/* camellia-absorb.c Final key setup processing for the camellia block cipher. Copyright (C) 2006,2007 NTT (Nippon Telegraph and Telephone Corporation). Copyright (C) 2010 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ /* * Algorithm Specification * http://info.isl.ntt.co.jp/crypt/eng/camellia/specifications.html */ /* Based on camellia.c ver 1.2.0, see http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/camellia-LGPL-1.2.0.tar.gz. */ #if HAVE_CONFIG_H # include "config.h" #endif /* For CHAR_BIT, needed by HAVE_NATIVE_64_BIT */ #include #include "camellia-internal.h" #include "macros.h" void _nettle_camellia_absorb(unsigned nkeys, uint64_t *dst, uint64_t *subkey) { uint64_t kw2, kw4; uint32_t dw, tl, tr; unsigned i; /* At this point, the subkey array contains the subkeys as described in the spec, 26 for short keys and 34 for large keys. */ /* absorb kw2 to other subkeys */ kw2 = subkey[1]; subkey[3] ^= kw2; subkey[5] ^= kw2; subkey[7] ^= kw2; for (i = 8; i < nkeys; i += 8) { /* FIXME: gcc for x86_32 is smart enough to fetch the 32 low bits and xor the result into the 32 high bits, but it still generates worse code than for explicit 32-bit operations. */ kw2 ^= (kw2 & ~subkey[i+1]) << 32; dw = (kw2 & subkey[i+1]) >> 32; kw2 ^= ROTL32(1, dw); subkey[i+3] ^= kw2; subkey[i+5] ^= kw2; subkey[i+7] ^= kw2; } subkey[i] ^= kw2; /* absorb kw4 to other subkeys */ kw4 = subkey[nkeys + 1]; for (i = nkeys - 8; i > 0; i -= 8) { subkey[i+6] ^= kw4; subkey[i+4] ^= kw4; subkey[i+2] ^= kw4; kw4 ^= (kw4 & ~subkey[i]) << 32; dw = (kw4 & subkey[i]) >> 32; kw4 ^= ROTL32(1, dw); } subkey[6] ^= kw4; subkey[4] ^= kw4; subkey[2] ^= kw4; subkey[0] ^= kw4; /* key XOR is end of F-function */ dst[0] = subkey[0] ^ subkey[2]; dst[1] = subkey[3]; dst[2] = subkey[2] ^ subkey[4]; dst[3] = subkey[3] ^ subkey[5]; dst[4] = subkey[4] ^ subkey[6]; dst[5] = subkey[5] ^ subkey[7]; for (i = 8; i < nkeys; i += 8) { tl = (subkey[i+2] >> 32) ^ (subkey[i+2] & ~subkey[i]); dw = tl & (subkey[i] >> 32); tr = subkey[i+2] ^ ROTL32(1, dw); dst[i-2] = subkey[i-2] ^ ( ((uint64_t) tl << 32) | tr); dst[i-1] = subkey[i]; dst[i] = subkey[i+1]; tl = (subkey[i-1] >> 32) ^ (subkey[i-1] & ~subkey[i+1]); dw = tl & (subkey[i+1] >> 32); tr = subkey[i-1] ^ ROTL32(1, dw); dst[i+1] = subkey[i+3] ^ ( ((uint64_t) tl << 32) | tr); dst[i+2] = subkey[i+2] ^ subkey[i+4]; dst[i+3] = subkey[i+3] ^ subkey[i+5]; dst[i+4] = subkey[i+4] ^ subkey[i+6]; dst[i+5] = subkey[i+5] ^ subkey[i+7]; } dst[i-2] = subkey[i-2]; dst[i-1] = subkey[i] ^ subkey[i-1]; #if !HAVE_NATIVE_64_BIT for (i = 0; i < nkeys; i += 8) { /* apply the inverse of the last half of F-function */ CAMELLIA_F_HALF_INV(dst[i+1]); CAMELLIA_F_HALF_INV(dst[i+2]); CAMELLIA_F_HALF_INV(dst[i+3]); CAMELLIA_F_HALF_INV(dst[i+4]); CAMELLIA_F_HALF_INV(dst[i+5]); CAMELLIA_F_HALF_INV(dst[i+6]); } #endif }