber = r3; const DoubleRegister double_base = d1; const DoubleRegister double_exponent = d2; const DoubleRegister double_result = d3; const DoubleRegister double_scratch = d0; const Register scratch = r11; const Register scratch2 = r10; Label call_runtime, done, int_exponent; if (exponent_type() == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack to double registers. __ LoadP(base, MemOperand(sp, 1 * kPointerSize)); __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize)); __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset)); __ cmp(scratch, heapnumbermap); __ bne(&call_runtime); __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); __ b(&unpack_exponent); __ bind(&base_is_smi); __ ConvertIntToDouble(scratch, double_base); __ bind(&unpack_exponent); __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); __ cmp(scratch, heapnumbermap); __ bne(&call_runtime); __ lfd(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type() == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ lfd(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { // Detect integer exponents stored as double. __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, double_scratch); __ beq(&int_exponent); if (exponent_type() == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label not_plus_half, not_minus_inf1, not_minus_inf2; // Test for 0.5. __ LoadDoubleLiteral(double_scratch, 0.5, scratch); __ fcmpu(double_exponent, double_scratch); __ bne(¬_plus_half); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch); __ fcmpu(double_base, double_scratch); __ bne(¬_minus_inf1); __ fneg(double_result, double_scratch); __ b(&done); __ bind(¬_minus_inf1); // Add +0 to convert -0 to +0. __ fadd(double_scratch, double_base, kDoubleRegZero); __ fsqrt(double_result, double_scratch); __ b(&done); __ bind(¬_plus_half); __ LoadDoubleLiteral(double_scratch, -0.5, scratch); __ fcmpu(double_exponent, double_scratch); __ bne(&call_runtime); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch); __ fcmpu(double_base, double_scratch); __ bne(¬_minus_inf2); __ fmr(double_result, kDoubleRegZero); __ b(&done); __ bind(¬_minus_inf2); // Add +0 to convert -0 to +0. __ fadd(double_scratch, double_base, kDoubleRegZero); __ LoadDoubleLiteral(double_result, 1.0, scratch); __ fsqrt(double_scratch, double_scratch); __ fdiv(double_result, double_result, double_scratch); __ b(&done); } __ mflr(r0); __ push(r0); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(r0); __ mtlr(r0); __ MovFromFloatResult(double_result); __ b(&done); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type() == INTEGER) { __ mr(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mr(exponent, scratch); } __ fmr(double_scratch, double_base); // Back up base. __ li(scratch2, Operand(1)); __ ConvertIntToDouble(scratch2, double_result); // Get absolute value of exponent. Label positive_exponent; __ cmpi(scratch, Operand::Zero()); __ bge(&positive_exponent); __ neg(scratch, scratch); __ bind(&positive_exponent); Label while_true, no_carry, loop_end; __ bind(&while_true); __ andi(scratch2, scratch, Operand(1)); __ beq(&no_carry, cr0); __ fmul(double_result, double_result, double_scratch); __ bind(&no_carry); __ ShiftRightArithImm(scratch, scratch, 1, SetRC); __ beq(&loop_end, cr0); __ fmul(double_scratch, double_scratch, double_scratch); __ b(&while_true); __ bind(&loop_end); __ cmpi(exponent, Operand::Zero()); __ bge(&done); __ li(scratch2, Operand(1)); __ ConvertIntToDouble(scratch2, double_scratch); __ fdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ fcmpu(double_result, kDoubleRegZero); __ bne(&done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ ConvertIntToDouble(exponent, double_exponent); // Returning or bailing out. Counters* counters = isolate()->counters(); if (exponent_type() == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); __ stfd(double_result, FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); DCHECK(heapnumber.is(r3)); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(2); } else { __ mflr(r0); __ push(r0); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(r0); __ mtlr(r0); __ MovFromFloatResult(double_result); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(); } } bool CEntryStub::NeedsImmovableCode() { return true; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); // WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); StoreRegistersStateStub::GenerateAheadOfTime(isolate); RestoreRegistersStateStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); } void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { StoreRegistersStateStub stub(isolate); stub.GetCode(); } void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { RestoreRegistersStateStub stub(isolate); stub.GetCode(); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. SaveFPRegsMode mode = kSaveFPRegs; CEntryStub(isolate, 1, mode).GetCode(); StoreBufferOverflowStub(isolate, mode).GetCode(); isolate->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function. // r3: number of arguments including receiver // r4: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) ProfileEntryHookStub::MaybeCallEntryHook(masm); __ mr(r15, r4); // Compute the argv pointer. __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); __ add(r4, r4, sp); __ subi(r4, r4, Operand(kPointerSize)); // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); // Need at least one extra slot for return address location. int arg_stack_space = 1; // PPC LINUX ABI: #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS // Pass buffer for return value on stack if necessary if (result_size() > 1) { DCHECK_EQ(2, result_size()); arg_stack_space += 2; } #endif __ EnterExitFrame(save_doubles(), arg_stack_space); // Store a copy of argc in callee-saved registers for later. __ mr(r14, r3); // r3, r14: number of arguments including receiver (C callee-saved) // r4: pointer to the first argument // r15: pointer to builtin function (C callee-saved) // Result returned in registers or stack, depending on result size and ABI. Register isolate_reg = r5; #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS if (result_size() > 1) { // The return value is 16-byte non-scalar value. // Use frame storage reserved by calling function to pass return // buffer as implicit first argument. __ mr(r5, r4); __ mr(r4, r3); __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); isolate_reg = r6; } #endif // Call C built-in. __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate()))); #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) // Native AIX/PPC64 Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize)); __ LoadP(ip, MemOperand(r15, 0)); // Instruction address Register target = ip; #elif ABI_TOC_ADDRESSABILITY_VIA_IP __ Move(ip, r15); Register target = ip; #else Register target = r15; #endif // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. // Compute the return address in lr to return to after the jump below. Pc is // already at '+ 8' from the current instruction but return is after three // instructions so add another 4 to pc to get the return address. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); Label here; __ b(&here, SetLK); __ bind(&here); __ mflr(r8); // Constant used below is dependent on size of Call() macro instructions __ addi(r0, r8, Operand(20)); __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ Call(target); } #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS // If return value is on the stack, pop it to registers. if (result_size() > 1) { __ LoadP(r4, MemOperand(r3, kPointerSize)); __ LoadP(r3, MemOperand(r3)); } #endif // Runtime functions should not return 'the hole'. Allowing it to escape may // lead to crashes in the IC code later. if (FLAG_debug_code) { Label okay; __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); __ bne(&okay); __ stop("The hole escaped"); __ bind(&okay); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r3, Heap::kExceptionRootIndex); __ beq(&exception_returned); ExternalReference pending_exception_address(Isolate::kPendingExceptionAddress, isolate()); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; __ mov(r5, Operand(pending_exception_address)); __ LoadP(r5, MemOperand(r5)); __ CompareRoot(r5, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ beq(&okay); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r3:r4: result // sp: stack pointer // fp: frame pointer // r14: still holds argc (callee-saved). __ LeaveExitFrame(save_doubles(), r14, true); __ blr(); // Handling of exception. __ bind(&exception_returned); // Retrieve the pending exception. __ mov(r5, Operand(pending_exception_address)); __ LoadP(r3, MemOperand(r5)); // Clear the pending exception. __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); __ StoreP(r6, MemOperand(r5)); // Special handling of termination exceptions which are uncatchable // by javascript code. Label throw_termination_exception; __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex); __ beq(&throw_termination_exception); // Handle normal exception. __ Throw(r3); __ bind(&throw_termination_exception); __ ThrowUncatchable(r3); } void JSEntryStub::Generate(MacroAssembler* masm) { // r3: code entry // r4: function // r5: receiver // r6: argc // [sp+0]: argv Label invoke, handler_entry, exit; // Called from C #if ABI_USES_FUNCTION_DESCRIPTORS __ function_descriptor(); #endif ProfileEntryHookStub::MaybeCallEntryHook(masm); // PPC LINUX ABI: // preserve LR in pre-reserved slot in caller's frame __ mflr(r0); __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved); // Floating point regs FPR0 - FRP13 are volatile // FPR14-FPR31 are non-volatile, but sub-calls will save them for us // int offset_to_argv = kPointerSize * 22; // matches (22*4) above // __ lwz(r7, MemOperand(sp, offset_to_argv)); // Push a frame with special values setup to mark it as an entry frame. // r3: code entry // r4: function // r5: receiver // r6: argc // r7: argv __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ push(r0); #if V8_OOL_CONSTANT_POOL __ mov(kConstantPoolRegister, Operand(isolate()->factory()->empty_constant_pool_array())); __ push(kConstantPoolRegister); #endif int marker = type(); __ LoadSmiLiteral(r0, Smi::FromInt(marker)); __ push(r0); __ push(r0); // Save copies of the top frame descriptor on the stack. __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ LoadP(r0, MemOperand(r8)); __ push(r0); // Set up frame pointer for the frame to be pushed. __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ mov(r8, Operand(ExternalReference(js_entry_sp))); __ LoadP(r9, MemOperand(r8)); __ cmpi(r9, Operand::Zero()); __ bne(&non_outermost_js); __ StoreP(fp, MemOperand(r8)); __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); __ bind(&cont); __ push(ip); // frame-type // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ b(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushTryHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ StoreP(r3, MemOperand(ip)); __ LoadRoot(r3, Heap::kExceptionRootIndex); __ b(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); // Must preserve r0-r4, r5-r7 are available. (needs update for PPC) __ PushTryHandler(StackHandler::JS_ENTRY, 0); // If an exception not caught by another handler occurs, this handler // returns control to the code after the b(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Clear any pending exceptions. __ mov(r8, Operand(isolate()->factory()->the_hole_value())); __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ StoreP(r8, MemOperand(ip)); // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r3: code entry // r4: function // r5: receiver // r6: argc // r7: argv if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate()); __ mov(ip, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); __ mov(ip, Operand(entry)); } __ LoadP(ip, MemOperand(ip)); // deref address // Branch and link to JSEntryTrampoline. // the address points to the start of the code object, skip the header __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ mtctr(ip); __ bctrl(); // make the call // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // r3 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r8); __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0); __ bne(&non_outermost_js_2); __ mov(r9, Operand::Zero()); __ mov(r8, Operand(ExternalReference(js_entry_sp))); __ StoreP(r9, MemOperand(r8)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r6); __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ StoreP(r6, MemOperand(ip)); // Reset the stack to the callee saved registers. __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // Restore callee-saved registers and return. #ifdef DEBUG if (FLAG_debug_code) { Label here; __ b(&here, SetLK); __ bind(&here); } #endif __ MultiPop(kCalleeSaved); __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); __ mtctr(r0); __ bctr(); } // Uses registers r3 to r7. // Expected input (depending on whether args are in registers or on the stack): // * object: r3 or at sp + 1 * kPointerSize. // * function: r4 or at sp. // // An inlined call site may have been generated before calling this stub. // In this case the offset to the inline site to patch is passed in r8. // (See LCodeGen::DoInstanceOfKnownGlobal) void InstanceofStub::Generate(MacroAssembler* masm) { // Call site inlining and patching implies arguments in registers. DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck()); // Fixed register usage throughout the stub: const Register object = r3; // Object (lhs). Register map = r6; // Map of the object. const Register function = r4; // Function (rhs). const Register prototype = r7; // Prototype of the function. const Register inline_site = r9; const Register scratch = r5; Register scratch3 = no_reg; // delta = mov + unaligned LoadP + cmp + bne #if V8_TARGET_ARCH_PPC64 const int32_t kDeltaToLoadBoolResult = (Assembler::kMovInstructions + 4) * Assembler::kInstrSize; #else const int32_t kDeltaToLoadBoolResult = (Assembler::kMovInstructions + 3) * Assembler::kInstrSize; #endif Label slow, loop, is_instance, is_not_instance, not_js_object; if (!HasArgsInRegisters()) { __ LoadP(object, MemOperand(sp, 1 * kPointerSize)); __ LoadP(function, MemOperand(sp, 0)); } // Check that the left hand is a JS object and load map. __ JumpIfSmi(object, ¬_js_object); __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) { Label miss; __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ bne(&miss); __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); __ bne(&miss); __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&miss); } // Get the prototype of the function. __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(prototype, &slow); __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); // Update the global instanceof or call site inlined cache with the current // map and function. The cached answer will be set when it is known below. if (!HasCallSiteInlineCheck()) { __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); } else { DCHECK(HasArgsInRegisters()); // Patch the (relocated) inlined map check. // The offset was stored in r8 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). const Register offset = r8; __ mflr(inline_site); __ sub(inline_site, inline_site, offset); // Get the map location in r8 and patch it. __ GetRelocatedValue(inline_site, offset, scratch); __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0); } // Register mapping: r6 is object map and r7 is function prototype. // Get prototype of object into r5. __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); // We don't need map any more. Use it as a scratch register. scratch3 = map; map = no_reg; // Loop through the prototype chain looking for the function prototype. __ LoadRoot(scratch3, Heap::kNullValueRootIndex); __ bind(&loop); __ cmp(scratch, prototype); __ beq(&is_instance); __ cmp(scratch, scratch3); __ beq(&is_not_instance); __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); __ b(&loop); Factory* factory = isolate()->factory(); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ LoadSmiLiteral(r3, Smi::FromInt(0)); __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); if (ReturnTrueFalseObject()) { __ Move(r3, factory->true_value()); } } else { // Patch the call site to return true. __ LoadRoot(r3, Heap::kTrueValueRootIndex); __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); // Get the boolean result location in scratch and patch it. __ SetRelocatedValue(inline_site, scratch, r3); if (!ReturnTrueFalseObject()) { __ LoadSmiLiteral(r3, Smi::FromInt(0)); } } __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { __ LoadSmiLiteral(r3, Smi::FromInt(1)); __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); if (ReturnTrueFalseObject()) { __ Move(r3, factory->false_value()); } } else { // Patch the call site to return false. __ LoadRoot(r3, Heap::kFalseValueRootIndex); __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); // Get the boolean result location in scratch and patch it. __ SetRelocatedValue(inline_site, scratch, r3); if (!ReturnTrueFalseObject()) { __ LoadSmiLiteral(r3, Smi::FromInt(1)); } } __ Ret(HasArgsInRegisters() ? 0 : 2); Label object_not_null, object_not_null_or_smi; __ bind(¬_js_object); // Before null, smi and string value checks, check that the rhs is a function // as for a non-function rhs an exception needs to be thrown. __ JumpIfSmi(function, &slow); __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE); __ bne(&slow); // Null is not instance of anything. __ Cmpi(object, Operand(isolate()->factory()->null_value()), r0); __ bne(&object_not_null); if (ReturnTrueFalseObject()) { __ Move(r3, factory->false_value()); } else { __ LoadSmiLiteral(r3, Smi::FromInt(1)); } __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null); // Smi values are not instances of anything. __ JumpIfNotSmi(object, &object_not_null_or_smi); if (ReturnTrueFalseObject()) { __ Move(r3, factory->false_value()); } else { __ LoadSmiLiteral(r3, Smi::FromInt(1)); } __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null_or_smi); // String values are not instances of anything. __ IsObjectJSStringType(object, scratch, &slow); if (ReturnTrueFalseObject()) { __ Move(r3, factory->false_value()); } else { __ LoadSmiLiteral(r3, Smi::FromInt(1)); } __ Ret(HasArgsInRegisters() ? 0 : 2); // Slow-case. Tail call builtin. __ bind(&slow); if (!ReturnTrueFalseObject()) { if (HasArgsInRegisters()) { __ Push(r3, r4); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } else { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r3, r4); __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); } Label true_value, done; __ cmpi(r3, Operand::Zero()); __ beq(&true_value); __ LoadRoot(r3, Heap::kFalseValueRootIndex); __ b(&done); __ bind(&true_value); __ LoadRoot(r3, Heap::kTrueValueRootIndex); __ bind(&done); __ Ret(HasArgsInRegisters() ? 0 : 2); } } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6, r7, &miss); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); } void LoadIndexedStringStub::Generate(MacroAssembler* masm) { // Return address is in lr. Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); Register index = LoadDescriptor::NameRegister(); Register scratch = r6; Register result = r3; DCHECK(!scratch.is(receiver) && !scratch.is(index)); StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX, RECEIVER_IS_STRING); char_at_generator.GenerateFast(masm); __ Ret(); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The displacement is the offset of the last parameter (if any) // relative to the frame pointer. const int kDisplacement = StandardFrameConstants::kCallerSPOffset - kPointerSize; DCHECK(r4.is(ArgumentsAccessReadDescriptor::index())); DCHECK(r3.is(ArgumentsAccessReadDescriptor::parameter_count())); // Check that the key is a smi. Label slow; __ JumpIfNotSmi(r4, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset)); STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); __ beq(&adaptor); // Check index against formal parameters count limit passed in // through register r3. Use unsigned comparison to get negative // check for free. __ cmpl(r4, r3); __ bge(&slow); // Read the argument from the stack and return it. __ sub(r6, r3, r4); __ SmiToPtrArrayOffset(r6, r6); __ add(r6, fp, r6); __ LoadP(r3, MemOperand(r6, kDisplacement)); __ blr(); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmpl(r4, r3); __ bge(&slow); // Read the argument from the adaptor frame and return it. __ sub(r6, r3, r4); __ SmiToPtrArrayOffset(r6, r6); __ add(r6, r5, r6); __ LoadP(r3, MemOperand(r6, kDisplacement)); __ blr(); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ push(r4); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { // sp[0] : number of parameters // sp[1] : receiver displacement // sp[2] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset)); STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); __ bne(&runtime); // Patch the arguments.length and the parameters pointer in the current frame. __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); __ SmiToPtrArrayOffset(r5, r5); __ add(r6, r6, r5); __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); } void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { // Stack layout: // sp[0] : number of parameters (tagged) // sp[1] : address of receiver argument // sp[2] : function // Registers used over whole function: // r9 : allocated object (tagged) // r11 : mapped parameter count (tagged) __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); // r4 = parameter count (tagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; Label adaptor_frame, try_allocate; __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset)); STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); __ beq(&adaptor_frame); // No adaptor, parameter count = argument count. __ mr(r5, r4); __ b(&try_allocate); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiToPtrArrayOffset(r7, r5); __ add(r6, r6, r7); __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); // r4 = parameter count (tagged) // r5 = argument count (tagged) // Compute the mapped parameter count = min(r4, r5) in r4. Label skip; __ cmp(r4, r5); __ blt(&skip); __ mr(r4, r5); __ bind(&skip); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; // If there are no mapped parameters, we do not need the parameter_map. Label skip2, skip3; __ CmpSmiLiteral(r4, Smi::FromInt(0), r0); __ bne(&skip2); __ li(r11, Operand::Zero()); __ b(&skip3); __ bind(&skip2); __ SmiToPtrArrayOffset(r11, r4); __ addi(r11, r11, Operand(kParameterMapHeaderSize)); __ bind(&skip3); // 2. Backing store. __ SmiToPtrArrayOffset(r7, r5); __ add(r11, r11, r7); __ addi(r11, r11, Operand(FixedArray::kHeaderSize)); // 3. Arguments object. __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT); // r3 = address of new object(s) (tagged) // r5 = argument count (smi-tagged) // Get the arguments boilerplate from the current native context into r4. const int kNormalOffset = Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); const int kAliasedOffset = Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); __ LoadP(r7, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset)); Label skip4, skip5; __ cmpi(r4, Operand::Zero()); __ bne(&skip4); __ LoadP(r7, MemOperand(r7, kNormalOffset)); __ b(&skip5); __ bind(&skip4); __ LoadP(r7, MemOperand(r7, kAliasedOffset)); __ bind(&skip5); // r3 = address of new object (tagged) // r4 = mapped parameter count (tagged) // r5 = argument count (smi-tagged) // r7 = address of arguments map (tagged) __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0); __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ LoadP(r6, MemOperand(sp, 2 * kPointerSize)); __ AssertNotSmi(r6); const int kCalleeOffset = JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize; __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0); // Use the length (smi tagged) and set that as an in-object property too. __ AssertSmi(r5); STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); const int kLengthOffset = JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize; __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, r7 will point there, otherwise // it will point to the backing store. __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize)); __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0); // r3 = address of new object (tagged) // r4 = mapped parameter count (tagged) // r5 = argument count (tagged) // r7 = address of parameter map or backing store (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map, skip6; __ CmpSmiLiteral(r4, Smi::FromInt(0), r0); __ bne(&skip6); // Move backing store address to r6, because it is // expected there when filling in the unmapped arguments. __ mr(r6, r7); __ b(&skip_parameter_map); __ bind(&skip6); __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex); __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0); __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0); __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0); __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize), r0); __ SmiToPtrArrayOffset(r9, r4); __ add(r9, r7, r9); __ addi(r9, r9, Operand(kParameterMapHeaderSize)); __ StoreP(r9, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize), r0); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ mr(r9, r4); __ LoadP(r11, MemOperand(sp, 0 * kPointerSize)); __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0); __ sub(r11, r11, r4); __ LoadRoot(r10, Heap::kTheHoleValueRootIndex); __ SmiToPtrArrayOffset(r6, r9); __ add(r6, r7, r6); __ addi(r6, r6, Operand(kParameterMapHeaderSize)); // r9 = loop variable (tagged) // r4 = mapping index (tagged) // r6 = address of backing store (tagged) // r7 = address of parameter map (tagged) // r8 = temporary scratch (a.o., for address calculation) // r10 = the hole value __ b(¶meters_test); __ bind(¶meters_loop); __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0); __ SmiToPtrArrayOffset(r8, r9); __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ StorePX(r11, MemOperand(r8, r7)); __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ StorePX(r10, MemOperand(r8, r6)); __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0); __ bind(¶meters_test); __ CmpSmiLiteral(r9, Smi::FromInt(0), r0); __ bne(¶meters_loop); __ bind(&skip_parameter_map); // r5 = argument count (tagged) // r6 = address of backing store (tagged) // r8 = scratch // Copy arguments header and remaining slots (if there are any). __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex); __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0); __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0); Label arguments_loop, arguments_test; __ mr(r11, r4); __ LoadP(r7, MemOperand(sp, 1 * kPointerSize)); __ SmiToPtrArrayOffset(r8, r11); __ sub(r7, r7, r8); __ b(&arguments_test); __ bind(&arguments_loop); __ subi(r7, r7, Operand(kPointerSize)); __ LoadP(r9, MemOperand(r7, 0)); __ SmiToPtrArrayOffset(r8, r11); __ add(r8, r6, r8); __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0); __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0); __ bind(&arguments_test); __ cmp(r11, r5); __ blt(&arguments_loop); // Return and remove the on-stack parameters. __ addi(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Do the runtime call to allocate the arguments object. // r5 = argument count (tagged) __ bind(&runtime); __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); } void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) { // Return address is in lr. Label slow; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); // Check that the key is an array index, that is Uint32. __ TestIfPositiveSmi(key, r0); __ bne(&slow, cr0); // Everything is fine, call runtime. __ Push(receiver, key); // Receiver, key. // Perform tail call to the entry. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor), masm->isolate()), 2, 1); __ bind(&slow); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset)); STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); __ beq(&adaptor_frame); // Get the length from the frame. __ LoadP(r4, MemOperand(sp, 0)); __ b(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ StoreP(r4, MemOperand(sp, 0)); __ SmiToPtrArrayOffset(r6, r4); __ add(r6, r5, r6); __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); // Try the new space allocation. Start out with computing the size // of the arguments object and the elements array in words. Label add_arguments_object; __ bind(&try_allocate); __ cmpi(r4, Operand::Zero()); __ beq(&add_arguments_object); __ SmiUntag(r4); __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize)); __ bind(&add_arguments_object); __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); // Do the allocation of both objects in one go. __ Allocate(r4, r3, r5, r6, &runtime, static_cast(TAG_OBJECT | SIZE_IN_WORDS)); // Get the arguments boilerplate from the current native context. __ LoadP(r7, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset)); __ LoadP( r7, MemOperand(r7, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX))); __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0); __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); __ AssertSmi(r4); __ StoreP(r4, FieldMemOperand(r3, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), r0); // If there are no actual arguments, we're done. Label done; __ cmpi(r4, Operand::Zero()); __ beq(&done); // Get the parameters pointer from the stack. __ LoadP(r5, MemOperand(sp, 1 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize)); __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0); __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex); __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0); __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0); // Untag the length for the loop. __ SmiUntag(r4); // Copy the fixed array slots. Label loop; // Set up r7 to point just prior to the first array slot. __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); __ mtctr(r4); __ bind(&loop); // Pre-decrement r5 with kPointerSize on each iteration. // Pre-decrement in order to skip receiver. __ LoadPU(r6, MemOperand(r5, -kPointerSize)); // Pre-increment r7 with kPointerSize on each iteration. __ StorePU(r6, MemOperand(r7, kPointerSize)); __ bdnz(&loop); // Return and remove the on-stack parameters. __ bind(&done); __ addi(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime, br_over, encoding_type_UC16; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. Register subject = r14; Register regexp_data = r15; Register last_match_info_elements = r16; Register code = r17; // Ensure register assigments are consistent with callee save masks DCHECK(subject.bit() & kCalleeSaved); DCHECK(regexp_data.bit() & kCalleeSaved); DCHECK(last_match_info_elements.bit() & kCalleeSaved); DCHECK(code.bit() & kCalleeSaved); // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ mov(r3, Operand(address_of_regexp_stack_memory_size)); __ LoadP(r3, MemOperand(r3, 0)); __ cmpi(r3, Operand::Zero()); __ beq(&runtime); // Check that the first argument is a JSRegExp object. __ LoadP(r3, MemOperand(sp, kJSRegExpOffset)); __ JumpIfSmi(r3, &runtime); __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE); __ bne(&runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ TestIfSmi(regexp_data, r0); __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0); __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu); __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0); __ bne(&runtime); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ LoadP(r5, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // SmiToShortArrayOffset accomplishes the multiplication by 2 and // SmiUntag (which is a nop for 32-bit). __ SmiToShortArrayOffset(r5, r5); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); __ bgt(&runtime); // Reset offset for possibly sliced string. __ li(r11, Operand::Zero()); __ LoadP(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ mr(r6, subject); // Make a copy of the original subject string. __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); // subject: subject string // r6: subject string // r3: subject string instance type // regexp_data: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (5). // (2) Anything but sequential or cons? If yes, go to (6). // (3) Cons string. If the string is flat, replace subject with first string. // Otherwise bailout. // (4) Is subject external? If yes, go to (7). // (5) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (6) Not a long external string? If yes, go to (8). // (7) External string. Make it, offset-wise, look like a sequential string. // Go to (5). // (8) Short external string or not a string? If yes, bail out to runtime. // (9) Sliced string. Replace subject with parent. Go to (4). Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */, not_seq_nor_cons /* 6 */, not_long_external /* 8 */; // (1) Sequential string? If yes, go to (5). STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask) == 0x93); __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ beq(&seq_string, cr0); // Go to (5). // (2) Anything but sequential or cons? If yes, go to (6). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); STATIC_ASSERT(kExternalStringTag < 0xffffu); __ cmpi(r4, Operand(kExternalStringTag)); __ bge(¬_seq_nor_cons); // Go to (6). // (3) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset)); __ CompareRoot(r3, Heap::kempty_stringRootIndex); __ bne(&runtime); __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); // (4) Is subject external? If yes, go to (7). __ bind(&check_underlying); __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSeqStringTag == 0); STATIC_ASSERT(kStringRepresentationMask == 3); __ andi(r0, r3, Operand(kStringRepresentationMask)); // The underlying external string is never a short external string. STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); __ bne(&external_string, cr0); // Go to (7). // (5) Sequential string. Load regexp code according to encoding. __ bind(&seq_string); // subject: sequential subject string (or look-alike, external string) // r6: original subject string // Load previous index and check range before r6 is overwritten. We have to // use r6 instead of subject here because subject might have been only made // to look like a sequential string when it actually is an external string. __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(r4, &runtime); __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset)); __ cmpl(r6, r4); __ ble(&runtime); __ SmiUntag(r4); STATIC_ASSERT(4 == kOneByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0); STATIC_ASSERT(kStringEncodingMask == 4); __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC); __ beq(&encoding_type_UC16, cr0); __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset)); __ b(&br_over); __ bind(&encoding_type_UC16); __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); __ bind(&br_over); // (E) Carry on. String handling is done. // code: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(code, &runtime); // r4: previous index // r6: encoding of subject string (1 if one_byte, 0 if two_byte); // code: Address of generated regexp code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 10; const int kParameterRegisters = 8; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers. // Argument 10 (in stack parameter area): Pass current isolate address. __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize)); // Argument 9 is a dummy that reserves the space used for // the return address added by the ExitFrame in native calls. // Argument 8 (r10): Indicate that this is a direct call from JavaScript. __ li(r10, Operand(1)); // Argument 7 (r9): Start (high end) of backtracking stack memory area. __ mov(r3, Operand(address_of_regexp_stack_memory_address)); __ LoadP(r3, MemOperand(r3, 0)); __ mov(r5, Operand(address_of_regexp_stack_memory_size)); __ LoadP(r5, MemOperand(r5, 0)); __ add(r9, r3, r5); // Argument 6 (r8): Set the number of capture registers to zero to force // global egexps to behave as non-global. This does not affect non-global // regexps. __ li(r8, Operand::Zero()); // Argument 5 (r7): static offsets vector buffer. __ mov( r7, Operand(ExternalReference::address_of_static_offsets_vector(isolate()))); // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data // and calculate the shift of the index (0 for one-byte and 1 for two-byte). __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ xori(r6, r6, Operand(1)); // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, r6: End of string data // Argument 3, r5: Start of string data // Prepare start and end index of the input. __ ShiftLeft_(r11, r11, r6); __ add(r11, r18, r11); __ ShiftLeft_(r5, r4, r6); __ add(r5, r11, r5); __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset)); __ SmiUntag(r18); __ ShiftLeft_(r6, r18, r6); __ add(r6, r11, r6); // Argument 2 (r4): Previous index. // Already there // Argument 1 (r3): Subject string. __ mr(r3, subject); // Locate the code entry and call it. __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); #if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR) // Even Simulated AIX/PPC64 Linux uses a function descriptor for the // RegExp routine. Extract the instruction address here since // DirectCEntryStub::GenerateCall will not do it for calls out to // what it thinks is C code compiled for the simulator/host // platform. __ LoadP(code, MemOperand(code, 0)); // Instruction address #endif DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, code); __ LeaveExitFrame(false, no_reg, true); // r3: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ cmpi(r3, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. __ beq(&success); Label failure; __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE)); __ beq(&failure); __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ bne(&runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ mov(r4, Operand(isolate()->factory()->the_hole_value())); __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ LoadP(r3, MemOperand(r5, 0)); __ cmp(r3, r4); __ beq(&runtime); __ StoreP(r4, MemOperand(r5, 0)); // Clear pending exception. // Check if the exception is a termination. If so, throw as uncatchable. __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex); Label termination_exception; __ beq(&termination_exception); __ Throw(r3); __ bind(&termination_exception); __ ThrowUncatchable(r3); __ bind(&failure); // For failure and exception return null. __ mov(r3, Operand(isolate()->factory()->null_value())); __ addi(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Process the result from the native regexp code. __ bind(&success); __ LoadP(r4, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. // SmiToShortArrayOffset accomplishes the multiplication by 2 and // SmiUntag (which is a nop for 32-bit). __ SmiToShortArrayOffset(r4, r4); __ addi(r4, r4, Operand(2)); __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(r3, &runtime); __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE); __ bne(&runtime); // Check that the JSArray is in fast case. __ LoadP(last_match_info_elements, FieldMemOperand(r3, JSArray::kElementsOffset)); __ LoadP(r3, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex); __ bne(&runtime); // Check that the last match info has space for the capture registers and the // additional information. __ LoadP( r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead)); __ SmiUntag(r0, r3); __ cmp(r5, r0); __ bgt(&runtime); // r4: number of capture registers // subject: subject string // Store the capture count. __ SmiTag(r5, r4); __ StoreP(r5, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastCaptureCountOffset), r0); // Store last subject and last input. __ StoreP(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastSubjectOffset), r0); __ mr(r5, subject); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset, subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs); __ mr(subject, r5); __ StoreP(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastInputOffset), r0); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset, subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ mov(r5, Operand(address_of_static_offsets_vector)); // r4: number of capture registers // r5: offsets vector Label next_capture; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ addi( r3, last_match_info_elements, Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize)); __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu __ mtctr(r4); __ bind(&next_capture); // Read the value from the static offsets vector buffer. __ lwzu(r6, MemOperand(r5, kIntSize)); // Store the smi value in the last match info. __ SmiTag(r6); __ StorePU(r6, MemOperand(r3, kPointerSize)); __ bdnz(&next_capture); // Return last match info. __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset)); __ addi(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); // Deferred code for string handling. // (6) Not a long external string? If yes, go to (8). __ bind(¬_seq_nor_cons); // Compare flags are still set. __ bgt(¬_long_external); // Go to (8). // (7) External string. Make it, offset-wise, look like a sequential string. __ bind(&external_string); __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. STATIC_ASSERT(kIsIndirectStringMask == 1); __ andi(r0, r3, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound, cr0); } __ LoadP(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ subi(subject, subject, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ b(&seq_string); // Go to (5). // (8) Short external string or not a string? If yes, bail out to runtime. __ bind(¬_long_external); STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0); __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask)); __ bne(&runtime, cr0); // (9) Sliced string. Replace subject with parent. Go to (4). // Load offset into r11 and replace subject string with parent. __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ SmiUntag(r11); __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ b(&check_underlying); // Go to (4). #endif // V8_INTERPRETED_REGEXP } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // r3 : number of arguments to the construct function // r4 : the function to call // r5 : Feedback vector // r6 : slot in feedback vector (Smi) Label initialize, done, miss, megamorphic, not_array_function; DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); // Load the cache state into r7. __ SmiToPtrArrayOffset(r7, r6); __ add(r7, r5, r7); __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmp(r7, r4); __ b(eq, &done); if (!FLAG_pretenuring_call_new) { // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. Do a map check on the object in ecx. __ LoadP(r8, FieldMemOperand(r7, 0)); __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); __ bne(&miss); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); __ cmp(r4, r7); __ bne(&megamorphic); __ b(&done); } __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex); __ beq(&initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ SmiToPtrArrayOffset(r7, r6); __ add(r7, r5, r7); __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0); __ jmp(&done); // An uninitialized cache is patched with the function __ bind(&initialize); if (!FLAG_pretenuring_call_new) { // Make sure the function is the Array() function. __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); __ cmp(r4, r7); __ bne(¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Arguments register must be smi-tagged to call out. __ SmiTag(r3); __ Push(r6, r5, r4, r3); CreateAllocationSiteStub create_stub(masm->isolate()); __ CallStub(&create_stub); __ Pop(r6, r5, r4, r3); __ SmiUntag(r3); } __ b(&done); __ bind(¬_array_function); } __ SmiToPtrArrayOffset(r7, r6); __ add(r7, r5, r7); __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ StoreP(r4, MemOperand(r7, 0)); __ Push(r7, r5, r4); __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Pop(r7, r5, r4); __ bind(&done); } static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { // Do not transform the receiver for strict mode functions and natives. __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset)); __ TestBit(r7, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kStrictModeFunction, #else SharedFunctionInfo::kStrictModeFunction + kSmiTagSize, #endif r0); __ bne(cont, cr0); // Do not transform the receiver for native. __ TestBit(r7, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kNative, #else SharedFunctionInfo::kNative + kSmiTagSize, #endif r0); __ bne(cont, cr0); } static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) { // Check for function proxy. STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu); __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE)); __ bne(non_function); __ push(r4); // put proxy as additional argument __ li(r3, Operand(argc + 1)); __ li(r5, Operand::Zero()); __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY); { Handle adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ Jump(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(non_function); __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0); __ li(r3, Operand(argc)); // Set up the number of arguments. __ li(r5, Operand::Zero()); __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { // Wrap the receiver and patch it back onto the stack. { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); __ Push(r4, r6); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ pop(r4); } __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0); __ b(cont); } static void CallFunctionNoFeedback(MacroAssembler* masm, int argc, bool needs_checks, bool call_as_method) { // r4 : the function to call Label slow, non_function, wrap, cont; if (needs_checks) { // Check that the function is really a JavaScript function. // r4: pushed function (to be verified) __ JumpIfSmi(r4, &non_function); // Goto slow case if we do not have a function. __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); __ bne(&slow); } // Fast-case: Invoke the function now. // r4: pushed function ParameterCount actual(argc); if (call_as_method) { if (needs_checks) { EmitContinueIfStrictOrNative(masm, &cont); } // Compute the receiver in sloppy mode. __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); if (needs_checks) { __ JumpIfSmi(r6, &wrap); __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE); __ blt(&wrap); } else { __ b(&wrap); } __ bind(&cont); } __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper()); if (needs_checks) { // Slow-case: Non-function called. __ bind(&slow); EmitSlowCase(masm, argc, &non_function); } if (call_as_method) { __ bind(&wrap); EmitWrapCase(masm, argc, &cont); } } void CallFunctionStub::Generate(MacroAssembler* masm) { CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod()); } void CallConstructStub::Generate(MacroAssembler* masm) { // r3 : number of arguments // r4 : the function to call // r5 : feedback vector // r6 : (only if r5 is not the megamorphic symbol) slot in feedback // vector (Smi) Label slow, non_function_call; // Check that the function is not a smi. __ JumpIfSmi(r4, &non_function_call); // Check that the function is a JSFunction. __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); __ bne(&slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); __ SmiToPtrArrayOffset(r8, r6); __ add(r8, r5, r8); if (FLAG_pretenuring_call_new) { // Put the AllocationSite from the feedback vector into r5. // By adding kPointerSize we encode that we know the AllocationSite // entry is at the feedback vector slot given by r6 + 1. __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize)); } else { Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into r5, or undefined. __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize)); __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset)); __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); __ beq(&feedback_register_initialized); __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); } __ AssertUndefinedOrAllocationSite(r5, r8); } // Jump to the function-specific construct stub. Register jmp_reg = r7; __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(jmp_reg, FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset)); __ addi(ip, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); // r3: number of arguments // r4: called object // r7: object type Label do_call; __ bind(&slow); STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu); __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE)); __ bne(&non_function_call); __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ b(&do_call); __ bind(&non_function_call); __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing r3). __ li(r5, Operand::Zero()); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ LoadP(vector, FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(vector, FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset)); } void CallIC_ArrayStub::Generate(MacroAssembler* masm) { // r4 - function // r6 - slot id Label miss; int argc = arg_count(); ParameterCount actual(argc); EmitLoadTypeFeedbackVector(masm, r5); __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); __ cmp(r4, r7); __ bne(&miss); __ mov(r3, Operand(arg_count())); __ SmiToPtrArrayOffset(r7, r6); __ add(r7, r5, r7); __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); // Verify that r7 contains an AllocationSite __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset)); __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); __ bne(&miss); __ mr(r5, r7); ArrayConstructorStub stub(masm->isolate(), arg_count()); __ TailCallStub(&stub); __ bind(&miss); GenerateMiss(masm); // The slow case, we need this no matter what to complete a call after a miss. CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod()); // Unreachable. __ stop("Unexpected code address"); } void CallICStub::Generate(MacroAssembler* masm) { // r4 - function // r6 - slot id (Smi) Label extra_checks_or_miss, slow_start; Label slow, non_function, wrap, cont; Label have_js_function; int argc = arg_count(); ParameterCount actual(argc); EmitLoadTypeFeedbackVector(masm, r5); // The checks. First, does r4 match the recorded monomorphic target? __ SmiToPtrArrayOffset(r7, r6); __ add(r7, r5, r7); __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); __ cmp(r4, r7); __ bne(&extra_checks_or_miss); __ bind(&have_js_function); if (CallAsMethod()) { EmitContinueIfStrictOrNative(masm, &cont); // Compute the receiver in sloppy mode. __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); __ JumpIfSmi(r6, &wrap); __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE); __ blt(&wrap); __ bind(&cont); } __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper()); __ bind(&slow); EmitSlowCase(masm, argc, &non_function); if (CallAsMethod()) { __ bind(&wrap); EmitWrapCase(masm, argc, &cont); } __ bind(&extra_checks_or_miss); Label miss; __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex); __ beq(&slow_start); __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex); __ beq(&miss); if (!FLAG_trace_ic) { // We are going megamorphic. If the feedback is a JSFunction, it is fine // to handle it here. More complex cases are dealt with in the runtime. __ AssertNotSmi(r7); __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE); __ bne(&miss); __ SmiToPtrArrayOffset(r7, r6); __ add(r7, r5, r7); __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0); // We have to update statistics for runtime profiling. const int with_types_offset = FixedArray::OffsetOfElementAt(TypeFeedbackVector::kWithTypesIndex); __ LoadP(r7, FieldMemOperand(r5, with_types_offset)); __ SubSmiLiteral(r7, r7, Smi::FromInt(1), r0); __ StoreP(r7, FieldMemOperand(r5, with_types_offset), r0); const int generic_offset = FixedArray::OffsetOfElementAt(TypeFeedbackVector::kGenericCountIndex); __ LoadP(r7, FieldMemOperand(r5, generic_offset)); __ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0); __ StoreP(r7, FieldMemOperand(r5, generic_offset), r0); __ jmp(&slow_start); } // We are here because tracing is on or we are going monomorphic. __ bind(&miss); GenerateMiss(masm); // the slow case __ bind(&slow_start); // Check that the function is really a JavaScript function. // r4: pushed function (to be verified) __ JumpIfSmi(r4, &non_function); // Goto slow case if we do not have a function. __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); __ bne(&slow); __ b(&have_js_function); } void CallICStub::GenerateMiss(MacroAssembler* masm) { // Get the receiver of the function from the stack; 1 ~ return address. __ LoadP(r7, MemOperand(sp, (arg_count() + 1) * kPointerSize), r0); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push the receiver and the function and feedback info. __ Push(r7, r4, r5, r6); // Call the entry. IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss : IC::kCallIC_Customization_Miss; ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate()); __ CallExternalReference(miss, 4); // Move result to r4 and exit the internal frame. __ mr(r4, r3); } } // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. if (check_mode_ == RECEIVER_IS_UNKNOWN) { __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ andi(r0, result_, Operand(kIsNotStringMask)); __ bne(receiver_not_string_, cr0); } // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset)); __ cmpl(ip, index_); __ ble(index_out_of_range_); __ SmiUntag(index_); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, r3); __ pop(object_); // Reload the instance type. __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ b(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ SmiTag(index_); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); __ Move(result_, r3); call_helper.AfterCall(masm); __ b(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1)); __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode)); __ ori(r0, r0, Operand(kSmiTagMask)); __ and_(r0, code_, r0); __ cmpi(r0, Operand::Zero()); __ bne(&slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); // At this point code register contains smi tagged one-byte char code. __ mr(r0, code_); __ SmiToPtrArrayOffset(code_, code_); __ add(result_, result_, code_); __ mr(code_, r0); __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ beq(&slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); __ Move(result_, r3); call_helper.AfterCall(masm); __ b(&exit_); __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); } enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, String::Encoding encoding) { if (FLAG_debug_code) { // Check that destination is word aligned. __ andi(r0, dest, Operand(kPointerAlignmentMask)); __ Check(eq, kDestinationOfCopyNotAligned, cr0); } // Nothing to do for zero characters. Label done; if (encoding == String::TWO_BYTE_ENCODING) { // double the length __ add(count, count, count, LeaveOE, SetRC); __ beq(&done, cr0); } else { __ cmpi(count, Operand::Zero()); __ beq(&done); } // Copy count bytes from src to dst. Label byte_loop; __ mtctr(count); __ bind(&byte_loop); __ lbz(scratch, MemOperand(src)); __ addi(src, src, Operand(1)); __ stb(scratch, MemOperand(dest)); __ addi(dest, dest, Operand(1)); __ bdnz(&byte_loop); __ bind(&done); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // lr: return address // sp[0]: to // sp[4]: from // sp[8]: string // This stub is called from the native-call %_SubString(...), so // nothing can be assumed about the arguments. It is tested that: // "string" is a sequential string, // both "from" and "to" are smis, and // 0 <= from <= to <= string.length. // If any of these assumptions fail, we call the runtime system. const int kToOffset = 0 * kPointerSize; const int kFromOffset = 1 * kPointerSize; const int kStringOffset = 2 * kPointerSize; __ LoadP(r5, MemOperand(sp, kToOffset)); __ LoadP(r6, MemOperand(sp, kFromOffset)); // If either to or from had the smi tag bit set, then fail to generic runtime __ JumpIfNotSmi(r5, &runtime); __ JumpIfNotSmi(r6, &runtime); __ SmiUntag(r5); __ SmiUntag(r6, SetRC); // Both r5 and r6 are untagged integers. // We want to bailout to runtime here if From is negative. __ blt(&runtime, cr0); // From < 0. __ cmpl(r6, r5); __ bgt(&runtime); // Fail if from > to. __ sub(r5, r5, r6); // Make sure first argument is a string. __ LoadP(r3, MemOperand(sp, kStringOffset)); __ JumpIfSmi(r3, &runtime); Condition is_string = masm->IsObjectStringType(r3, r4); __ b(NegateCondition(is_string), &runtime, cr0); Label single_char; __ cmpi(r5, Operand(1)); __ b(eq, &single_char); // Short-cut for the case of trivial substring. Label return_r3; // r3: original string // r5: result string length __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset)); __ SmiUntag(r0, r7); __ cmpl(r5, r0); // Return original string. __ beq(&return_r3); // Longer than original string's length or negative: unsafe arguments. __ bgt(&runtime); // Shorter than original string's length: an actual substring. // Deal with different string types: update the index if necessary // and put the underlying string into r8. // r3: original string // r4: instance type // r5: length // r6: from index (untagged) Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ andi(r0, r4, Operand(kIsIndirectStringMask)); __ beq(&seq_or_external_string, cr0); __ andi(r0, r4, Operand(kSlicedNotConsMask)); __ bne(&sliced_string, cr0); // Cons string. Check whether it is flat, then fetch first part. __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset)); __ CompareRoot(r8, Heap::kempty_stringRootIndex); __ bne(&runtime); __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset)); // Update instance type. __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset)); __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ b(&underlying_unpacked); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset)); __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset)); __ SmiUntag(r4, r7); __ add(r6, r6, r4); // Add offset to index. // Update instance type. __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset)); __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); __ b(&underlying_unpacked); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mr(r8, r3); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // r8: underlying subject string // r4: instance type of underlying subject string // r5: length // r6: adjusted start index (untagged) __ cmpi(r5, Operand(SlicedString::kMinLength)); // Short slice. Copy instead of slicing. __ blt(©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ andi(r0, r4, Operand(kStringEncodingMask)); __ beq(&two_byte_slice, cr0); __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime); __ b(&set_slice_header); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime); __ bind(&set_slice_header); __ SmiTag(r6); __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0); __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0); __ b(&return_r3); __ bind(©_routine); } // r8: underlying subject string // r4: instance type of underlying subject string // r5: length // r6: adjusted start index (untagged) Label two_byte_sequential, sequential_string, allocate_result; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ andi(r0, r4, Operand(kExternalStringTag)); __ beq(&sequential_string, cr0); // Handle external string. // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ andi(r0, r4, Operand(kShortExternalStringTag)); __ bne(&runtime, cr0); __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset)); // r8 already points to the first character of underlying string. __ b(&allocate_result); __ bind(&sequential_string); // Locate first character of underlying subject string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ bind(&allocate_result); // Sequential acii string. Allocate the result. STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); __ andi(r0, r4, Operand(kStringEncodingMask)); __ beq(&two_byte_sequential, cr0); // Allocate and copy the resulting one-byte string. __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime); // Locate first character of substring to copy. __ add(r8, r8, r6); // Locate first character of result. __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // r3: result string // r4: first character of result string // r5: result string length // r8: first character of substring to copy STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6, String::ONE_BYTE_ENCODING); __ b(&return_r3); // Allocate and copy the resulting two-byte string. __ bind(&two_byte_sequential); __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime); // Locate first character of substring to copy. __ ShiftLeftImm(r4, r6, Operand(1)); __ add(r8, r8, r4); // Locate first character of result. __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // r3: result string. // r4: first character of result. // r5: result length. // r8: first character of substring to copy. STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6, String::TWO_BYTE_ENCODING); __ bind(&return_r3); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1, r6, r7); __ Drop(3); __ Ret(); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); __ bind(&single_char); // r3: original string // r4: instance type // r5: length // r6: from index (untagged) __ SmiTag(r6, r6); StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING); generator.GenerateFast(masm); __ Drop(3); __ Ret(); generator.SkipSlow(masm, &runtime); } void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ LoadP(length, FieldMemOperand(left, String::kLengthOffset)); __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ cmp(length, scratch2); __ beq(&check_zero_length); __ bind(&strings_not_equal); __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL)); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ cmpi(length, Operand::Zero()); __ bne(&compare_chars); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal); // Characters are equal. __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Label skip, result_not_equal, compare_lengths; // Find minimum length and length difference. __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC); Register length_delta = scratch3; __ ble(&skip, cr0); __ mr(scratch1, scratch2); __ bind(&skip); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ cmpi(min_length, Operand::Zero()); __ beq(&compare_lengths); // Compare loop. GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); DCHECK(Smi::FromInt(EQUAL) == static_cast(0)); // Use length_delta as result if it's zero. __ mr(r3, length_delta); __ cmpi(r3, Operand::Zero()); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. Label less_equal, equal; __ ble(&less_equal); __ LoadSmiLiteral(r3, Smi::FromInt(GREATER)); __ Ret(); __ bind(&less_equal); __ beq(&equal); __ LoadSmiLiteral(r3, Smi::FromInt(LESS)); __ bind(&equal); __ Ret(); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ addi(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ add(left, left, scratch1); __ add(right, right, scratch1); __ subfic(length, length, Operand::Zero()); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ lbzx(scratch1, MemOperand(left, index)); __ lbzx(r0, MemOperand(right, index)); __ cmp(scratch1, r0); __ bne(chars_not_equal); __ addi(index, index, Operand(1)); __ cmpi(index, Operand::Zero()); __ bne(&loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; Counters* counters = isolate()->counters(); // Stack frame on entry. // sp[0]: right string // sp[4]: left string __ LoadP(r3, MemOperand(sp)); // Load right in r3, left in r4. __ LoadP(r4, MemOperand(sp, kPointerSize)); Label not_same; __ cmp(r3, r4); __ bne(¬_same); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ IncrementCounter(counters->string_compare_native(), 1, r4, r5); __ addi(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(¬_same); // Check that both objects are sequential one-byte strings. __ JumpIfNotBothSequentialOneByteStrings(r4, r3, r5, r6, &runtime); // Compare flat one-byte strings natively. Remove arguments from stack first. __ IncrementCounter(counters->string_compare_native(), 1, r5, r6); __ addi(sp, sp, Operand(2 * kPointerSize)); StringHelper::GenerateCompareFlatOneByteStrings(masm, r4, r3, r5, r6, r7); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r4 : left // -- r3 : right // -- lr : return address // ----------------------------------- // Load r5 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ Move(r5, handle(isolate()->heap()->undefined_value())); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ TestIfSmi(r5, r0); __ Assert(ne, kExpectedAllocationSite, cr0); __ push(r5); __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); __ cmp(r5, ip); __ pop(r5); __ Assert(eq, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ orx(r5, r4, r3); __ JumpIfNotSmi(r5, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. // __ sub(r3, r3, r4, SetCC); __ sub(r3, r3, r4); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(r4); __ SmiUntag(r3); __ sub(r3, r4, r3); } __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; Label equal, less_than; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(r4, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(r3, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved. // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(r3, &right_smi); __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset)); __ b(&left); __ bind(&right_smi); __ SmiToDouble(d1, r3); __ bind(&left); __ JumpIfSmi(r4, &left_smi); __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset)); __ b(&done); __ bind(&left_smi); __ SmiToDouble(d0, r4); __ bind(&done); // Compare operands __ fcmpu(d0, d1); // Don't base result on status bits when a NaN is involved. __ bunordered(&unordered); // Return a result of -1, 0, or 1, based on status bits. __ beq(&equal); __ blt(&less_than); // assume greater than __ li(r3, Operand(GREATER)); __ Ret(); __ bind(&equal); __ li(r3, Operand(EQUAL)); __ Ret(); __ bind(&less_than); __ li(r3, Operand(LESS)); __ Ret(); __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); __ bne(&miss); __ JumpIfSmi(r4, &unordered); __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE); __ bne(&maybe_undefined2); __ b(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ CompareRoot(r4, Heap::kUndefinedValueRootIndex); __ beq(&unordered); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); Label miss, not_equal; // Registers containing left and right operands respectively. Register left = r4; Register right = r3; Register tmp1 = r5; Register tmp2 = r6; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are symbols. __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orx(tmp1, tmp1, tmp2); __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ bne(&miss, cr0); // Internalized strings are compared by identity. __ cmp(left, right); __ bne(¬_equal); // Make sure r3 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r3)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ bind(¬_equal); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == eq); Label miss; // Registers containing left and right operands respectively. Register left = r4; Register right = r3; Register tmp1 = r5; Register tmp2 = r6; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss); // Unique names are compared by identity. __ cmp(left, right); __ bne(&miss); // Make sure r3 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r3)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss, not_identical, is_symbol; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = r4; Register right = r3; Register tmp1 = r5; Register tmp2 = r6; Register tmp3 = r7; Register tmp4 = r8; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ orx(tmp3, tmp1, tmp2); __ andi(r0, tmp3, Operand(kIsNotStringMask)); __ bne(&miss, cr0); // Fast check for identical strings. __ cmp(left, right); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ bne(¬_identical); __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); __ Ret(); __ bind(¬_identical); // Handle not identical strings. // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { DCHECK(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); __ orx(tmp3, tmp1, tmp2); __ andi(r0, tmp3, Operand(kIsNotInternalizedMask)); __ bne(&is_symbol, cr0); // Make sure r3 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(r3)); __ Ret(); __ bind(&is_symbol); } // Check that both strings are sequential one-byte. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat one-byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3); } // Handle more complex cases in runtime. __ bind(&runtime); __ Push(left, right); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateObjects(MacroAssembler* masm) { DCHECK(state() == CompareICState::OBJECT); Label miss; __ and_(r5, r4, r3); __ JumpIfSmi(r5, &miss); __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE); __ bne(&miss); __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE); __ bne(&miss); DCHECK(GetCondition() == eq); __ sub(r3, r3, r4); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; __ and_(r5, r4, r3); __ JumpIfSmi(r5, &miss); __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset)); __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset)); __ Cmpi(r5, Operand(known_map_), r0); __ bne(&miss); __ Cmpi(r6, Operand(known_map_), r0); __ bne(&miss); __ sub(r3, r3, r4); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4, r3); __ Push(r4, r3); __ LoadSmiLiteral(r0, Smi::FromInt(op())); __ push(r0); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ Pop(r4, r3); } __ JumpToJSEntry(r5); } // This stub is paired with DirectCEntryStub::GenerateCall void DirectCEntryStub::Generate(MacroAssembler* masm) { // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ mflr(r0); __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ Call(ip); // Call the C++ function. __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); __ mtlr(r0); __ blr(); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) // Native AIX/PPC64 Linux use a function descriptor. __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize)); __ LoadP(ip, MemOperand(target, 0)); // Instruction address #else // ip needs to be set for DirectCEentryStub::Generate, and also // for ABI_TOC_ADDRESSABILITY_VIA_IP. __ Move(ip, target); #endif intptr_t code = reinterpret_cast(GetCode().location()); __ mov(r0, Operand(code, RelocInfo::CODE_TARGET)); __ Call(r0); // Call the stub. } void NameDictionaryLookupStub::GenerateNegativeLookup( MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle name, Register scratch0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ LoadP(index, FieldMemOperand(properties, kCapacityOffset)); __ subi(index, index, Operand(1)); __ LoadSmiLiteral( ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))); __ and_(index, index, ip); // Scale the index by multiplying by the entry size. DCHECK(NameDictionary::kEntrySize == 3); __ ShiftLeftImm(ip, index, Operand(1)); __ add(index, index, ip); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. Register tmp = properties; __ SmiToPtrArrayOffset(ip, index); __ add(tmp, properties, ip); __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); DCHECK(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ cmp(entity_name, tmp); __ beq(done); // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ Cmpi(entity_name, Operand(Handle(name)), r0); __ beq(miss); Label good; __ cmp(entity_name, tmp); __ beq(&good); // Check if the entry name is not a unique name. __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entity_name, miss); __ bind(&good); // Restore the properties. __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit()); __ mflr(r0); __ MultiPush(spill_mask); __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ mov(r4, Operand(Handle(name))); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); __ cmpi(r3, Operand::Zero()); __ MultiPop(spill_mask); // MultiPop does not touch condition flags __ mtlr(r0); __ beq(done); __ bne(miss); } // Probe the name dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found. Jump to // the |miss| label otherwise. // If lookup was successful |scratch2| will be equal to elements + 4 * index. void NameDictionaryLookupStub::GeneratePositiveLookup( MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register scratch1, Register scratch2) { DCHECK(!elements.is(scratch1)); DCHECK(!elements.is(scratch2)); DCHECK(!name.is(scratch1)); DCHECK(!name.is(scratch2)); __ AssertName(name); // Compute the capacity mask. __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset)); __ SmiUntag(scratch1); // convert smi to int __ subi(scratch1, scratch1, Operand(1)); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ addi(scratch2, scratch2, Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } __ srwi(scratch2, scratch2, Operand(Name::kHashShift)); __ and_(scratch2, scratch1, scratch2); // Scale the index by multiplying by the element size. DCHECK(NameDictionary::kEntrySize == 3); // scratch2 = scratch2 * 3. __ ShiftLeftImm(ip, scratch2, Operand(1)); __ add(scratch2, scratch2, ip); // Check if the key is identical to the name. __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2)); __ add(scratch2, elements, ip); __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset)); __ cmp(name, ip); __ beq(done); } const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit()) & ~(scratch1.bit() | scratch2.bit()); __ mflr(r0); __ MultiPush(spill_mask); if (name.is(r3)) { DCHECK(!elements.is(r4)); __ mr(r4, name); __ mr(r3, elements); } else { __ mr(r3, elements); __ mr(r4, name); } NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); __ CallStub(&stub); __ cmpi(r3, Operand::Zero()); __ mr(scratch2, r5); __ MultiPop(spill_mask); __ mtlr(r0); __ bne(done); __ beq(miss); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: NameDictionary to probe // r4: key // dictionary: NameDictionary to probe. // index: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = r3; Register dictionary = r3; Register key = r4; Register index = r5; Register mask = r6; Register hash = r7; Register undefined = r8; Register entry_key = r9; Register scratch = r9; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ SmiUntag(mask); __ subi(mask, mask, Operand(1)); __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ addi(index, hash, Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } else { __ mr(index, hash); } __ srwi(r0, index, Operand(Name::kHashShift)); __ and_(index, mask, r0); // Scale the index by multiplying by the entry size. DCHECK(NameDictionary::kEntrySize == 3); __ ShiftLeftImm(scratch, index, Operand(1)); __ add(index, index, scratch); // index *= 3. DCHECK_EQ(kSmiTagSize, 1); __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2)); __ add(index, dictionary, scratch); __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ cmp(entry_key, undefined); __ beq(¬_in_dictionary); // Stop if found the property. __ cmp(entry_key, key); __ beq(&in_dictionary); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ li(result, Operand::Zero()); __ Ret(); } __ bind(&in_dictionary); __ li(result, Operand(1)); __ Ret(); __ bind(¬_in_dictionary); __ li(result, Operand::Zero()); __ Ret(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); // Hydrogen code stubs need stub2 at snapshot time. StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two branch instructions are generated with labels so as to // get the offset fixed up correctly by the bind(Label*) call. We patch // it back and forth between branch condition True and False // when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. // Clear the bit, branch on True for NOP action initially __ crclr(Assembler::encode_crbit(cr2, CR_LT)); __ blt(&skip_to_incremental_noncompacting, cr2); __ blt(&skip_to_incremental_compacting, cr2); if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. // patching not required on PPC as the initial path is effectively NOP } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = r3.is(regs_.address()) ? regs_.scratch0() : regs_.address(); DCHECK(!address.is(regs_.object())); DCHECK(!address.is(r3)); __ mr(address, regs_.address()); __ mr(r3, regs_.object()); __ mr(r4, address); __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0); __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16))); __ and_(regs_.scratch0(), regs_.object(), r0); __ LoadP( regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1)); __ StoreP( regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here __ blt(&need_incremental); // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : element value to store // -- r6 : element index as smi // -- sp[0] : array literal index in function as smi // -- sp[4] : array literal // clobbers r3, r5, r7 // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label fast_elements; // Get array literal index, array literal and its map. __ LoadP(r7, MemOperand(sp, 0 * kPointerSize)); __ LoadP(r4, MemOperand(sp, 1 * kPointerSize)); __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset)); __ CheckFastElements(r5, r8, &double_elements); // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS __ JumpIfSmi(r3, &smi_element); __ CheckFastSmiElements(r5, r8, &fast_elements); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); // call. __ Push(r4, r6, r3); __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset)); __ Push(r8, r7); __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. __ bind(&fast_elements); __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); __ SmiToPtrArrayOffset(r9, r6); __ add(r9, r8, r9); #if V8_TARGET_ARCH_PPC64 // add due to offset alignment requirements of StorePU __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ StoreP(r3, MemOperand(r9)); #else __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag)); #endif // Update the write barrier for the array store. __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, // and value is Smi. __ bind(&smi_element); __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); __ SmiToPtrArrayOffset(r9, r6); __ add(r9, r8, r9); __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0); __ Ret(); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements); __ Ret(); } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; __ LoadP(r4, MemOperand(fp, parameter_count_offset)); if (function_mode() == JS_FUNCTION_STUB_MODE) { __ addi(r4, r4, Operand(1)); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ slwi(r4, r4, Operand(kPointerSizeLog2)); __ add(sp, sp, r4); __ Ret(); } void LoadICTrampolineStub::Generate(MacroAssembler* masm) { EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); VectorLoadStub stub(isolate(), state()); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); VectorKeyedLoadStub stub(isolate()); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { PredictableCodeSizeScope predictable(masm, #if V8_TARGET_ARCH_PPC64 14 * Assembler::kInstrSize); #else 11 * Assembler::kInstrSize); #endif ProfileEntryHookStub stub(masm->isolate()); __ mflr(r0); __ Push(r0, ip); __ CallStub(&stub); __ Pop(r0, ip); __ mtlr(r0); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr, ip" instruction, followed by a call. const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize; // This should contain all kJSCallerSaved registers. const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. r15.bit(); // Saved stack pointer. // We also save lr, so the count here is one higher than the mask indicates. const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; // Save all caller-save registers as this may be called from anywhere. __ mflr(ip); __ MultiPush(kSavedRegs | ip.bit()); // Compute the function's address for the first argument. __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is two slots above the saved temporaries. // Grab that for the second argument to the hook. __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mr(r15, sp); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); } #if !defined(USE_SIMULATOR) uintptr_t entry_hook = reinterpret_cast(isolate()->function_entry_hook()); __ mov(ip, Operand(entry_hook)); #if ABI_USES_FUNCTION_DESCRIPTORS // Function descriptor __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize)); __ LoadP(ip, MemOperand(ip, 0)); #elif ABI_TOC_ADDRESSABILITY_VIA_IP // ip set above, so nothing to do. #endif // PPC LINUX ABI: __ li(r0, Operand::Zero()); __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ mov(ip, Operand(ExternalReference( &dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); #endif __ Call(ip); #if !defined(USE_SIMULATOR) __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize)); #endif // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mr(sp, r15); } // Also pop lr to get Ret(0). __ MultiPop(kSavedRegs | ip.bit()); __ mtlr(ip); __ Ret(); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ Cmpi(r6, Operand(kind), r0); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // r6 - kind (if mode != DISABLE_ALLOCATION_SITES) // r3 - number of arguments // r4 - constructor? // sp[0] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { DCHECK(FAST_SMI_ELEMENTS == 0); DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1); DCHECK(FAST_ELEMENTS == 2); DCHECK(FAST_HOLEY_ELEMENTS == 3); DCHECK(FAST_DOUBLE_ELEMENTS == 4); DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ andi(r0, r6, Operand(1)); __ bne(&normal_sequence, cr0); } // look at the first argument __ LoadP(r8, MemOperand(sp, 0)); __ cmpi(r8, Operand::Zero()); __ beq(&normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey( masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ addi(r6, r6, Operand(1)); if (FLAG_debug_code) { __ LoadP(r8, FieldMemOperand(r5, 0)); __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r6 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0); __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset), r0); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ mov(r0, Operand(kind)); __ cmp(r6, r0); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); } void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( Isolate* isolate) { ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS}; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); stubh3.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (argument_count() == ANY) { Label not_zero_case, not_one_case; __ cmpi(r3, Operand::Zero()); __ bne(¬_zero_case); CreateArrayDispatch(masm, mode); __ bind(¬_zero_case); __ cmpi(r3, Operand(1)); __ bgt(¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); CreateArrayDispatch(masm, mode); } else if (argument_count() == NONE) { CreateArrayDispatch(masm, mode); } else if (argument_count() == ONE) { CreateArrayDispatchOneArgument(masm, mode); } else if (argument_count() == MORE_THAN_ONE) { CreateArrayDispatch(masm, mode); } else { UNREACHABLE(); } } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc (only if argument_count() == ANY) // -- r4 : constructor // -- r5 : AllocationSite or undefined // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ TestIfSmi(r7, r0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r7, r7, r8, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); // We should either have undefined in r5 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(r5, r7); } Label no_info; // Get the elements kind and case on that. __ CompareRoot(r5, Heap::kUndefinedValueRootIndex); __ beq(&no_info); __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(r6); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); } void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm, ElementsKind kind) { __ cmpli(r3, Operand(1)); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lt); InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); __ TailCallStub(&stubN, gt); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ LoadP(r6, MemOperand(sp, 0)); __ cmpi(r6, Operand::Zero()); InternalArraySingleArgumentConstructorStub stub1_holey( isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : argc // -- r4 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ TestIfSmi(r6, r0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r6, r6, r7, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(r6); if (FLAG_debug_code) { Label done; __ cmpi(r6, Operand(FAST_ELEMENTS)); __ beq(&done); __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS)); __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmpi(r6, Operand(FAST_ELEMENTS)); __ beq(&fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } void CallApiFunctionStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : callee // -- r7 : call_data // -- r5 : holder // -- r4 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1)* 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register callee = r3; Register call_data = r7; Register holder = r5; Register api_function_address = r4; Register context = cp; int argc = this->argc(); bool is_store = this->is_store(); bool call_data_undefined = this->call_data_undefined(); typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kArgsLength == 7); // context save __ push(context); // load context from callee __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset)); // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // return value __ push(scratch); // return value default __ push(scratch); // isolate __ mov(scratch, Operand(ExternalReference::isolate_address(isolate()))); __ push(scratch); // holder __ push(holder); // Prepare arguments. __ mr(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. // PPC LINUX ABI: // // Create 5 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1-4] FunctionCallbackInfo const int kApiStackSpace = 5; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(!api_function_address.is(r3) && !scratch.is(r3)); // r3 = FunctionCallbackInfo& // Arguments is after the return address. __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); // FunctionCallbackInfo::implicit_args_ __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); __ StoreP(ip, MemOperand(r3, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ li(ip, Operand(argc)); __ stw(ip, MemOperand(r3, 2 * kPointerSize)); // FunctionCallbackInfo::is_construct_call = 0 __ li(ip, Operand::Zero()); __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize)); const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; ExternalReference thunk_ref = ExternalReference::invoke_function_callback(isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); __ CallApiFunctionAndReturn(api_function_address, thunk_ref, kStackUnwindSpace, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- sp[0] : name // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object // -- ... // -- r5 : api_function_address // ----------------------------------- Register api_function_address = ApiGetterDescriptor::function_address(); DCHECK(api_function_address.is(r5)); __ mr(r3, sp); // r0 = Handle __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = PCA // If ABI passes Handles (pointer-sized struct) in a register: // // Create 2 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] AccessorInfo& // // Otherwise: // // Create 3 extra slots on stack: // [0] space for DirectCEntryStub's LR save // [1] copy of Handle (first arg) // [2] AccessorInfo& #if ABI_PASSES_HANDLES_IN_REGS const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1; const int kApiStackSpace = 2; #else const int kArg0Slot = kStackFrameExtraParamSlot + 1; const int kAccessorInfoSlot = kArg0Slot + 1; const int kApiStackSpace = 3; #endif FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); #if !ABI_PASSES_HANDLES_IN_REGS // pass 1st arg by reference __ StoreP(r3, MemOperand(sp, kArg0Slot * kPointerSize)); __ addi(r3, sp, Operand(kArg0Slot * kPointerSize)); #endif // Create PropertyAccessorInfo instance on the stack above the exit frame with // r4 (internal::Object** args_) as the data. __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize)); // r4 = AccessorInfo& __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize)); const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ CallApiFunctionAndReturn(api_function_address, thunk_ref, kStackUnwindSpace, MemOperand(fp, 6 * kPointerSize), NULL); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_PPC