/* eccdata.c Generate compile time constant (but machine dependent) tables. Copyright (C) 2013 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ /* Development of Nettle's ECC support was funded by the .SE Internet Fund. */ #include #include #include #include #include "mini-gmp.c" /* Affine coordinates, for simplicity. Infinity point represented as x == y == 0. */ struct ecc_point { mpz_t x; mpz_t y; }; /* Represents an elliptic curve of the form y^2 = x^3 - 3x + b (mod p) */ struct ecc_curve { unsigned bit_size; unsigned pippenger_k; unsigned pippenger_c; /* Prime */ mpz_t p; mpz_t b; /* Curve order */ mpz_t q; struct ecc_point g; /* Table for pippenger's algorithm. Element i 2^c + j_0 + j_1 2 + j_2 2^2 + ... + j_{c-1} 2^{c-1} holds 2^{ikc} ( j_0 + j_1 2^k + j_2 2^{2k} + ... + j_{c-1} 2^{(c-1)k}) g */ mp_size_t table_size; struct ecc_point *table; /* If non-NULL, holds 2g, 3g, 4g */ struct ecc_point *ref; }; static void ecc_init (struct ecc_point *p) { mpz_init (p->x); mpz_init (p->y); } static void ecc_clear (struct ecc_point *p) { mpz_clear (p->x); mpz_clear (p->y); } static int ecc_zero_p (const struct ecc_point *p) { return mpz_sgn (p->x) == 0 && mpz_sgn (p->y) == 0; } static int ecc_equal_p (const struct ecc_point *p, const struct ecc_point *q) { return mpz_cmp (p->x, q->x) == 0 && mpz_cmp (p->y, q->y) == 0; } static void ecc_set_zero (struct ecc_point *r) { mpz_set_ui (r->x, 0); mpz_set_ui (r->y, 0); } static void ecc_set (struct ecc_point *r, const struct ecc_point *p) { mpz_set (r->x, p->x); mpz_set (r->y, p->y); } static void ecc_dup (const struct ecc_curve *ecc, struct ecc_point *r, const struct ecc_point *p) { if (ecc_zero_p (p)) ecc_set_zero (r); else { mpz_t m, t, x, y; mpz_init (m); mpz_init (t); mpz_init (x); mpz_init (y); /* m = (2 y)^-1 */ mpz_mul_ui (m, p->y, 2); mpz_invert (m, m, ecc->p); /* t = 3 (x^2 - 1) * m */ mpz_mul (t, p->x, p->x); mpz_mod (t, t, ecc->p); mpz_sub_ui (t, t, 1); mpz_mul_ui (t, t, 3); mpz_mul (t, t, m); /* x' = t^2 - 2 x */ mpz_mul (x, t, t); /* mpz_submul_ui (x, p->x, 2); not available in mini-gmp */ mpz_mul_ui (m, p->x, 2); mpz_sub (x, x, m); mpz_mod (x, x, ecc->p); /* y' = (x - x') * t - y */ mpz_sub (y, p->x, x); mpz_mul (y, y, t); mpz_sub (y, y, p->y); mpz_mod (y, y, ecc->p); mpz_swap (x, r->x); mpz_swap (y, r->y); mpz_clear (m); mpz_clear (t); mpz_clear (x); mpz_clear (y); } } static void ecc_add (const struct ecc_curve *ecc, struct ecc_point *r, const struct ecc_point *p, const struct ecc_point *q) { if (ecc_zero_p (p)) ecc_set (r, q); else if (ecc_zero_p (q)) ecc_set (r, p); else if (mpz_cmp (p->x, q->x) == 0) { if (mpz_cmp (p->y, q->y) == 0) ecc_dup (ecc, r, p); else ecc_set_zero (r); } else { mpz_t s, t, x, y; mpz_init (s); mpz_init (t); mpz_init (x); mpz_init (y); /* t = (q_y - p_y) / (q_x - p_x) */ mpz_sub (t, q->x, p->x); mpz_invert (t, t, ecc->p); mpz_sub (s, q->y, p->y); mpz_mul (t, t, s); mpz_mod (t, t, ecc->p); /* x' = t^2 - p_x - q_x */ mpz_mul (x, t, t); mpz_sub (x, x, p->x); mpz_sub (x, x, q->x); mpz_mod (x, x, ecc->p); /* y' = (x - x') * t - y */ mpz_sub (y, p->x, x); mpz_mul (y, y, t); mpz_sub (y, y, p->y); mpz_mod (y, y, ecc->p); mpz_swap (x, r->x); mpz_swap (y, r->y); mpz_clear (s); mpz_clear (t); mpz_clear (x); mpz_clear (y); } } static void ecc_mul_binary (const struct ecc_curve *ecc, struct ecc_point *r, const mpz_t n, const struct ecc_point *p) { /* Avoid the mp_bitcnt_t type for compatibility with older GMP versions. */ unsigned k; assert (r != p); assert (mpz_sgn (n) > 0); ecc_set (r, p); /* Index of highest one bit */ for (k = mpz_sizeinbase (n, 2) - 1; k-- > 0; ) { ecc_dup (ecc, r, r); if (mpz_tstbit (n, k)) ecc_add (ecc, r, r, p); } } static struct ecc_point * ecc_alloc (size_t n) { struct ecc_point *p = malloc (n * sizeof(*p)); size_t i; if (!p) { fprintf (stderr, "Virtual memory exhausted.\n"); exit (EXIT_FAILURE); } for (i = 0; i < n; i++) ecc_init (&p[i]); return p; } static void ecc_set_str (struct ecc_point *p, const char *x, const char *y) { mpz_set_str (p->x, x, 16); mpz_set_str (p->y, y, 16); } static void ecc_curve_init_str (struct ecc_curve *ecc, const char *p, const char *b, const char *q, const char *gx, const char *gy) { mpz_init_set_str (ecc->p, p, 16); mpz_init_set_str (ecc->b, b, 16); mpz_init_set_str (ecc->q, q, 16); ecc_init (&ecc->g); ecc_set_str (&ecc->g, gx, gy); ecc->pippenger_k = 0; ecc->pippenger_c = 0; ecc->table = NULL; ecc->ref = NULL; } static void ecc_curve_init (struct ecc_curve *ecc, unsigned bit_size) { switch (bit_size) { case 192: ecc_curve_init_str (ecc, /* p = 2^{192} - 2^{64} - 1 */ "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE" "FFFFFFFFFFFFFFFF", "64210519e59c80e70fa7e9ab72243049" "feb8deecc146b9b1", "ffffffffffffffffffffffff99def836" "146bc9b1b4d22831", "188da80eb03090f67cbf20eb43a18800" "f4ff0afd82ff1012", "07192b95ffc8da78631011ed6b24cdd5" "73f977a11e794811"); ecc->ref = ecc_alloc (3); ecc_set_str (&ecc->ref[0], /* 2 g */ "dafebf5828783f2ad35534631588a3f629a70fb16982a888", "dd6bda0d993da0fa46b27bbc141b868f59331afa5c7e93ab"); ecc_set_str (&ecc->ref[1], /* 3 g */ "76e32a2557599e6edcd283201fb2b9aadfd0d359cbb263da", "782c37e372ba4520aa62e0fed121d49ef3b543660cfd05fd"); ecc_set_str (&ecc->ref[2], /* 4 g */ "35433907297cc378b0015703374729d7a4fe46647084e4ba", "a2649984f2135c301ea3acb0776cd4f125389b311db3be32"); break; case 224: ecc_curve_init_str (ecc, /* p = 2^{224} - 2^{96} + 1 */ "ffffffffffffffffffffffffffffffff" "000000000000000000000001", "b4050a850c04b3abf54132565044b0b7" "d7bfd8ba270b39432355ffb4", "ffffffffffffffffffffffffffff16a2" "e0b8f03e13dd29455c5c2a3d", "b70e0cbd6bb4bf7f321390b94a03c1d3" "56c21122343280d6115c1d21", "bd376388b5f723fb4c22dfe6cd4375a0" "5a07476444d5819985007e34"); ecc->ref = ecc_alloc (3); ecc_set_str (&ecc->ref[0], /* 2 g */ "706a46dc76dcb76798e60e6d89474788d16dc18032d268fd1a704fa6", "1c2b76a7bc25e7702a704fa986892849fca629487acf3709d2e4e8bb"); ecc_set_str (&ecc->ref[1], /* 3 g */ "df1b1d66a551d0d31eff822558b9d2cc75c2180279fe0d08fd896d04", "a3f7f03cadd0be444c0aa56830130ddf77d317344e1af3591981a925"); ecc_set_str (&ecc->ref[2], /* 4 g */ "ae99feebb5d26945b54892092a8aee02912930fa41cd114e40447301", "482580a0ec5bc47e88bc8c378632cd196cb3fa058a7114eb03054c9"); break; case 256: ecc_curve_init_str (ecc, /* p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1 */ "FFFFFFFF000000010000000000000000" "00000000FFFFFFFFFFFFFFFFFFFFFFFF", "5AC635D8AA3A93E7B3EBBD55769886BC" "651D06B0CC53B0F63BCE3C3E27D2604B", "FFFFFFFF00000000FFFFFFFFFFFFFFFF" "BCE6FAADA7179E84F3B9CAC2FC632551", "6B17D1F2E12C4247F8BCE6E563A440F2" "77037D812DEB33A0F4A13945D898C296", "4FE342E2FE1A7F9B8EE7EB4A7C0F9E16" "2BCE33576B315ECECBB6406837BF51F5"); ecc->ref = ecc_alloc (3); ecc_set_str (&ecc->ref[0], /* 2 g */ "7cf27b188d034f7e8a52380304b51ac3c08969e277f21b35a60b48fc47669978", "7775510db8ed040293d9ac69f7430dbba7dade63ce982299e04b79d227873d1"); ecc_set_str (&ecc->ref[1], /* 3 g */ "5ecbe4d1a6330a44c8f7ef951d4bf165e6c6b721efada985fb41661bc6e7fd6c", "8734640c4998ff7e374b06ce1a64a2ecd82ab036384fb83d9a79b127a27d5032"); ecc_set_str (&ecc->ref[2], /* 4 g */ "e2534a3532d08fbba02dde659ee62bd0031fe2db785596ef509302446b030852", "e0f1575a4c633cc719dfee5fda862d764efc96c3f30ee0055c42c23f184ed8c6"); break; case 384: ecc_curve_init_str (ecc, /* p = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1 */ "ffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffe" "ffffffff0000000000000000ffffffff", "b3312fa7e23ee7e4988e056be3f82d19" "181d9c6efe8141120314088f5013875a" "c656398d8a2ed19d2a85c8edd3ec2aef", "ffffffffffffffffffffffffffffffff" "ffffffffffffffffc7634d81f4372ddf" "581a0db248b0a77aecec196accc52973", "aa87ca22be8b05378eb1c71ef320ad74" "6e1d3b628ba79b9859f741e082542a38" "5502f25dbf55296c3a545e3872760ab7", "3617de4a96262c6f5d9e98bf9292dc29" "f8f41dbd289a147ce9da3113b5f0b8c0" "0a60b1ce1d7e819d7a431d7c90ea0e5f"); ecc->ref = ecc_alloc (3); ecc_set_str (&ecc->ref[0], /* 2 g */ "8d999057ba3d2d969260045c55b97f089025959a6f434d651d207d19fb96e9e4fe0e86ebe0e64f85b96a9c75295df61", "8e80f1fa5b1b3cedb7bfe8dffd6dba74b275d875bc6cc43e904e505f256ab4255ffd43e94d39e22d61501e700a940e80"); ecc_set_str (&ecc->ref[1], /* 3 g */ "77a41d4606ffa1464793c7e5fdc7d98cb9d3910202dcd06bea4f240d3566da6b408bbae5026580d02d7e5c70500c831", "c995f7ca0b0c42837d0bbe9602a9fc998520b41c85115aa5f7684c0edc111eacc24abd6be4b5d298b65f28600a2f1df1"); ecc_set_str (&ecc->ref[2], /* 4 g */ "138251cd52ac9298c1c8aad977321deb97e709bd0b4ca0aca55dc8ad51dcfc9d1589a1597e3a5120e1efd631c63e1835", "cacae29869a62e1631e8a28181ab56616dc45d918abc09f3ab0e63cf792aa4dced7387be37bba569549f1c02b270ed67"); break; case 521: ecc_curve_init_str (ecc, "1ff" /* p = 2^{521} - 1 */ "ffffffffffffffffffffffffffffffff" "ffffffffffffffffffffffffffffffff" "ffffffffffffffffffffffffffffffff" "ffffffffffffffffffffffffffffffff", "051" "953eb9618e1c9a1f929a21a0b68540ee" "a2da725b99b315f3b8b489918ef109e1" "56193951ec7e937b1652c0bd3bb1bf07" "3573df883d2c34f1ef451fd46b503f00", "1ff" "ffffffffffffffffffffffffffffffff" "fffffffffffffffffffffffffffffffa" "51868783bf2f966b7fcc0148f709a5d0" "3bb5c9b8899c47aebb6fb71e91386409", "c6" "858e06b70404e9cd9e3ecb662395b442" "9c648139053fb521f828af606b4d3dba" "a14b5e77efe75928fe1dc127a2ffa8de" "3348b3c1856a429bf97e7e31c2e5bd66", "118" "39296a789a3bc0045c8a5fb42c7d1bd9" "98f54449579b446817afbd17273e662c" "97ee72995ef42640c550b9013fad0761" "353c7086a272c24088be94769fd16650"); ecc->ref = ecc_alloc (3); ecc_set_str (&ecc->ref[0], /* 2 g */ "433c219024277e7e682fcb288148c282747403279b1ccc06352c6e5505d769be97b3b204da6ef55507aa104a3a35c5af41cf2fa364d60fd967f43e3933ba6d783d", "f4bb8cc7f86db26700a7f3eceeeed3f0b5c6b5107c4da97740ab21a29906c42dbbb3e377de9f251f6b93937fa99a3248f4eafcbe95edc0f4f71be356d661f41b02"); ecc_set_str (&ecc->ref[1], /* 3 g */ "1a73d352443de29195dd91d6a64b5959479b52a6e5b123d9ab9e5ad7a112d7a8dd1ad3f164a3a4832051da6bd16b59fe21baeb490862c32ea05a5919d2ede37ad7d", "13e9b03b97dfa62ddd9979f86c6cab814f2f1557fa82a9d0317d2f8ab1fa355ceec2e2dd4cf8dc575b02d5aced1dec3c70cf105c9bc93a590425f588ca1ee86c0e5"); ecc_set_str (&ecc->ref[2], /* 4 g */ "35b5df64ae2ac204c354b483487c9070cdc61c891c5ff39afc06c5d55541d3ceac8659e24afe3d0750e8b88e9f078af066a1d5025b08e5a5e2fbc87412871902f3", "82096f84261279d2b673e0178eb0b4abb65521aef6e6e32e1b5ae63fe2f19907f279f283e54ba385405224f750a95b85eebb7faef04699d1d9e21f47fc346e4d0d"); break; default: fprintf (stderr, "No known curve for size %d\n", bit_size); exit(EXIT_FAILURE); } ecc->bit_size = bit_size; } static void ecc_pippenger_precompute (struct ecc_curve *ecc, unsigned k, unsigned c) { unsigned p = (ecc->bit_size + k-1) / k; unsigned M = (p + c-1)/c; unsigned i, j; ecc->pippenger_k = k; ecc->pippenger_c = c; ecc->table_size = M << c; ecc->table = ecc_alloc (ecc->table_size); /* Compute the first 2^c entries */ ecc_set_zero (&ecc->table[0]); ecc_set (&ecc->table[1], &ecc->g); for (j = 2; j < (1U<table[j], &ecc->table[j/2]); for (i = 1; i < k; i++) ecc_dup (ecc, &ecc->table[j], &ecc->table[j]); for (i = 1; i < j; i++) ecc_add (ecc, &ecc->table[j + i], &ecc->table[j], &ecc->table[i]); } for (j = 1<table_size; j++) { /* T[j] = 2^{kc} T[j-2^c] */ ecc_dup (ecc, &ecc->table[j], &ecc->table[j - (1<table[j], &ecc->table[j]); } } static void ecc_mul_pippenger (const struct ecc_curve *ecc, struct ecc_point *r, const mpz_t n_input) { mpz_t n; unsigned k, c; unsigned i, j; unsigned bit_rows; mpz_init (n); mpz_mod (n, n_input, ecc->q); ecc_set_zero (r); k = ecc->pippenger_k; c = ecc->pippenger_c; bit_rows = (ecc->bit_size + k - 1) / k; for (i = k; i-- > 0; ) { ecc_dup (ecc, r, r); for (j = 0; j * c < bit_rows; j++) { unsigned bits; mp_size_t bit_index; /* Extract c bits of the exponent, stride k, starting at i + kcj, ending at i + k (cj + c - 1)*/ for (bits = 0, bit_index = i + k*(c*j+c); bit_index > i + k*c*j; ) { bit_index -= k; bits = (bits << 1) | mpz_tstbit (n, bit_index); } ecc_add (ecc, r, r, &ecc->table[(j << c) | bits]); } } mpz_clear (n); } #define ASSERT_EQUAL(p, q) do { \ if (!ecc_equal_p (p, q)) \ { \ fprintf (stderr, "%s:%d: ASSERT_EQUAL (%s, %s) failed.\n", \ __FILE__, __LINE__, #p, #q); \ fprintf (stderr, "p = ("); \ mpz_out_str (stderr, 16, (p)->x); \ fprintf (stderr, ",\n "); \ mpz_out_str (stderr, 16, (p)->y); \ fprintf (stderr, ")\nq = ("); \ mpz_out_str (stderr, 16, (q)->x); \ fprintf (stderr, ",\n "); \ mpz_out_str (stderr, 16, (q)->y); \ fprintf (stderr, ")\n"); \ abort(); \ } \ } while (0) #define ASSERT_ZERO(p) do { \ if (!ecc_zero_p (p)) \ { \ fprintf (stderr, "%s:%d: ASSERT_ZERO (%s) failed.\n", \ __FILE__, __LINE__, #p); \ fprintf (stderr, "p = ("); \ mpz_out_str (stderr, 16, (p)->x); \ fprintf (stderr, ",\n "); \ mpz_out_str (stderr, 16, (p)->y); \ fprintf (stderr, ")\n"); \ abort(); \ } \ } while (0) static void ecc_curve_check (const struct ecc_curve *ecc) { struct ecc_point p, q; mpz_t n; ecc_init (&p); ecc_init (&q); mpz_init (n); ecc_dup (ecc, &p, &ecc->g); if (ecc->ref) ASSERT_EQUAL (&p, &ecc->ref[0]); else { fprintf (stderr, "g2 = "); mpz_out_str (stderr, 16, p.x); fprintf (stderr, "\n "); mpz_out_str (stderr, 16, p.y); fprintf (stderr, "\n"); } ecc_add (ecc, &q, &p, &ecc->g); if (ecc->ref) ASSERT_EQUAL (&q, &ecc->ref[1]); else { fprintf (stderr, "g3 = "); mpz_out_str (stderr, 16, q.x); fprintf (stderr, "\n "); mpz_out_str (stderr, 16, q.y); fprintf (stderr, "\n"); } ecc_add (ecc, &q, &q, &ecc->g); if (ecc->ref) ASSERT_EQUAL (&q, &ecc->ref[2]); else { fprintf (stderr, "g4 = "); mpz_out_str (stderr, 16, q.x); fprintf (stderr, "\n "); mpz_out_str (stderr, 16, q.y); fprintf (stderr, "\n"); } ecc_dup (ecc, &q, &p); if (ecc->ref) ASSERT_EQUAL (&q, &ecc->ref[2]); else { fprintf (stderr, "g4 = "); mpz_out_str (stderr, 16, q.x); fprintf (stderr, "\n "); mpz_out_str (stderr, 16, q.y); fprintf (stderr, "\n"); } ecc_mul_binary (ecc, &p, ecc->q, &ecc->g); ASSERT_ZERO (&p); ecc_mul_pippenger (ecc, &q, ecc->q); ASSERT_ZERO (&q); ecc_clear (&p); ecc_clear (&q); mpz_clear (n); } static void output_digits (const mpz_t x, unsigned size, unsigned bits_per_limb) { mpz_t t; mpz_t mask; mpz_t limb; unsigned i; const char *suffix; mpz_init (t); mpz_init (mask); mpz_init (limb); mpz_setbit (mask, bits_per_limb); mpz_sub_ui (mask, mask, 1); suffix = bits_per_limb > 32 ? "ULL" : "UL"; mpz_init_set (t, x); for (i = 0; i < size; i++) { if ( (i % 8) == 0) printf("\n "); mpz_and (limb, mask, t); printf (" 0x"); mpz_out_str (stdout, 16, limb); printf ("%s,", suffix); mpz_tdiv_q_2exp (t, t, bits_per_limb); } mpz_clear (t); mpz_clear (mask); mpz_clear (limb); } static void output_bignum (const char *name, const mpz_t x, unsigned size, unsigned bits_per_limb) { printf ("static const mp_limb_t %s[%d] = {", name, size); output_digits (x, size, bits_per_limb); printf("\n};\n"); } static void output_point (const char *name, const struct ecc_point *p, unsigned size, unsigned bits_per_limb) { if (name) printf("static const mp_limb_t %s[%u] = {", name, 2*size); output_digits (p->x, size, bits_per_limb); output_digits (p->y, size, bits_per_limb); if (name) printf("\n};\n"); } static void output_point_redc (const char *name, const struct ecc_curve *ecc, const struct ecc_point *p, unsigned size, unsigned bits_per_limb) { mpz_t t; mpz_init (t); if (name) printf("static const mp_limb_t %s[%u] = {", name, 2*size); mpz_mul_2exp (t, p->x, size * bits_per_limb); mpz_mod (t, t, ecc->p); output_digits (t, size, bits_per_limb); mpz_mul_2exp (t, p->y, size * bits_per_limb); mpz_mod (t, t, ecc->p); output_digits (t, size, bits_per_limb); if (name) printf("\n};\n"); mpz_clear (t); } static unsigned output_modulo (const char *name, const mpz_t x, unsigned size, unsigned bits_per_limb) { mpz_t mod; unsigned bits; mpz_init (mod); mpz_setbit (mod, bits_per_limb * size); mpz_mod (mod, mod, x); bits = mpz_sizeinbase (mod, 2); assert (bits <= size * bits_per_limb - 32); output_bignum (name, mod, size, bits_per_limb); mpz_clear (mod); return bits; } static void output_curve (const struct ecc_curve *ecc, unsigned bits_per_limb) { unsigned limb_size = (ecc->bit_size + bits_per_limb - 1)/bits_per_limb; unsigned i; unsigned bits; int redc_limbs; mpz_t t; mpz_init (t); printf ("/* For NULL. */\n#include \n"); printf ("#define ECC_LIMB_SIZE %u\n", limb_size); printf ("#define ECC_PIPPENGER_K %u\n", ecc->pippenger_k); printf ("#define ECC_PIPPENGER_C %u\n", ecc->pippenger_c); output_bignum ("ecc_p", ecc->p, limb_size, bits_per_limb); output_bignum ("ecc_b", ecc->b, limb_size, bits_per_limb); output_bignum ("ecc_q", ecc->q, limb_size, bits_per_limb); output_point ("ecc_g", &ecc->g, limb_size, bits_per_limb); output_point_redc ("ecc_redc_g", ecc, &ecc->g, limb_size, bits_per_limb); bits = output_modulo ("ecc_Bmodp", ecc->p, limb_size, bits_per_limb); printf ("#define ECC_BMODP_SIZE %u\n", (bits + bits_per_limb - 1) / bits_per_limb); bits = output_modulo ("ecc_Bmodq", ecc->q, limb_size, bits_per_limb); printf ("#define ECC_BMODQ_SIZE %u\n", (bits + bits_per_limb - 1) / bits_per_limb); if (ecc->bit_size < limb_size * bits_per_limb) { int shift; mpz_set_ui (t, 0); mpz_setbit (t, ecc->bit_size); mpz_sub (t, t, ecc->p); output_bignum ("ecc_Bmodp_shifted", t, limb_size, bits_per_limb); shift = limb_size * bits_per_limb - ecc->bit_size; if (shift > 0) { /* Check condition for reducing hi limbs. If s is the normalization shift and n is the bit size (so that s + n = limb_size * bite_per_limb), then we need (2^n - 1) + (2^s - 1) (2^n - p) < 2p or equivalently, 2^s (2^n - p) <= p To a allow a carry limb to be added in at the same time, substitute s+1 for s. */ /* FIXME: For ecdsa verify, we actually need the stricter inequality < 2 q. */ mpz_mul_2exp (t, t, shift + 1); if (mpz_cmp (t, ecc->p) > 0) { fprintf (stderr, "Reduction condition failed for %u-bit curve.\n", ecc->bit_size); exit (EXIT_FAILURE); } } mpz_set_ui (t, 0); mpz_setbit (t, ecc->bit_size); mpz_sub (t, t, ecc->q); output_bignum ("ecc_Bmodq_shifted", t, limb_size, bits_per_limb); } else { printf ("#define ecc_Bmodp_shifted ecc_Bmodp\n"); printf ("#define ecc_Bmodq_shifted ecc_Bmodq\n"); } mpz_add_ui (t, ecc->p, 1); mpz_fdiv_q_2exp (t, t, 1); output_bignum ("ecc_pp1h", t, limb_size, bits_per_limb); mpz_add_ui (t, ecc->q, 1); mpz_fdiv_q_2exp (t, t, 1); output_bignum ("ecc_qp1h", t, limb_size, bits_per_limb); /* Trailing zeros in p+1 correspond to trailing ones in p. */ redc_limbs = mpz_scan0 (ecc->p, 0) / bits_per_limb; if (redc_limbs > 0) { mpz_add_ui (t, ecc->p, 1); mpz_fdiv_q_2exp (t, t, redc_limbs * bits_per_limb); output_bignum ("ecc_redc_ppm1", t, limb_size - redc_limbs, bits_per_limb); } else { /* Trailing zeros in p-1 correspond to zeros just above the low bit of p */ redc_limbs = mpz_scan1 (ecc->p, 1) / bits_per_limb; if (redc_limbs > 0) { printf ("#define ecc_redc_ppm1 (ecc_p + %d)\n", redc_limbs); redc_limbs = -redc_limbs; } else printf ("#define ecc_redc_ppm1 NULL\n"); } printf ("#define ECC_REDC_SIZE %d\n", redc_limbs); printf ("#if USE_REDC\n"); printf ("#define ecc_unit ecc_Bmodp\n"); printf ("static const mp_limb_t ecc_table[%lu] = {", (unsigned long) (2*ecc->table_size * limb_size)); for (i = 0; i < ecc->table_size; i++) output_point_redc (NULL, ecc, &ecc->table[i], limb_size, bits_per_limb); printf("\n};\n"); printf ("#else\n"); mpz_init_set_ui (t, 1); output_bignum ("ecc_unit", t, limb_size, bits_per_limb); printf ("static const mp_limb_t ecc_table[%lu] = {", (unsigned long) (2*ecc->table_size * limb_size)); for (i = 0; i < ecc->table_size; i++) output_point (NULL, &ecc->table[i], limb_size, bits_per_limb); printf("\n};\n"); printf ("#endif\n"); mpz_clear (t); } int main (int argc, char **argv) { struct ecc_curve ecc; if (argc < 4) { fprintf (stderr, "Usage: %s CURVE-BITS K C [BITS-PER-LIMB]\n", argv[0]); return EXIT_FAILURE; } ecc_curve_init (&ecc, atoi(argv[1])); ecc_pippenger_precompute (&ecc, atoi(argv[2]), atoi(argv[3])); fprintf (stderr, "Table size: %lu entries\n", (unsigned long) ecc.table_size); ecc_curve_check (&ecc); if (argc > 4) output_curve (&ecc, atoi(argv[4])); return EXIT_SUCCESS; }