diff options
Diffstat (limited to 'deps/v8/src/third_party')
-rw-r--r-- | deps/v8/src/third_party/fdlibm/LICENSE | 6 | ||||
-rw-r--r-- | deps/v8/src/third_party/fdlibm/README.v8 | 18 | ||||
-rw-r--r-- | deps/v8/src/third_party/fdlibm/fdlibm.cc | 281 | ||||
-rw-r--r-- | deps/v8/src/third_party/fdlibm/fdlibm.h | 31 | ||||
-rw-r--r-- | deps/v8/src/third_party/fdlibm/fdlibm.js | 814 | ||||
-rw-r--r-- | deps/v8/src/third_party/vtune/v8-vtune.h | 2 | ||||
-rw-r--r-- | deps/v8/src/third_party/vtune/vtune-jit.cc | 4 |
7 files changed, 1153 insertions, 3 deletions
diff --git a/deps/v8/src/third_party/fdlibm/LICENSE b/deps/v8/src/third_party/fdlibm/LICENSE new file mode 100644 index 0000000000..b54cb52278 --- /dev/null +++ b/deps/v8/src/third_party/fdlibm/LICENSE @@ -0,0 +1,6 @@ +Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved. + +Developed at SunSoft, a Sun Microsystems, Inc. business. +Permission to use, copy, modify, and distribute this +software is freely granted, provided that this notice +is preserved. diff --git a/deps/v8/src/third_party/fdlibm/README.v8 b/deps/v8/src/third_party/fdlibm/README.v8 new file mode 100644 index 0000000000..ea8fdb6ce1 --- /dev/null +++ b/deps/v8/src/third_party/fdlibm/README.v8 @@ -0,0 +1,18 @@ +Name: Freely Distributable LIBM +Short Name: fdlibm +URL: http://www.netlib.org/fdlibm/ +Version: 5.3 +License: Freely Distributable. +License File: LICENSE. +Security Critical: yes. +License Android Compatible: yes. + +Description: +This is used to provide a accurate implementation for trigonometric functions +used in V8. + +Local Modifications: +For the use in V8, fdlibm has been reduced to include only sine, cosine and +tangent. To make inlining into generated code possible, a large portion of +that has been translated to Javascript. The rest remains in C, but has been +refactored and reformatted to interoperate with the rest of V8. diff --git a/deps/v8/src/third_party/fdlibm/fdlibm.cc b/deps/v8/src/third_party/fdlibm/fdlibm.cc new file mode 100644 index 0000000000..050bd2a58e --- /dev/null +++ b/deps/v8/src/third_party/fdlibm/fdlibm.cc @@ -0,0 +1,281 @@ +// The following is adapted from fdlibm (http://www.netlib.org/fdlibm). +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunSoft, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== +// +// The original source code covered by the above license above has been +// modified significantly by Google Inc. +// Copyright 2014 the V8 project authors. All rights reserved. + +#include "src/v8.h" + +#include "src/double.h" +#include "src/third_party/fdlibm/fdlibm.h" + + +namespace v8 { +namespace fdlibm { + +#ifdef _MSC_VER +inline double scalbn(double x, int y) { return _scalb(x, y); } +#endif // _MSC_VER + +const double MathConstants::constants[] = { + 6.36619772367581382433e-01, // invpio2 0 + 1.57079632673412561417e+00, // pio2_1 1 + 6.07710050650619224932e-11, // pio2_1t 2 + 6.07710050630396597660e-11, // pio2_2 3 + 2.02226624879595063154e-21, // pio2_2t 4 + 2.02226624871116645580e-21, // pio2_3 5 + 8.47842766036889956997e-32, // pio2_3t 6 + -1.66666666666666324348e-01, // S1 7 coefficients for sin + 8.33333333332248946124e-03, // 8 + -1.98412698298579493134e-04, // 9 + 2.75573137070700676789e-06, // 10 + -2.50507602534068634195e-08, // 11 + 1.58969099521155010221e-10, // S6 12 + 4.16666666666666019037e-02, // C1 13 coefficients for cos + -1.38888888888741095749e-03, // 14 + 2.48015872894767294178e-05, // 15 + -2.75573143513906633035e-07, // 16 + 2.08757232129817482790e-09, // 17 + -1.13596475577881948265e-11, // C6 18 + 3.33333333333334091986e-01, // T0 19 coefficients for tan + 1.33333333333201242699e-01, // 20 + 5.39682539762260521377e-02, // 21 + 2.18694882948595424599e-02, // 22 + 8.86323982359930005737e-03, // 23 + 3.59207910759131235356e-03, // 24 + 1.45620945432529025516e-03, // 25 + 5.88041240820264096874e-04, // 26 + 2.46463134818469906812e-04, // 27 + 7.81794442939557092300e-05, // 28 + 7.14072491382608190305e-05, // 29 + -1.85586374855275456654e-05, // 30 + 2.59073051863633712884e-05, // T12 31 + 7.85398163397448278999e-01, // pio4 32 + 3.06161699786838301793e-17, // pio4lo 33 + 6.93147180369123816490e-01, // ln2_hi 34 + 1.90821492927058770002e-10, // ln2_lo 35 + 1.80143985094819840000e+16, // 2^54 36 + 6.666666666666666666e-01, // 2/3 37 + 6.666666666666735130e-01, // LP1 38 coefficients for log1p + 3.999999999940941908e-01, // 39 + 2.857142874366239149e-01, // 40 + 2.222219843214978396e-01, // 41 + 1.818357216161805012e-01, // 42 + 1.531383769920937332e-01, // 43 + 1.479819860511658591e-01, // LP7 44 + 7.09782712893383973096e+02, // 45 overflow threshold for expm1 + 1.44269504088896338700e+00, // 1/ln2 46 + -3.33333333333331316428e-02, // Q1 47 coefficients for expm1 + 1.58730158725481460165e-03, // 48 + -7.93650757867487942473e-05, // 49 + 4.00821782732936239552e-06, // 50 + -2.01099218183624371326e-07, // Q5 51 + 710.4758600739439 // 52 overflow threshold sinh, cosh +}; + + +// Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi +static const int two_over_pi[] = { + 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C, + 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649, + 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44, + 0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, + 0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, + 0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, + 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330, + 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08, + 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA, + 0x73A8C9, 0x60E27B, 0xC08C6B}; + +static const double zero = 0.0; +static const double two24 = 1.6777216e+07; +static const double one = 1.0; +static const double twon24 = 5.9604644775390625e-08; + +static const double PIo2[] = { + 1.57079625129699707031e+00, // 0x3FF921FB, 0x40000000 + 7.54978941586159635335e-08, // 0x3E74442D, 0x00000000 + 5.39030252995776476554e-15, // 0x3CF84698, 0x80000000 + 3.28200341580791294123e-22, // 0x3B78CC51, 0x60000000 + 1.27065575308067607349e-29, // 0x39F01B83, 0x80000000 + 1.22933308981111328932e-36, // 0x387A2520, 0x40000000 + 2.73370053816464559624e-44, // 0x36E38222, 0x80000000 + 2.16741683877804819444e-51 // 0x3569F31D, 0x00000000 +}; + + +int __kernel_rem_pio2(double* x, double* y, int e0, int nx) { + static const int32_t jk = 3; + double fw; + int32_t jx = nx - 1; + int32_t jv = (e0 - 3) / 24; + if (jv < 0) jv = 0; + int32_t q0 = e0 - 24 * (jv + 1); + int32_t m = jx + jk; + + double f[10]; + for (int i = 0, j = jv - jx; i <= m; i++, j++) { + f[i] = (j < 0) ? zero : static_cast<double>(two_over_pi[j]); + } + + double q[10]; + for (int i = 0; i <= jk; i++) { + fw = 0.0; + for (int j = 0; j <= jx; j++) fw += x[j] * f[jx + i - j]; + q[i] = fw; + } + + int32_t jz = jk; + +recompute: + + int32_t iq[10]; + double z = q[jz]; + for (int i = 0, j = jz; j > 0; i++, j--) { + fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); + iq[i] = static_cast<int32_t>(z - two24 * fw); + z = q[j - 1] + fw; + } + + z = scalbn(z, q0); + z -= 8.0 * std::floor(z * 0.125); + int32_t n = static_cast<int32_t>(z); + z -= static_cast<double>(n); + int32_t ih = 0; + if (q0 > 0) { + int32_t i = (iq[jz - 1] >> (24 - q0)); + n += i; + iq[jz - 1] -= i << (24 - q0); + ih = iq[jz - 1] >> (23 - q0); + } else if (q0 == 0) { + ih = iq[jz - 1] >> 23; + } else if (z >= 0.5) { + ih = 2; + } + + if (ih > 0) { + n += 1; + int32_t carry = 0; + for (int i = 0; i < jz; i++) { + int32_t j = iq[i]; + if (carry == 0) { + if (j != 0) { + carry = 1; + iq[i] = 0x1000000 - j; + } + } else { + iq[i] = 0xffffff - j; + } + } + if (q0 == 1) { + iq[jz - 1] &= 0x7fffff; + } else if (q0 == 2) { + iq[jz - 1] &= 0x3fffff; + } + if (ih == 2) { + z = one - z; + if (carry != 0) z -= scalbn(one, q0); + } + } + + if (z == zero) { + int32_t j = 0; + for (int i = jz - 1; i >= jk; i--) j |= iq[i]; + if (j == 0) { + int32_t k = 1; + while (iq[jk - k] == 0) k++; + for (int i = jz + 1; i <= jz + k; i++) { + f[jx + i] = static_cast<double>(two_over_pi[jv + i]); + for (j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j]; + q[i] = fw; + } + jz += k; + goto recompute; + } + } + + if (z == 0.0) { + jz -= 1; + q0 -= 24; + while (iq[jz] == 0) { + jz--; + q0 -= 24; + } + } else { + z = scalbn(z, -q0); + if (z >= two24) { + fw = static_cast<double>(static_cast<int32_t>(twon24 * z)); + iq[jz] = static_cast<int32_t>(z - two24 * fw); + jz += 1; + q0 += 24; + iq[jz] = static_cast<int32_t>(fw); + } else { + iq[jz] = static_cast<int32_t>(z); + } + } + + fw = scalbn(one, q0); + for (int i = jz; i >= 0; i--) { + q[i] = fw * static_cast<double>(iq[i]); + fw *= twon24; + } + + double fq[10]; + for (int i = jz; i >= 0; i--) { + fw = 0.0; + for (int k = 0; k <= jk && k <= jz - i; k++) fw += PIo2[k] * q[i + k]; + fq[jz - i] = fw; + } + + fw = 0.0; + for (int i = jz; i >= 0; i--) fw += fq[i]; + y[0] = (ih == 0) ? fw : -fw; + fw = fq[0] - fw; + for (int i = 1; i <= jz; i++) fw += fq[i]; + y[1] = (ih == 0) ? fw : -fw; + return n & 7; +} + + +int rempio2(double x, double* y) { + int32_t hx = static_cast<int32_t>(internal::double_to_uint64(x) >> 32); + int32_t ix = hx & 0x7fffffff; + + if (ix >= 0x7ff00000) { + *y = base::OS::nan_value(); + return 0; + } + + int32_t e0 = (ix >> 20) - 1046; + uint64_t zi = internal::double_to_uint64(x) & 0xFFFFFFFFu; + zi |= static_cast<uint64_t>(ix - (e0 << 20)) << 32; + double z = internal::uint64_to_double(zi); + + double tx[3]; + for (int i = 0; i < 2; i++) { + tx[i] = static_cast<double>(static_cast<int32_t>(z)); + z = (z - tx[i]) * two24; + } + tx[2] = z; + + int nx = 3; + while (tx[nx - 1] == zero) nx--; + int n = __kernel_rem_pio2(tx, y, e0, nx); + if (hx < 0) { + y[0] = -y[0]; + y[1] = -y[1]; + return -n; + } + return n; +} +} +} // namespace v8::internal diff --git a/deps/v8/src/third_party/fdlibm/fdlibm.h b/deps/v8/src/third_party/fdlibm/fdlibm.h new file mode 100644 index 0000000000..cadf85b95a --- /dev/null +++ b/deps/v8/src/third_party/fdlibm/fdlibm.h @@ -0,0 +1,31 @@ +// The following is adapted from fdlibm (http://www.netlib.org/fdlibm). +// +// ==================================================== +// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunSoft, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== +// +// The original source code covered by the above license above has been +// modified significantly by Google Inc. +// Copyright 2014 the V8 project authors. All rights reserved. + +#ifndef V8_FDLIBM_H_ +#define V8_FDLIBM_H_ + +namespace v8 { +namespace fdlibm { + +int rempio2(double x, double* y); + +// Constants to be exposed to builtins via Float64Array. +struct MathConstants { + static const double constants[53]; +}; +} +} // namespace v8::internal + +#endif // V8_FDLIBM_H_ diff --git a/deps/v8/src/third_party/fdlibm/fdlibm.js b/deps/v8/src/third_party/fdlibm/fdlibm.js new file mode 100644 index 0000000000..b52f1de269 --- /dev/null +++ b/deps/v8/src/third_party/fdlibm/fdlibm.js @@ -0,0 +1,814 @@ +// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), +// +// ==================================================== +// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved. +// +// Developed at SunSoft, a Sun Microsystems, Inc. business. +// Permission to use, copy, modify, and distribute this +// software is freely granted, provided that this notice +// is preserved. +// ==================================================== +// +// The original source code covered by the above license above has been +// modified significantly by Google Inc. +// Copyright 2014 the V8 project authors. All rights reserved. +// +// The following is a straightforward translation of fdlibm routines +// by Raymond Toy (rtoy@google.com). + +// Double constants that do not have empty lower 32 bits are found in fdlibm.cc +// and exposed through kMath as typed array. We assume the compiler to convert +// from decimal to binary accurately enough to produce the intended values. +// kMath is initialized to a Float64Array during genesis and not writable. +var kMath; + +const INVPIO2 = kMath[0]; +const PIO2_1 = kMath[1]; +const PIO2_1T = kMath[2]; +const PIO2_2 = kMath[3]; +const PIO2_2T = kMath[4]; +const PIO2_3 = kMath[5]; +const PIO2_3T = kMath[6]; +const PIO4 = kMath[32]; +const PIO4LO = kMath[33]; + +// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For +// precision, r is returned as two values y0 and y1 such that r = y0 + y1 +// to more than double precision. +macro REMPIO2(X) + var n, y0, y1; + var hx = %_DoubleHi(X); + var ix = hx & 0x7fffffff; + + if (ix < 0x4002d97c) { + // |X| ~< 3*pi/4, special case with n = +/- 1 + if (hx > 0) { + var z = X - PIO2_1; + if (ix != 0x3ff921fb) { + // 33+53 bit pi is good enough + y0 = z - PIO2_1T; + y1 = (z - y0) - PIO2_1T; + } else { + // near pi/2, use 33+33+53 bit pi + z -= PIO2_2; + y0 = z - PIO2_2T; + y1 = (z - y0) - PIO2_2T; + } + n = 1; + } else { + // Negative X + var z = X + PIO2_1; + if (ix != 0x3ff921fb) { + // 33+53 bit pi is good enough + y0 = z + PIO2_1T; + y1 = (z - y0) + PIO2_1T; + } else { + // near pi/2, use 33+33+53 bit pi + z += PIO2_2; + y0 = z + PIO2_2T; + y1 = (z - y0) + PIO2_2T; + } + n = -1; + } + } else if (ix <= 0x413921fb) { + // |X| ~<= 2^19*(pi/2), medium size + var t = MathAbs(X); + n = (t * INVPIO2 + 0.5) | 0; + var r = t - n * PIO2_1; + var w = n * PIO2_1T; + // First round good to 85 bit + y0 = r - w; + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { + // 2nd iteration needed, good to 118 + t = r; + w = n * PIO2_2; + r = t - w; + w = n * PIO2_2T - ((t - r) - w); + y0 = r - w; + if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { + // 3rd iteration needed. 151 bits accuracy + t = r; + w = n * PIO2_3; + r = t - w; + w = n * PIO2_3T - ((t - r) - w); + y0 = r - w; + } + } + y1 = (r - y0) - w; + if (hx < 0) { + n = -n; + y0 = -y0; + y1 = -y1; + } + } else { + // Need to do full Payne-Hanek reduction here. + var r = %RemPiO2(X); + n = r[0]; + y0 = r[1]; + y1 = r[2]; + } +endmacro + + +// __kernel_sin(X, Y, IY) +// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 +// Input X is assumed to be bounded by ~pi/4 in magnitude. +// Input Y is the tail of X so that x = X + Y. +// +// Algorithm +// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. +// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on +// [0,pi/4] +// 3 13 +// sin(x) ~ x + S1*x + ... + S6*x +// where +// +// |ieee_sin(x) 2 4 6 8 10 12 | -58 +// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 +// | x | +// +// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y +// ~ ieee_sin(X) + (1-X*X/2)*Y +// For better accuracy, let +// 3 2 2 2 2 +// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) +// then 3 2 +// sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) +// +macro KSIN(x) +kMath[7+x] +endmacro + +macro RETURN_KERNELSIN(X, Y, SIGN) + var z = X * X; + var v = z * X; + var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + + z * (KSIN(4) + z * KSIN(5)))); + return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; +endmacro + +// __kernel_cos(X, Y) +// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 +// Input X is assumed to be bounded by ~pi/4 in magnitude. +// Input Y is the tail of X so that x = X + Y. +// +// Algorithm +// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. +// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on +// [0,pi/4] +// 4 14 +// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x +// where the remez error is +// +// | 2 4 6 8 10 12 14 | -58 +// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 +// | | +// +// 4 6 8 10 12 14 +// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then +// ieee_cos(x) = 1 - x*x/2 + r +// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y +// ~ ieee_cos(X) - X*Y, +// a correction term is necessary in ieee_cos(x) and hence +// cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) +// For better accuracy when x > 0.3, let qx = |x|/4 with +// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. +// Then +// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). +// Note that 1-qx and (X*X/2-qx) is EXACT here, and the +// magnitude of the latter is at least a quarter of X*X/2, +// thus, reducing the rounding error in the subtraction. +// +macro KCOS(x) +kMath[13+x] +endmacro + +macro RETURN_KERNELCOS(X, Y, SIGN) + var ix = %_DoubleHi(X) & 0x7fffffff; + var z = X * X; + var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ + z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); + if (ix < 0x3fd33333) { // |x| ~< 0.3 + return (1 - (0.5 * z - (z * r - X * Y))) SIGN; + } else { + var qx; + if (ix > 0x3fe90000) { // |x| > 0.78125 + qx = 0.28125; + } else { + qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); + } + var hz = 0.5 * z - qx; + return (1 - qx - (hz - (z * r - X * Y))) SIGN; + } +endmacro + + +// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 +// Input x is assumed to be bounded by ~pi/4 in magnitude. +// Input y is the tail of x. +// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) +// is returned. +// +// Algorithm +// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. +// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. +// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on +// [0,0.67434] +// 3 27 +// tan(x) ~ x + T1*x + ... + T13*x +// where +// +// |ieee_tan(x) 2 4 26 | -59.2 +// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 +// | x | +// +// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y +// ~ ieee_tan(x) + (1+x*x)*y +// Therefore, for better accuracy in computing ieee_tan(x+y), let +// 3 2 2 2 2 +// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) +// then +// 3 2 +// tan(x+y) = x + (T1*x + (x *(r+y)+y)) +// +// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then +// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) +// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) +// +// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal +// and will cause incorrect results. +// +macro KTAN(x) +kMath[19+x] +endmacro + +function KernelTan(x, y, returnTan) { + var z; + var w; + var hx = %_DoubleHi(x); + var ix = hx & 0x7fffffff; + + if (ix < 0x3e300000) { // |x| < 2^-28 + if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { + // x == 0 && returnTan = -1 + return 1 / MathAbs(x); + } else { + if (returnTan == 1) { + return x; + } else { + // Compute -1/(x + y) carefully + var w = x + y; + var z = %_ConstructDouble(%_DoubleHi(w), 0); + var v = y - (z - x); + var a = -1 / w; + var t = %_ConstructDouble(%_DoubleHi(a), 0); + var s = 1 + t * z; + return t + a * (s + t * v); + } + } + } + if (ix >= 0x3fe59428) { // |x| > .6744 + if (x < 0) { + x = -x; + y = -y; + } + z = PIO4 - x; + w = PIO4LO - y; + x = z + w; + y = 0; + } + z = x * x; + w = z * z; + + // Break x^5 * (T1 + x^2*T2 + ...) into + // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + + // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) + var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + + w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); + var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + + w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); + var s = z * x; + r = y + z * (s * (r + v) + y); + r = r + KTAN(0) * s; + w = x + r; + if (ix >= 0x3fe59428) { + return (1 - ((hx >> 30) & 2)) * + (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); + } + if (returnTan == 1) { + return w; + } else { + z = %_ConstructDouble(%_DoubleHi(w), 0); + v = r - (z - x); + var a = -1 / w; + var t = %_ConstructDouble(%_DoubleHi(a), 0); + s = 1 + t * z; + return t + a * (s + t * v); + } +} + +function MathSinSlow(x) { + REMPIO2(x); + var sign = 1 - (n & 2); + if (n & 1) { + RETURN_KERNELCOS(y0, y1, * sign); + } else { + RETURN_KERNELSIN(y0, y1, * sign); + } +} + +function MathCosSlow(x) { + REMPIO2(x); + if (n & 1) { + var sign = (n & 2) - 1; + RETURN_KERNELSIN(y0, y1, * sign); + } else { + var sign = 1 - (n & 2); + RETURN_KERNELCOS(y0, y1, * sign); + } +} + +// ECMA 262 - 15.8.2.16 +function MathSin(x) { + x = x * 1; // Convert to number. + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { + // |x| < pi/4, approximately. No reduction needed. + RETURN_KERNELSIN(x, 0, /* empty */); + } + return MathSinSlow(x); +} + +// ECMA 262 - 15.8.2.7 +function MathCos(x) { + x = x * 1; // Convert to number. + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { + // |x| < pi/4, approximately. No reduction needed. + RETURN_KERNELCOS(x, 0, /* empty */); + } + return MathCosSlow(x); +} + +// ECMA 262 - 15.8.2.18 +function MathTan(x) { + x = x * 1; // Convert to number. + if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { + // |x| < pi/4, approximately. No reduction needed. + return KernelTan(x, 0, 1); + } + REMPIO2(x); + return KernelTan(y0, y1, (n & 1) ? -1 : 1); +} + +// ES6 draft 09-27-13, section 20.2.2.20. +// Math.log1p +// +// Method : +// 1. Argument Reduction: find k and f such that +// 1+x = 2^k * (1+f), +// where sqrt(2)/2 < 1+f < sqrt(2) . +// +// Note. If k=0, then f=x is exact. However, if k!=0, then f +// may not be representable exactly. In that case, a correction +// term is need. Let u=1+x rounded. Let c = (1+x)-u, then +// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), +// and add back the correction term c/u. +// (Note: when x > 2**53, one can simply return log(x)) +// +// 2. Approximation of log1p(f). +// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) +// = 2s + 2/3 s**3 + 2/5 s**5 + ....., +// = 2s + s*R +// We use a special Reme algorithm on [0,0.1716] to generate +// a polynomial of degree 14 to approximate R The maximum error +// of this polynomial approximation is bounded by 2**-58.45. In +// other words, +// 2 4 6 8 10 12 14 +// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s +// (the values of Lp1 to Lp7 are listed in the program) +// and +// | 2 14 | -58.45 +// | Lp1*s +...+Lp7*s - R(z) | <= 2 +// | | +// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. +// In order to guarantee error in log below 1ulp, we compute log +// by +// log1p(f) = f - (hfsq - s*(hfsq+R)). +// +// 3. Finally, log1p(x) = k*ln2 + log1p(f). +// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) +// Here ln2 is split into two floating point number: +// ln2_hi + ln2_lo, +// where n*ln2_hi is always exact for |n| < 2000. +// +// Special cases: +// log1p(x) is NaN with signal if x < -1 (including -INF) ; +// log1p(+INF) is +INF; log1p(-1) is -INF with signal; +// log1p(NaN) is that NaN with no signal. +// +// Accuracy: +// according to an error analysis, the error is always less than +// 1 ulp (unit in the last place). +// +// Constants: +// Constants are found in fdlibm.cc. We assume the C++ compiler to convert +// from decimal to binary accurately enough to produce the intended values. +// +// Note: Assuming log() return accurate answer, the following +// algorithm can be used to compute log1p(x) to within a few ULP: +// +// u = 1+x; +// if (u==1.0) return x ; else +// return log(u)*(x/(u-1.0)); +// +// See HP-15C Advanced Functions Handbook, p.193. +// +const LN2_HI = kMath[34]; +const LN2_LO = kMath[35]; +const TWO54 = kMath[36]; +const TWO_THIRD = kMath[37]; +macro KLOG1P(x) +(kMath[38+x]) +endmacro + +function MathLog1p(x) { + x = x * 1; // Convert to number. + var hx = %_DoubleHi(x); + var ax = hx & 0x7fffffff; + var k = 1; + var f = x; + var hu = 1; + var c = 0; + var u = x; + + if (hx < 0x3fda827a) { + // x < 0.41422 + if (ax >= 0x3ff00000) { // |x| >= 1 + if (x === -1) { + return -INFINITY; // log1p(-1) = -inf + } else { + return NAN; // log1p(x<-1) = NaN + } + } else if (ax < 0x3c900000) { + // For |x| < 2^-54 we can return x. + return x; + } else if (ax < 0x3e200000) { + // For |x| < 2^-29 we can use a simple two-term Taylor series. + return x - x * x * 0.5; + } + + if ((hx > 0) || (hx <= -0x402D413D)) { // (int) 0xbfd2bec3 = -0x402d413d + // -.2929 < x < 0.41422 + k = 0; + } + } + + // Handle Infinity and NAN + if (hx >= 0x7ff00000) return x; + + if (k !== 0) { + if (hx < 0x43400000) { + // x < 2^53 + u = 1 + x; + hu = %_DoubleHi(u); + k = (hu >> 20) - 1023; + c = (k > 0) ? 1 - (u - x) : x - (u - 1); + c = c / u; + } else { + hu = %_DoubleHi(u); + k = (hu >> 20) - 1023; + } + hu = hu & 0xfffff; + if (hu < 0x6a09e) { + u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u)); // Normalize u. + } else { + ++k; + u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u)); // Normalize u/2. + hu = (0x00100000 - hu) >> 2; + } + f = u - 1; + } + + var hfsq = 0.5 * f * f; + if (hu === 0) { + // |f| < 2^-20; + if (f === 0) { + if (k === 0) { + return 0.0; + } else { + return k * LN2_HI + (c + k * LN2_LO); + } + } + var R = hfsq * (1 - TWO_THIRD * f); + if (k === 0) { + return f - R; + } else { + return k * LN2_HI - ((R - (k * LN2_LO + c)) - f); + } + } + + var s = f / (2 + f); + var z = s * s; + var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z * + (KLOG1P(2) + z * (KLOG1P(3) + z * + (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6))))))); + if (k === 0) { + return f - (hfsq - s * (hfsq + R)); + } else { + return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f); + } +} + +// ES6 draft 09-27-13, section 20.2.2.14. +// Math.expm1 +// Returns exp(x)-1, the exponential of x minus 1. +// +// Method +// 1. Argument reduction: +// Given x, find r and integer k such that +// +// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 +// +// Here a correction term c will be computed to compensate +// the error in r when rounded to a floating-point number. +// +// 2. Approximating expm1(r) by a special rational function on +// the interval [0,0.34658]: +// Since +// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... +// we define R1(r*r) by +// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) +// That is, +// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) +// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) +// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... +// We use a special Remes algorithm on [0,0.347] to generate +// a polynomial of degree 5 in r*r to approximate R1. The +// maximum error of this polynomial approximation is bounded +// by 2**-61. In other words, +// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 +// where Q1 = -1.6666666666666567384E-2, +// Q2 = 3.9682539681370365873E-4, +// Q3 = -9.9206344733435987357E-6, +// Q4 = 2.5051361420808517002E-7, +// Q5 = -6.2843505682382617102E-9; +// (where z=r*r, and the values of Q1 to Q5 are listed below) +// with error bounded by +// | 5 | -61 +// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 +// | | +// +// expm1(r) = exp(r)-1 is then computed by the following +// specific way which minimize the accumulation rounding error: +// 2 3 +// r r [ 3 - (R1 + R1*r/2) ] +// expm1(r) = r + --- + --- * [--------------------] +// 2 2 [ 6 - r*(3 - R1*r/2) ] +// +// To compensate the error in the argument reduction, we use +// expm1(r+c) = expm1(r) + c + expm1(r)*c +// ~ expm1(r) + c + r*c +// Thus c+r*c will be added in as the correction terms for +// expm1(r+c). Now rearrange the term to avoid optimization +// screw up: +// ( 2 2 ) +// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) +// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) +// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) +// ( ) +// +// = r - E +// 3. Scale back to obtain expm1(x): +// From step 1, we have +// expm1(x) = either 2^k*[expm1(r)+1] - 1 +// = or 2^k*[expm1(r) + (1-2^-k)] +// 4. Implementation notes: +// (A). To save one multiplication, we scale the coefficient Qi +// to Qi*2^i, and replace z by (x^2)/2. +// (B). To achieve maximum accuracy, we compute expm1(x) by +// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) +// (ii) if k=0, return r-E +// (iii) if k=-1, return 0.5*(r-E)-0.5 +// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) +// else return 1.0+2.0*(r-E); +// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) +// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else +// (vii) return 2^k(1-((E+2^-k)-r)) +// +// Special cases: +// expm1(INF) is INF, expm1(NaN) is NaN; +// expm1(-INF) is -1, and +// for finite argument, only expm1(0)=0 is exact. +// +// Accuracy: +// according to an error analysis, the error is always less than +// 1 ulp (unit in the last place). +// +// Misc. info. +// For IEEE double +// if x > 7.09782712893383973096e+02 then expm1(x) overflow +// +const KEXPM1_OVERFLOW = kMath[45]; +const INVLN2 = kMath[46]; +macro KEXPM1(x) +(kMath[47+x]) +endmacro + +function MathExpm1(x) { + x = x * 1; // Convert to number. + var y; + var hi; + var lo; + var k; + var t; + var c; + + var hx = %_DoubleHi(x); + var xsb = hx & 0x80000000; // Sign bit of x + var y = (xsb === 0) ? x : -x; // y = |x| + hx &= 0x7fffffff; // High word of |x| + + // Filter out huge and non-finite argument + if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2 + if (hx >= 0x40862e42) { // if |x| >= 709.78 + if (hx >= 0x7ff00000) { + // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan; + return (x === -INFINITY) ? -1 : x; + } + if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow + } + if (xsb != 0) return -1; // x < -56 * ln2, return -1. + } + + // Argument reduction + if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2 + if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2 + if (xsb === 0) { + hi = x - LN2_HI; + lo = LN2_LO; + k = 1; + } else { + hi = x + LN2_HI; + lo = -LN2_LO; + k = -1; + } + } else { + k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0; + t = k; + // t * ln2_hi is exact here. + hi = x - t * LN2_HI; + lo = t * LN2_LO; + } + x = hi - lo; + c = (hi - x) - lo; + } else if (hx < 0x3c900000) { + // When |x| < 2^-54, we can return x. + return x; + } else { + // Fall through. + k = 0; + } + + // x is now in primary range + var hfx = 0.5 * x; + var hxs = x * hfx; + var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs * + (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4))))); + t = 3 - r1 * hfx; + var e = hxs * ((r1 - t) / (6 - x * t)); + if (k === 0) { // c is 0 + return x - (x*e - hxs); + } else { + e = (x * (e - c) - c); + e -= hxs; + if (k === -1) return 0.5 * (x - e) - 0.5; + if (k === 1) { + if (x < -0.25) return -2 * (e - (x + 0.5)); + return 1 + 2 * (x - e); + } + + if (k <= -2 || k > 56) { + // suffice to return exp(x) + 1 + y = 1 - (e - x); + // Add k to y's exponent + y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); + return y - 1; + } + if (k < 20) { + // t = 1 - 2^k + t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0); + y = t - (e - x); + // Add k to y's exponent + y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); + } else { + // t = 2^-k + t = %_ConstructDouble((0x3ff - k) << 20, 0); + y = x - (e + t); + y += 1; + // Add k to y's exponent + y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y)); + } + } + return y; +} + + +// ES6 draft 09-27-13, section 20.2.2.30. +// Math.sinh +// Method : +// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 +// 1. Replace x by |x| (sinh(-x) = -sinh(x)). +// 2. +// E + E/(E+1) +// 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) +// 2 +// +// 22 <= x <= lnovft : sinh(x) := exp(x)/2 +// lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) +// ln2ovft < x : sinh(x) := x*shuge (overflow) +// +// Special cases: +// sinh(x) is |x| if x is +Infinity, -Infinity, or NaN. +// only sinh(0)=0 is exact for finite x. +// +const KSINH_OVERFLOW = kMath[52]; +const TWO_M28 = 3.725290298461914e-9; // 2^-28, empty lower half +const LOG_MAXD = 709.7822265625; // 0x40862e42 00000000, empty lower half + +function MathSinh(x) { + x = x * 1; // Convert to number. + var h = (x < 0) ? -0.5 : 0.5; + // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1)) + var ax = MathAbs(x); + if (ax < 22) { + // For |x| < 2^-28, sinh(x) = x + if (ax < TWO_M28) return x; + var t = MathExpm1(ax); + if (ax < 1) return h * (2 * t - t * t / (t + 1)); + return h * (t + t / (t + 1)); + } + // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|) + if (ax < LOG_MAXD) return h * MathExp(ax); + // |x| in [log(maxdouble), overflowthreshold] + // overflowthreshold = 710.4758600739426 + if (ax <= KSINH_OVERFLOW) { + var w = MathExp(0.5 * ax); + var t = h * w; + return t * w; + } + // |x| > overflowthreshold or is NaN. + // Return Infinity of the appropriate sign or NaN. + return x * INFINITY; +} + + +// ES6 draft 09-27-13, section 20.2.2.12. +// Math.cosh +// Method : +// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 +// 1. Replace x by |x| (cosh(x) = cosh(-x)). +// 2. +// [ exp(x) - 1 ]^2 +// 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- +// 2*exp(x) +// +// exp(x) + 1/exp(x) +// ln2/2 <= x <= 22 : cosh(x) := ------------------- +// 2 +// 22 <= x <= lnovft : cosh(x) := exp(x)/2 +// lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) +// ln2ovft < x : cosh(x) := huge*huge (overflow) +// +// Special cases: +// cosh(x) is |x| if x is +INF, -INF, or NaN. +// only cosh(0)=1 is exact for finite x. +// +const KCOSH_OVERFLOW = kMath[52]; + +function MathCosh(x) { + x = x * 1; // Convert to number. + var ix = %_DoubleHi(x) & 0x7fffffff; + // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|)) + if (ix < 0x3fd62e43) { + var t = MathExpm1(MathAbs(x)); + var w = 1 + t; + // For |x| < 2^-55, cosh(x) = 1 + if (ix < 0x3c800000) return w; + return 1 + (t * t) / (w + w); + } + // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2 + if (ix < 0x40360000) { + var t = MathExp(MathAbs(x)); + return 0.5 * t + 0.5 / t; + } + // |x| in [22, log(maxdouble)], return half*exp(|x|) + if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x)); + // |x| in [log(maxdouble), overflowthreshold] + if (MathAbs(x) <= KCOSH_OVERFLOW) { + var w = MathExp(0.5 * MathAbs(x)); + var t = 0.5 * w; + return t * w; + } + if (NUMBER_IS_NAN(x)) return x; + // |x| > overflowthreshold. + return INFINITY; +} diff --git a/deps/v8/src/third_party/vtune/v8-vtune.h b/deps/v8/src/third_party/vtune/v8-vtune.h index a7e5116604..34da9cb5bf 100644 --- a/deps/v8/src/third_party/vtune/v8-vtune.h +++ b/deps/v8/src/third_party/vtune/v8-vtune.h @@ -62,7 +62,7 @@ namespace vTune { -void InitializeVtuneForV8(v8::Isolate::CreateParams& params); +v8::JitCodeEventHandler GetVtuneCodeEventHandler(); } // namespace vTune diff --git a/deps/v8/src/third_party/vtune/vtune-jit.cc b/deps/v8/src/third_party/vtune/vtune-jit.cc index e489d6e215..b621cbcb8f 100644 --- a/deps/v8/src/third_party/vtune/vtune-jit.cc +++ b/deps/v8/src/third_party/vtune/vtune-jit.cc @@ -271,10 +271,10 @@ void VTUNEJITInterface::event_handler(const v8::JitCodeEvent* event) { } // namespace internal -void InitializeVtuneForV8(v8::Isolate::CreateParams& params) { +v8::JitCodeEventHandler GetVtuneCodeEventHandler() { v8::V8::SetFlagsFromString("--nocompact_code_space", (int)strlen("--nocompact_code_space")); - params.code_event_handler = vTune::internal::VTUNEJITInterface::event_handler; + return vTune::internal::VTUNEJITInterface::event_handler; } } // namespace vTune |