/* nasmlib.h header file for nasmlib.c * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the license given in the file "LICENSE" * distributed in the NASM archive. */ #ifndef NASM_NASMLIB_H #define NASM_NASMLIB_H #include "compiler.h" #include #include #include #ifdef HAVE_STRINGS_H #include #endif /* * If this is defined, the wrappers around malloc et al will * transform into logging variants, which will cause NASM to create * a file called `malloc.log' when run, and spew details of all its * memory management into that. That can then be analysed to detect * memory leaks and potentially other problems too. */ /* #define LOGALLOC */ /* * ------------------------- * Error reporting functions * ------------------------- */ /* * An error reporting function should look like this. */ typedef void (*efunc) (int severity, const char *fmt, ...); /* * These are the error severity codes which get passed as the first * argument to an efunc. */ #define ERR_DEBUG 0x00000008 /* put out debugging message */ #define ERR_WARNING 0x00000000 /* warn only: no further action */ #define ERR_NONFATAL 0x00000001 /* terminate assembly after phase */ #define ERR_FATAL 0x00000002 /* instantly fatal: exit with error */ #define ERR_PANIC 0x00000003 /* internal error: panic instantly * and dump core for reference */ #define ERR_MASK 0x0000000F /* mask off the above codes */ #define ERR_NOFILE 0x00000010 /* don't give source file name/line */ #define ERR_USAGE 0x00000020 /* print a usage message */ #define ERR_PASS1 0x00000040 /* only print this error on pass one */ /* * These codes define specific types of suppressible warning. */ #define ERR_WARN_MASK 0x0000FF00 /* the mask for this feature */ #define ERR_WARN_SHR 8 /* how far to shift right */ #define WARN(x) ((x) << ERR_WARN_SHR) #define ERR_WARN_MNP WARN(1) /* macro-num-parameters warning */ #define ERR_WARN_MSR WARN(2) /* macro self-reference */ #define ERR_WARN_OL WARN(3) /* orphan label (no colon, and * alone on line) */ #define ERR_WARN_NOV WARN(4) /* numeric overflow */ #define ERR_WARN_GNUELF WARN(5) /* using GNU ELF extensions */ #define ERR_WARN_FL_OVERFLOW WARN(6) /* FP overflow */ #define ERR_WARN_FL_DENORM WARN(7) /* FP denormal */ #define ERR_WARN_FL_UNDERFLOW WARN(8) /* FP underflow */ #define ERR_WARN_FL_TOOLONG WARN(9) /* FP too many digits */ #define ERR_WARN_MAX 9 /* the highest numbered one */ /* * Wrappers around malloc, realloc and free. nasm_malloc will * fatal-error and die rather than return NULL; nasm_realloc will * do likewise, and will also guarantee to work right on being * passed a NULL pointer; nasm_free will do nothing if it is passed * a NULL pointer. */ void nasm_set_malloc_error(efunc); #ifndef LOGALLOC void *nasm_malloc(size_t); void *nasm_zalloc(size_t); void *nasm_realloc(void *, size_t); void nasm_free(void *); char *nasm_strdup(const char *); char *nasm_strndup(char *, size_t); #else void *nasm_malloc_log(char *, int, size_t); void *nasm_zalloc_log(char *, int, size_t); void *nasm_realloc_log(char *, int, void *, size_t); void nasm_free_log(char *, int, void *); char *nasm_strdup_log(char *, int, const char *); char *nasm_strndup_log(char *, int, char *, size_t); #define nasm_malloc(x) nasm_malloc_log(__FILE__,__LINE__,x) #define nasm_zalloc(x) nasm_zalloc_log(__FILE__,__LINE__,x) #define nasm_realloc(x,y) nasm_realloc_log(__FILE__,__LINE__,x,y) #define nasm_free(x) nasm_free_log(__FILE__,__LINE__,x) #define nasm_strdup(x) nasm_strdup_log(__FILE__,__LINE__,x) #define nasm_strndup(x,y) nasm_strndup_log(__FILE__,__LINE__,x,y) #endif /* * ANSI doesn't guarantee the presence of `stricmp' or * `strcasecmp'. */ #if defined(HAVE_STRCASECMP) #define nasm_stricmp strcasecmp #elif defined(HAVE_STRICMP) #define nasm_stricmp stricmp #else int nasm_stricmp(const char *, const char *); #endif #if defined(HAVE_STRNCASECMP) #define nasm_strnicmp strncasecmp #elif defined(HAVE_STRNICMP) #define nasm_strnicmp strnicmp #else int nasm_strnicmp(const char *, const char *, size_t); #endif int nasm_memicmp(const char *, const char *, size_t); #if defined(HAVE_STRSEP) #define nasm_strsep strsep #else char *nasm_strsep(char **stringp, const char *delim); #endif /* * Convert a string into a number, using NASM number rules. Sets * `*error' to true if an error occurs, and false otherwise. */ int64_t readnum(char *str, bool *error); /* * Convert a character constant into a number. Sets * `*warn' to true if an overflow occurs, and false otherwise. * str points to and length covers the middle of the string, * without the quotes. */ int64_t readstrnum(char *str, int length, bool *warn); /* * seg_init: Initialise the segment-number allocator. * seg_alloc: allocate a hitherto unused segment number. */ void seg_init(void); int32_t seg_alloc(void); /* * many output formats will be able to make use of this: a standard * function to add an extension to the name of the input file */ #ifdef NASM_NASM_H void standard_extension(char *inname, char *outname, char *extension, efunc error); #endif /* * Utility macros... * * This is a useful #define which I keep meaning to use more often: * the number of elements of a statically defined array. */ #define elements(x) ( sizeof(x) / sizeof(*(x)) ) /* * some handy macros that will probably be of use in more than one * output format: convert integers into little-endian byte packed * format in memory */ #if X86_MEMORY #define WRITECHAR(p,v) \ do { \ *(uint8_t *)(p) = (v); \ (p) += 1; \ } while (0) #define WRITESHORT(p,v) \ do { \ *(uint16_t *)(p) = (v); \ (p) += 2; \ } while (0) #define WRITELONG(p,v) \ do { \ *(uint32_t *)(p) = (v); \ (p) += 4; \ } while (0) #define WRITEDLONG(p,v) \ do { \ *(uint64_t *)(p) = (v); \ (p) += 8; \ } while (0) #define WRITEADDR(p,v,s) \ do { \ uint64_t _wa_v = (v); \ memcpy((p), &_wa_v, (s)); \ (p) += (s); \ } while (0) #else /* !X86_MEMORY */ #define WRITECHAR(p,v) \ do { \ uint8_t *_wc_p = (uint8_t *)(p); \ uint8_t _wc_v = (v); \ _wc_p[0] = _wc_v; \ (p) = (void *)(_wc_p + 1); \ } while (0) #define WRITESHORT(p,v) \ do { \ uint8_t *_ws_p = (uint8_t *)(p); \ uint16_t _ws_v = (v); \ _ws_p[0] = _ws_v; \ _ws_p[1] = _ws_v >> 8; \ (p) = (void *)(_ws_p + 2); \ } while (0) #define WRITELONG(p,v) \ do { \ uint8_t *_wl_p = (uint8_t *)(p); \ uint32_t _wl_v = (v); \ _wl_p[0] = _wl_v; \ _wl_p[1] = _wl_v >> 8; \ _wl_p[2] = _wl_v >> 16; \ _wl_p[3] = _wl_v >> 24; \ (p) = (void *)(_wl_p + 4); \ } while (0) #define WRITEDLONG(p,v) \ do { \ uint8_t *_wq_p = (uint8_t *)(p); \ uint64_t _wq_v = (v); \ _wq_p[0] = _wq_v; \ _wq_p[1] = _wq_v >> 8; \ _wq_p[2] = _wq_v >> 16; \ _wq_p[3] = _wq_v >> 24; \ _wq_p[4] = _wq_v >> 32; \ _wq_p[5] = _wq_v >> 40; \ _wq_p[6] = _wq_v >> 48; \ _wq_p[7] = _wq_v >> 56; \ (p) = (void *)(_wq_p + 8); \ } while (0) #define WRITEADDR(p,v,s) \ do { \ int _wa_s = (s); \ uint64_t _wa_v = (v); \ while (_wa_s--) { \ WRITECHAR(p,_wa_v); \ _wa_v >>= 8; \ } \ } while(0) #endif /* * and routines to do the same thing to a file */ #define fwriteint8_t(d,f) putc(d,f) void fwriteint16_t(uint16_t data, FILE * fp); void fwriteint32_t(uint32_t data, FILE * fp); void fwriteint64_t(uint64_t data, FILE * fp); void fwriteaddr(uint64_t data, int size, FILE * fp); /* * Routines to manage a dynamic random access array of int64_ts which * may grow in size to be more than the largest single malloc'able * chunk. */ #define RAA_BLKSHIFT 15 /* 2**this many longs allocated at once */ #define RAA_BLKSIZE (1 << RAA_BLKSHIFT) #define RAA_LAYERSHIFT 15 /* 2**this many _pointers_ allocated */ #define RAA_LAYERSIZE (1 << RAA_LAYERSHIFT) typedef struct RAA RAA; typedef union RAA_UNION RAA_UNION; typedef struct RAA_LEAF RAA_LEAF; typedef struct RAA_BRANCH RAA_BRANCH; struct RAA { /* * Number of layers below this one to get to the real data. 0 * means this structure is a leaf, holding RAA_BLKSIZE real * data items; 1 and above mean it's a branch, holding * RAA_LAYERSIZE pointers to the next level branch or leaf * structures. */ int layers; /* * Number of real data items spanned by one position in the * `data' array at this level. This number is 0 trivially, for * a leaf (level 0): for a level 1 branch it should be * RAA_BLKSHIFT, and for a level 2 branch it's * RAA_LAYERSHIFT+RAA_BLKSHIFT. */ int shift; union RAA_UNION { struct RAA_LEAF { int64_t data[RAA_BLKSIZE]; } l; struct RAA_BRANCH { struct RAA *data[RAA_LAYERSIZE]; } b; } u; }; struct RAA *raa_init(void); void raa_free(struct RAA *); int64_t raa_read(struct RAA *, int32_t); struct RAA *raa_write(struct RAA *r, int32_t posn, int64_t value); /* * Routines to manage a dynamic sequential-access array, under the * same restriction on maximum mallocable block. This array may be * written to in two ways: a contiguous chunk can be reserved of a * given size with a pointer returned OR single-byte data may be * written. The array can also be read back in the same two ways: * as a series of big byte-data blocks or as a list of structures * of a given size. */ struct SAA { /* * members `end' and `elem_len' are only valid in first link in * list; `rptr' and `rpos' are used for reading */ size_t elem_len; /* Size of each element */ size_t blk_len; /* Size of each allocation block */ size_t nblks; /* Total number of allocated blocks */ size_t nblkptrs; /* Total number of allocation block pointers */ size_t length; /* Total allocated length of the array */ size_t datalen; /* Total data length of the array */ char **wblk; /* Write block pointer */ size_t wpos; /* Write position inside block */ size_t wptr; /* Absolute write position */ char **rblk; /* Read block pointer */ size_t rpos; /* Read position inside block */ size_t rptr; /* Absolute read position */ char **blk_ptrs; /* Pointer to pointer blocks */ }; struct SAA *saa_init(size_t elem_len); /* 1 == byte */ void saa_free(struct SAA *); void *saa_wstruct(struct SAA *); /* return a structure of elem_len */ void saa_wbytes(struct SAA *, const void *, size_t); /* write arbitrary bytes */ void saa_wleb128u(struct SAA *, int); /* write unsigned LEB128 value */ void saa_wleb128s(struct SAA *, int); /* write signed LEB128 value */ void saa_rewind(struct SAA *); /* for reading from beginning */ void *saa_rstruct(struct SAA *); /* return NULL on EOA */ const void *saa_rbytes(struct SAA *, size_t *); /* return 0 on EOA */ void saa_rnbytes(struct SAA *, void *, size_t); /* read a given no. of bytes */ /* random access */ void saa_fread(struct SAA *, size_t, void *, size_t); void saa_fwrite(struct SAA *, size_t, const void *, size_t); /* dump to file */ void saa_fpwrite(struct SAA *, FILE *); /* * Binary search routine. Returns index into `array' of an entry * matching `string', or <0 if no match. `array' is taken to * contain `size' elements. * * bsi() is case sensitive, bsii() is case insensitive. */ int bsi(const char *string, const char **array, int size); int bsii(const char *string, const char **array, int size); char *src_set_fname(char *newname); int32_t src_set_linnum(int32_t newline); int32_t src_get_linnum(void); /* * src_get may be used if you simply want to know the source file and line. * It is also used if you maintain private status about the source location * It return 0 if the information was the same as the last time you * checked, -1 if the name changed and (new-old) if just the line changed. */ int src_get(int32_t *xline, char **xname); char *nasm_strcat(char *one, char *two); void null_debug_routine(const char *directive, const char *params); extern struct dfmt null_debug_form; extern struct dfmt *null_debug_arr[2]; const char *prefix_name(int); #endif