/* nasmlib.c library routines for the Netwide Assembler * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. */ #include #include #include #include #include #include "nasm.h" #include "nasmlib.h" #include "insns.h" int globalbits = 0; /* defined in nasm.h, works better here for ASM+DISASM */ static efunc nasm_malloc_error; #ifdef LOGALLOC static FILE *logfp; #endif void nasm_set_malloc_error(efunc error) { nasm_malloc_error = error; #ifdef LOGALLOC logfp = fopen("malloc.log", "w"); setvbuf(logfp, NULL, _IOLBF, BUFSIZ); fprintf(logfp, "null pointer is %p\n", NULL); #endif } #ifdef LOGALLOC void *nasm_malloc_log(char *file, int line, size_t size) #else void *nasm_malloc(size_t size) #endif { void *p = malloc(size); if (!p) nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else fprintf(logfp, "%s %d malloc(%ld) returns %p\n", file, line, (int32_t)size, p); #endif return p; } #ifdef LOGALLOC void *nasm_realloc_log(char *file, int line, void *q, size_t size) #else void *nasm_realloc(void *q, size_t size) #endif { void *p = q ? realloc(q, size) : malloc(size); if (!p) nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else if (q) fprintf(logfp, "%s %d realloc(%p,%ld) returns %p\n", file, line, q, (int32_t)size, p); else fprintf(logfp, "%s %d malloc(%ld) returns %p\n", file, line, (int32_t)size, p); #endif return p; } #ifdef LOGALLOC void nasm_free_log(char *file, int line, void *q) #else void nasm_free(void *q) #endif { if (q) { free(q); #ifdef LOGALLOC fprintf(logfp, "%s %d free(%p)\n", file, line, q); #endif } } #ifdef LOGALLOC char *nasm_strdup_log(char *file, int line, const char *s) #else char *nasm_strdup(const char *s) #endif { char *p; int size = strlen(s) + 1; p = malloc(size); if (!p) nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else fprintf(logfp, "%s %d strdup(%ld) returns %p\n", file, line, (int32_t)size, p); #endif strcpy(p, s); return p; } #ifdef LOGALLOC char *nasm_strndup_log(char *file, int line, char *s, size_t len) #else char *nasm_strndup(char *s, size_t len) #endif { char *p; int size = len + 1; p = malloc(size); if (!p) nasm_malloc_error(ERR_FATAL | ERR_NOFILE, "out of memory"); #ifdef LOGALLOC else fprintf(logfp, "%s %d strndup(%ld) returns %p\n", file, line, (int32_t)size, p); #endif strncpy(p, s, len); p[len] = '\0'; return p; } #if !defined(stricmp) && !defined(strcasecmp) int nasm_stricmp(const char *s1, const char *s2) { while (*s1 && tolower(*s1) == tolower(*s2)) s1++, s2++; if (!*s1 && !*s2) return 0; else if (tolower(*s1) < tolower(*s2)) return -1; else return 1; } #endif #if !defined(strnicmp) && !defined(strncasecmp) int nasm_strnicmp(const char *s1, const char *s2, int n) { while (n > 0 && *s1 && tolower(*s1) == tolower(*s2)) s1++, s2++, n--; if ((!*s1 && !*s2) || n == 0) return 0; else if (tolower(*s1) < tolower(*s2)) return -1; else return 1; } #endif #if !defined(strsep) char *nasm_strsep(char **stringp, const char *delim) { char *s = *stringp; char *e; if (!s) return NULL; e = strpbrk(s, delim); if (e) *e++ = '\0'; *stringp = e; return s; } #endif #define lib_isnumchar(c) ( isalnum(c) || (c) == '$') #define numvalue(c) ((c)>='a' ? (c)-'a'+10 : (c)>='A' ? (c)-'A'+10 : (c)-'0') int64_t readnum(char *str, int *error) { char *r = str, *q; int32_t radix; uint64_t result, checklimit; int digit, last; int warn = FALSE; int sign = 1; *error = FALSE; while (isspace(*r)) r++; /* find start of number */ /* * If the number came from make_tok_num (as a result of an %assign), it * might have a '-' built into it (rather than in a preceeding token). */ if (*r == '-') { r++; sign = -1; } q = r; while (lib_isnumchar(*q)) q++; /* find end of number */ /* * If it begins 0x, 0X or $, or ends in H, it's in hex. if it * ends in Q, it's octal. if it ends in B, it's binary. * Otherwise, it's ordinary decimal. */ if (*r == '0' && (r[1] == 'x' || r[1] == 'X')) radix = 16, r += 2; else if (*r == '$') radix = 16, r++; else if (q[-1] == 'H' || q[-1] == 'h') radix = 16, q--; else if (q[-1] == 'Q' || q[-1] == 'q' || q[-1] == 'O' || q[-1] == 'o') radix = 8, q--; else if (q[-1] == 'B' || q[-1] == 'b') radix = 2, q--; else radix = 10; /* * If this number has been found for us by something other than * the ordinary scanners, then it might be malformed by having * nothing between the prefix and the suffix. Check this case * now. */ if (r >= q) { *error = TRUE; return 0; } /* * `checklimit' must be 2**(32|64) / radix. We can't do that in * 32/64-bit arithmetic, which we're (probably) using, so we * cheat: since we know that all radices we use are even, we * can divide 2**(31|63) by radix/2 instead. */ if (globalbits == 64) checklimit = 0x8000000000000000ULL / (radix >> 1); else checklimit = 0x80000000UL / (radix >> 1); /* * Calculate the highest allowable value for the last digit of a * 32-bit constant... in radix 10, it is 6, otherwise it is 0 */ last = (radix == 10 ? 6 : 0); result = 0; while (*r && r < q) { if (*r < '0' || (*r > '9' && *r < 'A') || (digit = numvalue(*r)) >= radix) { *error = TRUE; return 0; } if (result > checklimit || (result == checklimit && digit >= last)) { warn = TRUE; } result = radix * result + digit; r++; } if (warn) nasm_malloc_error(ERR_WARNING | ERR_PASS1 | ERR_WARN_NOV, "numeric constant %s does not fit in 32 bits", str); return result * sign; } int64_t readstrnum(char *str, int length, int *warn) { int64_t charconst = 0; int i; *warn = FALSE; str += length; if (globalbits == 64) { for (i = 0; i < length; i++) { if (charconst & 0xFF00000000000000ULL) *warn = TRUE; charconst = (charconst << 8) + (uint8_t)*--str; } } else { for (i = 0; i < length; i++) { if (charconst & 0xFF000000UL) *warn = TRUE; charconst = (charconst << 8) + (uint8_t)*--str; } } return charconst; } static int32_t next_seg; void seg_init(void) { next_seg = 0; } int32_t seg_alloc(void) { return (next_seg += 2) - 2; } void fwriteint16_t(int data, FILE * fp) { fputc((int)(data & 255), fp); fputc((int)((data >> 8) & 255), fp); } void fwriteint32_t(int32_t data, FILE * fp) { fputc((int)(data & 255), fp); fputc((int)((data >> 8) & 255), fp); fputc((int)((data >> 16) & 255), fp); fputc((int)((data >> 24) & 255), fp); } void fwriteint64_t(int64_t data, FILE * fp) { fputc((int)(data & 255), fp); fputc((int)((data >> 8) & 255), fp); fputc((int)((data >> 16) & 255), fp); fputc((int)((data >> 24) & 255), fp); fputc((int)((data >> 32) & 255), fp); fputc((int)((data >> 40) & 255), fp); fputc((int)((data >> 48) & 255), fp); fputc((int)((data >> 56) & 255), fp); } void standard_extension(char *inname, char *outname, char *extension, efunc error) { char *p, *q; if (*outname) /* file name already exists, */ return; /* so do nothing */ q = inname; p = outname; while (*q) *p++ = *q++; /* copy, and find end of string */ *p = '\0'; /* terminate it */ while (p > outname && *--p != '.') ; /* find final period (or whatever) */ if (*p != '.') while (*p) p++; /* go back to end if none found */ if (!strcmp(p, extension)) { /* is the extension already there? */ if (*extension) error(ERR_WARNING | ERR_NOFILE, "file name already ends in `%s': " "output will be in `nasm.out'", extension); else error(ERR_WARNING | ERR_NOFILE, "file name already has no extension: " "output will be in `nasm.out'"); strcpy(outname, "nasm.out"); } else strcpy(p, extension); } #define LEAFSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_LEAF)) #define BRANCHSIZ (sizeof(RAA)-sizeof(RAA_UNION)+sizeof(RAA_BRANCH)) #define LAYERSIZ(r) ( (r)->layers==0 ? RAA_BLKSIZE : RAA_LAYERSIZE ) static struct RAA *real_raa_init(int layers) { struct RAA *r; int i; if (layers == 0) { r = nasm_malloc(LEAFSIZ); r->layers = 0; memset(r->u.l.data, 0, sizeof(r->u.l.data)); r->stepsize = 1L; } else { r = nasm_malloc(BRANCHSIZ); r->layers = layers; for (i = 0; i < RAA_LAYERSIZE; i++) r->u.b.data[i] = NULL; r->stepsize = RAA_BLKSIZE; while (--layers) r->stepsize *= RAA_LAYERSIZE; } return r; } struct RAA *raa_init(void) { return real_raa_init(0); } void raa_free(struct RAA *r) { if (r->layers == 0) nasm_free(r); else { struct RAA **p; for (p = r->u.b.data; p - r->u.b.data < RAA_LAYERSIZE; p++) if (*p) raa_free(*p); } } int32_t raa_read(struct RAA *r, int32_t posn) { if (posn >= r->stepsize * LAYERSIZ(r)) return 0; /* Return 0 for undefined entries */ while (r->layers > 0) { ldiv_t l; l = ldiv(posn, r->stepsize); r = r->u.b.data[l.quot]; posn = l.rem; if (!r) return 0; /* Return 0 for undefined entries */ } return r->u.l.data[posn]; } struct RAA *raa_write(struct RAA *r, int32_t posn, int32_t value) { struct RAA *result; if (posn < 0) nasm_malloc_error(ERR_PANIC, "negative position in raa_write"); while (r->stepsize * LAYERSIZ(r) <= posn) { /* * Must add a layer. */ struct RAA *s; int i; s = nasm_malloc(BRANCHSIZ); for (i = 0; i < RAA_LAYERSIZE; i++) s->u.b.data[i] = NULL; s->layers = r->layers + 1; s->stepsize = LAYERSIZ(r) * r->stepsize; s->u.b.data[0] = r; r = s; } result = r; while (r->layers > 0) { ldiv_t l; struct RAA **s; l = ldiv(posn, r->stepsize); s = &r->u.b.data[l.quot]; if (!*s) *s = real_raa_init(r->layers - 1); r = *s; posn = l.rem; } r->u.l.data[posn] = value; return result; } #define SAA_MAXLEN 8192 struct SAA *saa_init(int32_t elem_len) { struct SAA *s; if (elem_len > SAA_MAXLEN) nasm_malloc_error(ERR_PANIC | ERR_NOFILE, "SAA with huge elements"); s = nasm_malloc(sizeof(struct SAA)); s->posn = s->start = 0L; s->elem_len = elem_len; s->length = SAA_MAXLEN - (SAA_MAXLEN % elem_len); s->data = nasm_malloc(s->length); s->next = NULL; s->end = s; return s; } void saa_free(struct SAA *s) { struct SAA *t; while (s) { t = s->next; nasm_free(s->data); nasm_free(s); s = t; } } void *saa_wstruct(struct SAA *s) { void *p; if (s->end->length - s->end->posn < s->elem_len) { s->end->next = nasm_malloc(sizeof(struct SAA)); s->end->next->start = s->end->start + s->end->posn; s->end = s->end->next; s->end->length = s->length; s->end->next = NULL; s->end->posn = 0L; s->end->data = nasm_malloc(s->length); } p = s->end->data + s->end->posn; s->end->posn += s->elem_len; return p; } void saa_wbytes(struct SAA *s, const void *data, int32_t len) { const char *d = data; while (len > 0) { int32_t l = s->end->length - s->end->posn; if (l > len) l = len; if (l > 0) { if (d) { memcpy(s->end->data + s->end->posn, d, l); d += l; } else memset(s->end->data + s->end->posn, 0, l); s->end->posn += l; len -= l; } if (len > 0) { s->end->next = nasm_malloc(sizeof(struct SAA)); s->end->next->start = s->end->start + s->end->posn; s->end = s->end->next; s->end->length = s->length; s->end->next = NULL; s->end->posn = 0L; s->end->data = nasm_malloc(s->length); } } } void saa_rewind(struct SAA *s) { s->rptr = s; s->rpos = 0L; } void *saa_rstruct(struct SAA *s) { void *p; if (!s->rptr) return NULL; if (s->rptr->posn - s->rpos < s->elem_len) { s->rptr = s->rptr->next; if (!s->rptr) return NULL; /* end of array */ s->rpos = 0L; } p = s->rptr->data + s->rpos; s->rpos += s->elem_len; return p; } void *saa_rbytes(struct SAA *s, int32_t *len) { void *p; if (!s->rptr) return NULL; p = s->rptr->data + s->rpos; *len = s->rptr->posn - s->rpos; s->rptr = s->rptr->next; s->rpos = 0L; return p; } void saa_rnbytes(struct SAA *s, void *data, int32_t len) { char *d = data; while (len > 0) { int32_t l; if (!s->rptr) return; l = s->rptr->posn - s->rpos; if (l > len) l = len; if (l > 0) { memcpy(d, s->rptr->data + s->rpos, l); d += l; s->rpos += l; len -= l; } if (len > 0) { s->rptr = s->rptr->next; s->rpos = 0L; } } } void saa_fread(struct SAA *s, int32_t posn, void *data, int32_t len) { struct SAA *p; int64_t pos; char *cdata = data; if (!s->rptr || posn < s->rptr->start) saa_rewind(s); p = s->rptr; while (posn >= p->start + p->posn) { p = p->next; if (!p) return; /* what else can we do?! */ } pos = posn - p->start; while (len) { int64_t l = p->posn - pos; if (l > len) l = len; memcpy(cdata, p->data + pos, l); len -= l; cdata += l; p = p->next; if (!p) return; pos = 0LL; } s->rptr = p; } void saa_fwrite(struct SAA *s, int32_t posn, void *data, int32_t len) { struct SAA *p; int64_t pos; char *cdata = data; if (!s->rptr || posn < s->rptr->start) saa_rewind(s); p = s->rptr; while (posn >= p->start + p->posn) { p = p->next; if (!p) return; /* what else can we do?! */ } pos = posn - p->start; while (len) { int64_t l = p->posn - pos; if (l > len) l = len; memcpy(p->data + pos, cdata, l); len -= l; cdata += l; p = p->next; if (!p) return; pos = 0LL; } s->rptr = p; } void saa_fpwrite(struct SAA *s, FILE * fp) { char *data; int32_t len; saa_rewind(s); // while ((data = saa_rbytes(s, &len))) for (; (data = saa_rbytes(s, &len));) fwrite(data, 1, len, fp); } /* * Common list of prefix names */ static const char *prefix_names[] = { "a16", "a32", "lock", "o16", "o32", "rep", "repe", "repne", "repnz", "repz", "times" }; const char *prefix_name(int token) { unsigned int prefix = token-PREFIX_ENUM_START; if (prefix > sizeof prefix_names / sizeof(const char *)) return NULL; return prefix_names[prefix]; } /* * Return TRUE if the argument is a simple scalar. (Or a far- * absolute, which counts.) */ int is_simple(expr * vect) { while (vect->type && !vect->value) vect++; if (!vect->type) return 1; if (vect->type != EXPR_SIMPLE) return 0; do { vect++; } while (vect->type && !vect->value); if (vect->type && vect->type < EXPR_SEGBASE + SEG_ABS) return 0; return 1; } /* * Return TRUE if the argument is a simple scalar, _NOT_ a far- * absolute. */ int is_really_simple(expr * vect) { while (vect->type && !vect->value) vect++; if (!vect->type) return 1; if (vect->type != EXPR_SIMPLE) return 0; do { vect++; } while (vect->type && !vect->value); if (vect->type) return 0; return 1; } /* * Return TRUE if the argument is relocatable (i.e. a simple * scalar, plus at most one segment-base, plus possibly a WRT). */ int is_reloc(expr * vect) { while (vect->type && !vect->value) /* skip initial value-0 terms */ vect++; if (!vect->type) /* trivially return TRUE if nothing */ return 1; /* is present apart from value-0s */ if (vect->type < EXPR_SIMPLE) /* FALSE if a register is present */ return 0; if (vect->type == EXPR_SIMPLE) { /* skip over a pure number term... */ do { vect++; } while (vect->type && !vect->value); if (!vect->type) /* ...returning TRUE if that's all */ return 1; } if (vect->type == EXPR_WRT) { /* skip over a WRT term... */ do { vect++; } while (vect->type && !vect->value); if (!vect->type) /* ...returning TRUE if that's all */ return 1; } if (vect->value != 0 && vect->value != 1) return 0; /* segment base multiplier non-unity */ do { /* skip over _one_ seg-base term... */ vect++; } while (vect->type && !vect->value); if (!vect->type) /* ...returning TRUE if that's all */ return 1; return 0; /* And return FALSE if there's more */ } /* * Return TRUE if the argument contains an `unknown' part. */ int is_unknown(expr * vect) { while (vect->type && vect->type < EXPR_UNKNOWN) vect++; return (vect->type == EXPR_UNKNOWN); } /* * Return TRUE if the argument contains nothing but an `unknown' * part. */ int is_just_unknown(expr * vect) { while (vect->type && !vect->value) vect++; return (vect->type == EXPR_UNKNOWN); } /* * Return the scalar part of a relocatable vector. (Including * simple scalar vectors - those qualify as relocatable.) */ int64_t reloc_value(expr * vect) { while (vect->type && !vect->value) vect++; if (!vect->type) return 0; if (vect->type == EXPR_SIMPLE) return vect->value; else return 0; } /* * Return the segment number of a relocatable vector, or NO_SEG for * simple scalars. */ int32_t reloc_seg(expr * vect) { while (vect->type && (vect->type == EXPR_WRT || !vect->value)) vect++; if (vect->type == EXPR_SIMPLE) { do { vect++; } while (vect->type && (vect->type == EXPR_WRT || !vect->value)); } if (!vect->type) return NO_SEG; else return vect->type - EXPR_SEGBASE; } /* * Return the WRT segment number of a relocatable vector, or NO_SEG * if no WRT part is present. */ int32_t reloc_wrt(expr * vect) { while (vect->type && vect->type < EXPR_WRT) vect++; if (vect->type == EXPR_WRT) { return vect->value; } else return NO_SEG; } /* * Binary search. */ int bsi(char *string, const char **array, int size) { int i = -1, j = size; /* always, i < index < j */ while (j - i >= 2) { int k = (i + j) / 2; int l = strcmp(string, array[k]); if (l < 0) /* it's in the first half */ j = k; else if (l > 0) /* it's in the second half */ i = k; else /* we've got it :) */ return k; } return -1; /* we haven't got it :( */ } int bsii(char *string, const char **array, int size) { int i = -1, j = size; /* always, i < index < j */ while (j - i >= 2) { int k = (i + j) / 2; int l = nasm_stricmp(string, array[k]); if (l < 0) /* it's in the first half */ j = k; else if (l > 0) /* it's in the second half */ i = k; else /* we've got it :) */ return k; } return -1; /* we haven't got it :( */ } static char *file_name = NULL; static int32_t line_number = 0; char *src_set_fname(char *newname) { char *oldname = file_name; file_name = newname; return oldname; } int32_t src_set_linnum(int32_t newline) { int32_t oldline = line_number; line_number = newline; return oldline; } int32_t src_get_linnum(void) { return line_number; } int src_get(int32_t *xline, char **xname) { if (!file_name || !*xname || strcmp(*xname, file_name)) { nasm_free(*xname); *xname = file_name ? nasm_strdup(file_name) : NULL; *xline = line_number; return -2; } if (*xline != line_number) { int32_t tmp = line_number - *xline; *xline = line_number; return tmp; } return 0; } void nasm_quote(char **str) { int ln = strlen(*str); char q = (*str)[0]; char *p; if (ln > 1 && (*str)[ln - 1] == q && (q == '"' || q == '\'')) return; q = '"'; if (strchr(*str, q)) q = '\''; p = nasm_malloc(ln + 3); strcpy(p + 1, *str); nasm_free(*str); p[ln + 1] = p[0] = q; p[ln + 2] = 0; *str = p; } char *nasm_strcat(char *one, char *two) { char *rslt; int l1 = strlen(one); rslt = nasm_malloc(l1 + strlen(two) + 1); strcpy(rslt, one); strcpy(rslt + l1, two); return rslt; } void null_debug_init(struct ofmt *of, void *id, FILE * fp, efunc error) { (void)of; (void)id; (void)fp; (void)error; } void null_debug_linenum(const char *filename, int32_t linenumber, int32_t segto) { (void)filename; (void)linenumber; (void)segto; } void null_debug_deflabel(char *name, int32_t segment, int32_t offset, int is_global, char *special) { (void)name; (void)segment; (void)offset; (void)is_global; (void)special; } void null_debug_routine(const char *directive, const char *params) { (void)directive; (void)params; } void null_debug_typevalue(int32_t type) { (void)type; } void null_debug_output(int type, void *param) { (void)type; (void)param; } void null_debug_cleanup(void) { } struct dfmt null_debug_form = { "Null debug format", "null", null_debug_init, null_debug_linenum, null_debug_deflabel, null_debug_routine, null_debug_typevalue, null_debug_output, null_debug_cleanup }; struct dfmt *null_debug_arr[2] = { &null_debug_form, NULL };