/* Test file for mpfr_sqrt. Copyright 1999, 2001-2021 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see https://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpfr-test.h" #ifdef CHECK_EXTERNAL static int test_sqrt (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode) { int res; int ok = rnd_mode == MPFR_RNDN && mpfr_number_p (b); if (ok) { mpfr_print_raw (b); } res = mpfr_sqrt (a, b, rnd_mode); if (ok) { printf (" "); mpfr_print_raw (a); printf ("\n"); } return res; } #else #define test_sqrt mpfr_sqrt #endif static void check3 (const char *as, mpfr_rnd_t rnd_mode, const char *qs) { mpfr_t q; mpfr_init2 (q, 53); mpfr_set_str1 (q, as); test_sqrt (q, q, rnd_mode); if (mpfr_cmp_str1 (q, qs) ) { printf ("mpfr_sqrt failed for a=%s, rnd_mode=%s\n", as, mpfr_print_rnd_mode (rnd_mode)); printf ("expected sqrt is %s, got ",qs); mpfr_out_str (stdout, 10, 0, q, MPFR_RNDN); putchar ('\n'); exit (1); } mpfr_clear (q); } static void check4 (const char *as, mpfr_rnd_t rnd_mode, const char *qs) { mpfr_t q; mpfr_init2 (q, 53); mpfr_set_str1 (q, as); test_sqrt (q, q, rnd_mode); if (mpfr_cmp_str (q, qs, 16, MPFR_RNDN)) { printf ("mpfr_sqrt failed for a=%s, rnd_mode=%s\n", as, mpfr_print_rnd_mode (rnd_mode)); printf ("expected %s\ngot ", qs); mpfr_out_str (stdout, 16, 0, q, MPFR_RNDN); printf ("\n"); mpfr_clear (q); exit (1); } mpfr_clear (q); } static void check24 (const char *as, mpfr_rnd_t rnd_mode, const char *qs) { mpfr_t q; mpfr_init2 (q, 24); mpfr_set_str1 (q, as); test_sqrt (q, q, rnd_mode); if (mpfr_cmp_str1 (q, qs)) { printf ("mpfr_sqrt failed for a=%s, prec=24, rnd_mode=%s\n", as, mpfr_print_rnd_mode(rnd_mode)); printf ("expected sqrt is %s, got ",qs); mpfr_out_str (stdout, 10, 0, q, MPFR_RNDN); printf ("\n"); exit (1); } mpfr_clear (q); } static void check_diverse (const char *as, mpfr_prec_t p, const char *qs) { mpfr_t q; mpfr_init2 (q, p); mpfr_set_str1 (q, as); test_sqrt (q, q, MPFR_RNDN); if (mpfr_cmp_str1 (q, qs)) { printf ("mpfr_sqrt failed for a=%s, prec=%lu, rnd_mode=%s\n", as, (unsigned long) p, mpfr_print_rnd_mode (MPFR_RNDN)); printf ("expected sqrt is %s, got ", qs); mpfr_out_str (stdout, 10, 0, q, MPFR_RNDN); printf ("\n"); exit (1); } mpfr_clear (q); } /* the following examples come from the paper "Number-theoretic Test Generation for Directed Rounding" from Michael Parks, Table 3 */ static void check_float (void) { check24("70368760954880.0", MPFR_RNDN, "8.388609e6"); check24("281474943156224.0", MPFR_RNDN, "1.6777215e7"); check24("70368777732096.0", MPFR_RNDN, "8.388610e6"); check24("281474909601792.0", MPFR_RNDN, "1.6777214e7"); check24("100216216748032.0", MPFR_RNDN, "1.0010805e7"); check24("120137273311232.0", MPFR_RNDN, "1.0960715e7"); check24("229674600890368.0", MPFR_RNDN, "1.5155019e7"); check24("70368794509312.0", MPFR_RNDN, "8.388611e6"); check24("281474876047360.0", MPFR_RNDN, "1.6777213e7"); check24("91214552498176.0", MPFR_RNDN, "9.550631e6"); check24("70368760954880.0", MPFR_RNDZ, "8.388608e6"); check24("281474943156224.0", MPFR_RNDZ, "1.6777214e7"); check24("70368777732096.0", MPFR_RNDZ, "8.388609e6"); check24("281474909601792.0", MPFR_RNDZ, "1.6777213e7"); check24("100216216748032.0", MPFR_RNDZ, "1.0010805e7"); check24("120137273311232.0", MPFR_RNDZ, "1.0960715e7"); check24("229674600890368.0", MPFR_RNDZ, "1.5155019e7"); check24("70368794509312.0", MPFR_RNDZ, "8.38861e6"); check24("281474876047360.0", MPFR_RNDZ, "1.6777212e7"); check24("91214552498176.0", MPFR_RNDZ, "9.550631e6"); check24("70368760954880.0", MPFR_RNDU, "8.388609e6"); check24("281474943156224.0",MPFR_RNDU, "1.6777215e7"); check24("70368777732096.0", MPFR_RNDU, "8.388610e6"); check24("281474909601792.0", MPFR_RNDU, "1.6777214e7"); check24("100216216748032.0", MPFR_RNDU, "1.0010806e7"); check24("120137273311232.0", MPFR_RNDU, "1.0960716e7"); check24("229674600890368.0", MPFR_RNDU, "1.515502e7"); check24("70368794509312.0", MPFR_RNDU, "8.388611e6"); check24("281474876047360.0", MPFR_RNDU, "1.6777213e7"); check24("91214552498176.0", MPFR_RNDU, "9.550632e6"); check24("70368760954880.0", MPFR_RNDD, "8.388608e6"); check24("281474943156224.0", MPFR_RNDD, "1.6777214e7"); check24("70368777732096.0", MPFR_RNDD, "8.388609e6"); check24("281474909601792.0", MPFR_RNDD, "1.6777213e7"); check24("100216216748032.0", MPFR_RNDD, "1.0010805e7"); check24("120137273311232.0", MPFR_RNDD, "1.0960715e7"); check24("229674600890368.0", MPFR_RNDD, "1.5155019e7"); check24("70368794509312.0", MPFR_RNDD, "8.38861e6"); check24("281474876047360.0", MPFR_RNDD, "1.6777212e7"); check24("91214552498176.0", MPFR_RNDD, "9.550631e6"); /* check that rounding away is just rounding toward positive infinity */ check24("91214552498176.0", MPFR_RNDA, "9.550632e6"); } static void special (void) { mpfr_t x, y, z; int inexact; mpfr_prec_t p; mpfr_init (x); mpfr_init (y); mpfr_init (z); mpfr_set_prec (x, 64); mpfr_set_str_binary (x, "1010000010100011011001010101010010001100001101011101110001011001E-1"); mpfr_set_prec (y, 32); test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 2405743844UL)) { printf ("Error for n^2+n+1/2 with n=2405743843\n"); exit (1); } mpfr_set_prec (x, 65); mpfr_set_str_binary (x, "10100000101000110110010101010100100011000011010111011100010110001E-2"); mpfr_set_prec (y, 32); test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 2405743844UL)) { printf ("Error for n^2+n+1/4 with n=2405743843\n"); mpfr_dump (y); exit (1); } mpfr_set_prec (x, 66); mpfr_set_str_binary (x, "101000001010001101100101010101001000110000110101110111000101100011E-3"); mpfr_set_prec (y, 32); test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 2405743844UL)) { printf ("Error for n^2+n+1/4+1/8 with n=2405743843\n"); mpfr_dump (y); exit (1); } mpfr_set_prec (x, 66); mpfr_set_str_binary (x, "101000001010001101100101010101001000110000110101110111000101100001E-3"); mpfr_set_prec (y, 32); test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 2405743843UL)) { printf ("Error for n^2+n+1/8 with n=2405743843\n"); mpfr_dump (y); exit (1); } mpfr_set_prec (x, 27); mpfr_set_str_binary (x, "0.110100111010101000010001011"); if ((inexact = test_sqrt (x, x, MPFR_RNDZ)) >= 0) { printf ("Wrong inexact flag: expected -1, got %d\n", inexact); exit (1); } mpfr_set_prec (x, 2); for (p=2; p<1000; p++) { mpfr_set_prec (z, p); mpfr_set_ui (z, 1, MPFR_RNDN); mpfr_nexttoinf (z); test_sqrt (x, z, MPFR_RNDU); if (mpfr_cmp_ui_2exp(x, 3, -1)) { printf ("Error: sqrt(1+ulp(1), up) should give 1.5 (prec=%u)\n", (unsigned int) p); printf ("got "); mpfr_dump (x); exit (1); } } /* check inexact flag */ mpfr_set_prec (x, 5); mpfr_set_str_binary (x, "1.1001E-2"); if ((inexact = test_sqrt (x, x, MPFR_RNDN))) { printf ("Wrong inexact flag: expected 0, got %d\n", inexact); exit (1); } mpfr_set_prec (x, 2); mpfr_set_prec (z, 2); /* checks the sign is correctly set */ mpfr_set_si (x, 1, MPFR_RNDN); mpfr_set_si (z, -1, MPFR_RNDN); test_sqrt (z, x, MPFR_RNDN); if (mpfr_cmp_ui (z, 0) < 0) { printf ("Error: square root of 1 gives "); mpfr_dump (z); exit (1); } mpfr_set_prec (x, 192); mpfr_set_prec (z, 160); mpfr_set_str_binary (z, "0.1011010100000100100100100110011001011100100100000011000111011001011101101101110000110100001000100001100001011000E1"); mpfr_set_prec (x, 160); test_sqrt(x, z, MPFR_RNDN); test_sqrt(z, x, MPFR_RNDN); mpfr_set_prec (x, 53); mpfr_set_str (x, "8093416094703476.0", 10, MPFR_RNDN); mpfr_div_2ui (x, x, 1075, MPFR_RNDN); test_sqrt (x, x, MPFR_RNDN); mpfr_set_str (z, "1e55596835b5ef@-141", 16, MPFR_RNDN); if (mpfr_cmp (x, z)) { printf ("Error: square root of 8093416094703476*2^(-1075)\n"); printf ("expected "); mpfr_dump (z); printf ("got "); mpfr_dump (x); exit (1); } mpfr_set_prec (x, 33); mpfr_set_str_binary (x, "0.111011011011110001100111111001000e-10"); mpfr_set_prec (z, 157); inexact = test_sqrt (z, x, MPFR_RNDN); mpfr_set_prec (x, 157); mpfr_set_str_binary (x, "0.11110110101100101111001011100011100011100001101010111011010000100111011000111110100001001011110011111100101110010110010110011001011011010110010000011001101E-5"); if (mpfr_cmp (x, z)) { printf ("Error: square root (1)\n"); exit (1); } if (inexact <= 0) { printf ("Error: wrong inexact flag (1)\n"); exit (1); } /* case prec(result) << prec(input) */ mpfr_set_prec (z, 2); for (p = mpfr_get_prec (z); p < 1000; p++) { mpfr_set_prec (x, p); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_nextabove (x); /* 1.0 < x <= 1.5 thus 1 < sqrt(x) <= 1.23 */ inexact = test_sqrt (z, x, MPFR_RNDN); MPFR_ASSERTN(inexact < 0 && mpfr_cmp_ui (z, 1) == 0); inexact = test_sqrt (z, x, MPFR_RNDZ); MPFR_ASSERTN(inexact < 0 && mpfr_cmp_ui (z, 1) == 0); inexact = test_sqrt (z, x, MPFR_RNDU); MPFR_ASSERTN(inexact > 0 && mpfr_cmp_ui_2exp (z, 3, -1) == 0); inexact = test_sqrt (z, x, MPFR_RNDD); MPFR_ASSERTN(inexact < 0 && mpfr_cmp_ui (z, 1) == 0); inexact = test_sqrt (z, x, MPFR_RNDA); MPFR_ASSERTN(inexact > 0 && mpfr_cmp_ui_2exp (z, 3, -1) == 0); } /* corner case rw = 0 in rounding to nearest */ mpfr_set_prec (z, GMP_NUMB_BITS - 1); mpfr_set_prec (y, GMP_NUMB_BITS - 1); mpfr_set_ui (y, 1, MPFR_RNDN); mpfr_mul_2ui (y, y, GMP_NUMB_BITS - 1, MPFR_RNDN); mpfr_nextabove (y); for (p = 2 * GMP_NUMB_BITS - 1; p <= 1000; p++) { mpfr_set_prec (x, p); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_set_exp (x, GMP_NUMB_BITS); mpfr_add_ui (x, x, 1, MPFR_RNDN); /* now x = 2^(GMP_NUMB_BITS - 1) + 1 (GMP_NUMB_BITS bits) */ inexact = mpfr_sqr (x, x, MPFR_RNDN); MPFR_ASSERTN (inexact == 0); /* exact */ inexact = test_sqrt (z, x, MPFR_RNDN); /* even rule: z should be 2^(GMP_NUMB_BITS - 1) */ MPFR_ASSERTN (inexact < 0); inexact = mpfr_cmp_ui_2exp (z, 1, GMP_NUMB_BITS - 1); MPFR_ASSERTN (inexact == 0); mpfr_nextbelow (x); /* now x is just below [2^(GMP_NUMB_BITS - 1) + 1]^2 */ inexact = test_sqrt (z, x, MPFR_RNDN); MPFR_ASSERTN(inexact < 0 && mpfr_cmp_ui_2exp (z, 1, GMP_NUMB_BITS - 1) == 0); mpfr_nextabove (x); mpfr_nextabove (x); /* now x is just above [2^(GMP_NUMB_BITS - 1) + 1]^2 */ inexact = test_sqrt (z, x, MPFR_RNDN); if (mpfr_cmp (z, y)) { printf ("Error for sqrt(x) in rounding to nearest\n"); printf ("x="); mpfr_dump (x); printf ("Expected "); mpfr_dump (y); printf ("Got "); mpfr_dump (z); exit (1); } if (inexact <= 0) { printf ("Wrong inexact flag in corner case for p = %lu\n", (unsigned long) p); exit (1); } } mpfr_set_prec (x, 1000); mpfr_set_ui (x, 9, MPFR_RNDN); mpfr_set_prec (y, 10); inexact = test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 3) || inexact != 0) { printf ("Error in sqrt(9:1000) for prec=10\n"); exit (1); } mpfr_set_prec (y, GMP_NUMB_BITS); mpfr_nextabove (x); inexact = test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 3) || inexact >= 0) { printf ("Error in sqrt(9:1000) for prec=%d\n", (int) GMP_NUMB_BITS); exit (1); } mpfr_set_prec (x, 2 * GMP_NUMB_BITS); mpfr_set_prec (y, GMP_NUMB_BITS); mpfr_set_ui (y, 1, MPFR_RNDN); mpfr_nextabove (y); mpfr_set (x, y, MPFR_RNDN); inexact = test_sqrt (y, x, MPFR_RNDN); if (mpfr_cmp_ui (y, 1) || inexact >= 0) { printf ("Error in sqrt(1) for prec=%d\n", (int) GMP_NUMB_BITS); mpfr_dump (y); exit (1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); } static void check_inexact (mpfr_prec_t p) { mpfr_t x, y, z; mpfr_rnd_t rnd; int inexact, sign; mpfr_init2 (x, p); mpfr_init2 (y, p); mpfr_init2 (z, 2*p); mpfr_urandomb (x, RANDS); rnd = RND_RAND_NO_RNDF (); inexact = test_sqrt (y, x, rnd); if (mpfr_sqr (z, y, rnd)) /* exact since prec(z) = 2*prec(y) */ { printf ("Error: multiplication should be exact\n"); exit (1); } mpfr_sub (z, z, x, rnd); /* exact also */ sign = mpfr_cmp_ui (z, 0); if (((inexact == 0) && (sign)) || ((inexact > 0) && (sign <= 0)) || ((inexact < 0) && (sign >= 0))) { printf ("Error with rnd=%s: wrong ternary value, expected %d, got %d\n", mpfr_print_rnd_mode (rnd), sign, inexact); printf ("x="); mpfr_dump (x); printf ("y="); mpfr_dump (y); exit (1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); } static void check_singular (void) { mpfr_t x, got; mpfr_init2 (x, 100L); mpfr_init2 (got, 100L); /* sqrt(NaN) == NaN */ MPFR_SET_NAN (x); MPFR_ASSERTN (test_sqrt (got, x, MPFR_RNDZ) == 0); /* exact */ MPFR_ASSERTN (mpfr_nan_p (got)); /* sqrt(-1) == NaN */ mpfr_set_si (x, -1L, MPFR_RNDZ); MPFR_ASSERTN (test_sqrt (got, x, MPFR_RNDZ) == 0); /* exact */ MPFR_ASSERTN (mpfr_nan_p (got)); /* sqrt(+inf) == +inf */ MPFR_SET_INF (x); MPFR_SET_POS (x); MPFR_ASSERTN (test_sqrt (got, x, MPFR_RNDZ) == 0); /* exact */ MPFR_ASSERTN (mpfr_inf_p (got)); /* sqrt(-inf) == NaN */ MPFR_SET_INF (x); MPFR_SET_NEG (x); MPFR_ASSERTN (test_sqrt (got, x, MPFR_RNDZ) == 0); /* exact */ MPFR_ASSERTN (mpfr_nan_p (got)); /* sqrt(+0) == +0 */ mpfr_set_si (x, 0L, MPFR_RNDZ); MPFR_ASSERTN (test_sqrt (got, x, MPFR_RNDZ) == 0); /* exact */ MPFR_ASSERTN (mpfr_number_p (got)); MPFR_ASSERTN (mpfr_cmp_ui (got, 0L) == 0); MPFR_ASSERTN (MPFR_IS_POS (got)); /* sqrt(-0) == -0 */ mpfr_set_si (x, 0L, MPFR_RNDZ); MPFR_SET_NEG (x); MPFR_ASSERTN (test_sqrt (got, x, MPFR_RNDZ) == 0); /* exact */ MPFR_ASSERTN (mpfr_number_p (got)); MPFR_ASSERTN (mpfr_cmp_ui (got, 0L) == 0); MPFR_ASSERTN (MPFR_IS_NEG (got)); mpfr_clear (x); mpfr_clear (got); } /* check that -1 <= x/sqrt(x^2+s*y^2) <= 1 for rounding to nearest or up with s = 0 and s = 1 */ static void test_property1 (mpfr_prec_t p, mpfr_rnd_t r, int s) { mpfr_t x, y, z, t; mpfr_init2 (x, p); mpfr_init2 (y, p); mpfr_init2 (z, p); mpfr_init2 (t, p); mpfr_urandomb (x, RANDS); mpfr_mul (z, x, x, r); if (s) { mpfr_urandomb (y, RANDS); mpfr_mul (t, y, y, r); mpfr_add (z, z, t, r); } mpfr_sqrt (z, z, r); mpfr_div (z, x, z, r); /* Note: if both x and y are 0, z is NAN, but the test below will be false. So, everything is fine. */ if (mpfr_cmp_si (z, -1) < 0 || mpfr_cmp_ui (z, 1) > 0) { printf ("Error, -1 <= x/sqrt(x^2+y^2) <= 1 does not hold for r=%s\n", mpfr_print_rnd_mode (r)); printf ("x="); mpfr_dump (x); printf ("y="); mpfr_dump (y); printf ("got "); mpfr_dump (z); exit (1); } mpfr_clear (x); mpfr_clear (y); mpfr_clear (z); mpfr_clear (t); } /* check sqrt(x^2) = x */ static void test_property2 (mpfr_prec_t p, mpfr_rnd_t r) { mpfr_t x, y; mpfr_init2 (x, p); mpfr_init2 (y, p); mpfr_urandomb (x, RANDS); mpfr_mul (y, x, x, r); mpfr_sqrt (y, y, r); if (mpfr_cmp (y, x)) { printf ("Error, sqrt(x^2) = x does not hold for r=%s\n", mpfr_print_rnd_mode (r)); printf ("x="); mpfr_dump (x); printf ("got "); mpfr_dump (y); exit (1); } mpfr_clear (x); mpfr_clear (y); } /* Bug reported by Fredrik Johansson, occurring when: - the precision of the result is a multiple of the number of bits per word (GMP_NUMB_BITS), - the rounding mode is to nearest (MPFR_RNDN), - internally, the result has to be rounded up to a power of 2. */ static void bug20160120 (void) { mpfr_t x, y; mpfr_init2 (x, 4 * GMP_NUMB_BITS); mpfr_init2 (y, GMP_NUMB_BITS); mpfr_set_ui (x, 1, MPFR_RNDN); mpfr_nextbelow (x); mpfr_sqrt (y, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_check (y)); MPFR_ASSERTN(mpfr_cmp_ui (y, 1) == 0); mpfr_set_prec (y, 2 * GMP_NUMB_BITS); mpfr_sqrt (y, x, MPFR_RNDN); MPFR_ASSERTN(mpfr_check (y)); MPFR_ASSERTN(mpfr_cmp_ui (y, 1) == 0); mpfr_clear(x); mpfr_clear(y); } /* Bug in mpfr_sqrt2 when prec(u) = 2*GMP_NUMB_BITS and the exponent of u is odd: the last bit of u is lost. */ static void bug20160908 (void) { mpfr_t r, u; int n = GMP_NUMB_BITS, ret; mpfr_init2 (r, 2*n - 1); mpfr_init2 (u, 2 * n); mpfr_set_ui_2exp (u, 1, 2*n-2, MPFR_RNDN); /* u=2^(2n-2) with exp(u)=2n-1 */ mpfr_nextabove (u); /* now u = 2^(2n-2) + 1/2 */ ret = mpfr_sqrt (r, u, MPFR_RNDZ); MPFR_ASSERTN(ret == -1 && mpfr_cmp_ui_2exp (r, 1, n-1) == 0); mpfr_clear (r); mpfr_clear (u); } static void testall_rndf (mpfr_prec_t pmax) { mpfr_t a, b, d; mpfr_prec_t pa, pb; for (pa = MPFR_PREC_MIN; pa <= pmax; pa++) { mpfr_init2 (a, pa); mpfr_init2 (d, pa); for (pb = MPFR_PREC_MIN; pb <= pmax; pb++) { mpfr_init2 (b, pb); mpfr_set_ui (b, 1, MPFR_RNDN); while (mpfr_cmp_ui (b, 4) < 0) { mpfr_sqrt (a, b, MPFR_RNDF); mpfr_sqrt (d, b, MPFR_RNDD); if (!mpfr_equal_p (a, d)) { mpfr_sqrt (d, b, MPFR_RNDU); if (!mpfr_equal_p (a, d)) { printf ("Error: mpfr_sqrt(a,b,RNDF) does not " "match RNDD/RNDU\n"); printf ("b="); mpfr_dump (b); printf ("a="); mpfr_dump (a); exit (1); } } mpfr_nextabove (b); } mpfr_clear (b); } mpfr_clear (a); mpfr_clear (d); } } /* test the case prec = GMP_NUMB_BITS */ static void test_sqrt1n (void) { mpfr_t r, u; int inex; MPFR_ASSERTD(GMP_NUMB_BITS >= 8); /* so that 15^2 is exactly representable */ mpfr_init2 (r, GMP_NUMB_BITS); mpfr_init2 (u, GMP_NUMB_BITS); inex = mpfr_set_ui_2exp (u, 9 * 9, 2 * GMP_NUMB_BITS - 10, MPFR_RNDN); MPFR_ASSERTN(inex == 0); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex == 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 9, GMP_NUMB_BITS - 5) == 0); inex = mpfr_set_ui_2exp (u, 15 * 15, 2 * GMP_NUMB_BITS - 10, MPFR_RNDN); MPFR_ASSERTN(inex == 0); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex == 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 15, GMP_NUMB_BITS - 5) == 0); inex = mpfr_set_ui_2exp (u, 1, GMP_NUMB_BITS - 2, MPFR_RNDN); MPFR_ASSERTN(inex == 0); inex = mpfr_add_ui (u, u, 1, MPFR_RNDN); MPFR_ASSERTN(inex == 0); inex = mpfr_mul_2ui (u, u, GMP_NUMB_BITS, MPFR_RNDN); MPFR_ASSERTN(inex == 0); /* u = 2^(2*GMP_NUMB_BITS-2) + 2^GMP_NUMB_BITS, thus u = r^2 + 2^GMP_NUMB_BITS with r = 2^(GMP_NUMB_BITS-1). Should round to r+1 to nearest. */ inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex > 0); inex = mpfr_sub_ui (r, r, 1, MPFR_RNDN); MPFR_ASSERTN(inex == 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, GMP_NUMB_BITS - 1) == 0); mpfr_clear (r); mpfr_clear (u); } static void check_overflow (void) { mpfr_t r, u; mpfr_prec_t p; mpfr_exp_t emax; int inex; emax = mpfr_get_emax (); for (p = MPFR_PREC_MIN; p <= 1024; p++) { mpfr_init2 (r, p); mpfr_init2 (u, p); set_emax (-1); mpfr_set_ui_2exp (u, 1, mpfr_get_emax () - 1, MPFR_RNDN); mpfr_nextbelow (u); mpfr_mul_2ui (u, u, 1, MPFR_RNDN); /* now u = (1 - 2^(-p))*2^emax is the largest number < +Inf, it square root is near 0.707 and has exponent 0 > emax */ /* for RNDN, the result should be +Inf */ inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_inf_p (r) && mpfr_sgn (r) > 0); /* for RNDA, the result should be +Inf */ inex = mpfr_sqrt (r, u, MPFR_RNDA); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_inf_p (r) && mpfr_sgn (r) > 0); /* for RNDZ, the result should be u */ inex = mpfr_sqrt (r, u, MPFR_RNDZ); MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_equal_p (r, u)); set_emax (0); mpfr_set_ui_2exp (u, 1, mpfr_get_emax () - 1, MPFR_RNDN); mpfr_nextbelow (u); mpfr_mul_2ui (u, u, 1, MPFR_RNDN); /* u = 1-2^(-p), its square root is > u, and should thus give +Inf when rounding away */ inex = mpfr_sqrt (r, u, MPFR_RNDA); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_inf_p (r) && mpfr_sgn (r) > 0); mpfr_clear (r); mpfr_clear (u); } set_emax (emax); } static void check_underflow (void) { mpfr_t r, u; mpfr_prec_t p; mpfr_exp_t emin; int inex; emin = mpfr_get_emin (); for (p = MPFR_PREC_MIN; p <= 1024; p++) { mpfr_init2 (r, p); mpfr_init2 (u, p); set_emin (2); mpfr_set_ui_2exp (u, 1, mpfr_get_emin () - 1, MPFR_RNDN); /* u = 2 */ /* for RNDN, since sqrt(2) is closer from 2 than 0, the result is 2 */ mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_equal_p (r, u)); MPFR_ASSERTN(mpfr_underflow_p ()); /* for RNDA, the result should be u, and there is underflow for p > 1, since for p=1 we have 1 < sqrt(2) < 2, but for p >= 2, sqrt(2) should be rounded to a number <= 1.5, which is representable */ mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDA); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_equal_p (r, u)); MPFR_ASSERTN((p == 1 && !mpfr_underflow_p ()) || (p != 1 && mpfr_underflow_p ())); /* for RNDZ, the result should be +0 */ mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDZ); MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_zero_p (r) && mpfr_signbit (r) == 0); MPFR_ASSERTN(mpfr_underflow_p ()); /* generate an input u such that sqrt(u) < 0.5*2^emin but there is no underflow since sqrt(u) >= pred(0.5*2^emin), thus u >= 2^(2emin-2) */ mpfr_set_ui_2exp (u, 1, 2 * mpfr_get_emin () - 2, MPFR_RNDN); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex == 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDA); MPFR_ASSERTN(inex == 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDZ); MPFR_ASSERTN(inex == 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); /* next number */ mpfr_set_ui_2exp (u, 1, 2 * mpfr_get_emin () - 2, MPFR_RNDN); mpfr_nextabove (u); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDA); MPFR_ASSERTN(inex > 0); mpfr_nextbelow (r); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDZ); MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); /* previous number */ mpfr_set_ui_2exp (u, 1, 2 * mpfr_get_emin () - 2, MPFR_RNDN); mpfr_nextbelow (u); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); /* since sqrt(u) is just below the middle between 0.5*2^emin and the previous number (with unbounded exponent range), there is underflow */ MPFR_ASSERTN(mpfr_underflow_p ()); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDA); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(!mpfr_underflow_p ()); mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDZ); MPFR_ASSERTN(inex < 0); mpfr_nextabove (r); MPFR_ASSERTN(mpfr_cmp_ui_2exp (r, 1, mpfr_get_emin () - 1) == 0); MPFR_ASSERTN(mpfr_underflow_p ()); set_emin (3); mpfr_set_ui_2exp (u, 1, mpfr_get_emin () - 1, MPFR_RNDN); /* u = 4 */ /* sqrt(u) = 2 = 0.5^2^(emin-1) should be rounded to +0 */ mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_zero_p (r) && mpfr_signbit (r) == 0); MPFR_ASSERTN(mpfr_underflow_p ()); /* next number */ mpfr_set_ui_2exp (u, 1, mpfr_get_emin () - 1, MPFR_RNDN); /* u = 4 */ mpfr_nextabove (u); /* sqrt(u) should be rounded to 4 */ mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_cmp_ui (r, 4) == 0); MPFR_ASSERTN(mpfr_underflow_p ()); set_emin (4); mpfr_set_ui_2exp (u, 1, mpfr_get_emin () - 1, MPFR_RNDN); /* u = 8 */ /* sqrt(u) should be rounded to +0 */ mpfr_clear_flags (); inex = mpfr_sqrt (r, u, MPFR_RNDN); MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_zero_p (r) && mpfr_signbit (r) == 0); MPFR_ASSERTN(mpfr_underflow_p ()); mpfr_clear (r); mpfr_clear (u); } set_emin (emin); } static void coverage (void) { mpfr_t r, t, u, v, w; mpfr_prec_t p; int inex; /* exercise even rule */ for (p = MPFR_PREC_MIN; p <= 1024; p++) { mpfr_init2 (r, p); mpfr_init2 (t, p + 1); mpfr_init2 (u, 2 * p + 2); mpfr_init2 (v, p); mpfr_init2 (w, p); do mpfr_urandomb (v, RANDS); while (mpfr_zero_p (v)); mpfr_set (w, v, MPFR_RNDN); mpfr_nextabove (w); /* w = nextabove(v) */ mpfr_set (t, v, MPFR_RNDN); mpfr_nextabove (t); mpfr_sqr (u, t, MPFR_RNDN); inex = mpfr_sqrt (r, u, MPFR_RNDN); if (mpfr_min_prec (v) < p) /* v is even */ { MPFR_ASSERTN(inex < 0); MPFR_ASSERTN(mpfr_equal_p (r, v)); } else /* v is odd */ { MPFR_ASSERTN(inex > 0); MPFR_ASSERTN(mpfr_equal_p (r, w)); } mpfr_clear (r); mpfr_clear (t); mpfr_clear (u); mpfr_clear (v); mpfr_clear (w); } } #define TEST_FUNCTION test_sqrt #define TEST_RANDOM_POS 8 #include "tgeneric.c" int main (void) { mpfr_prec_t p; int k; tests_start_mpfr (); coverage (); check_underflow (); check_overflow (); testall_rndf (16); for (p = MPFR_PREC_MIN; p <= 128; p++) { test_property1 (p, MPFR_RNDN, 0); test_property1 (p, MPFR_RNDU, 0); test_property1 (p, MPFR_RNDA, 0); test_property1 (p, MPFR_RNDN, 1); test_property1 (p, MPFR_RNDU, 1); test_property1 (p, MPFR_RNDA, 1); test_property2 (p, MPFR_RNDN); } check_diverse ("635030154261163106768013773815762607450069292760790610550915652722277604820131530404842415587328", 160, "796887792767063979679855997149887366668464780637"); special (); check_singular (); for (p=2; p<200; p++) for (k=0; k<200; k++) check_inexact (p); check_float(); check3 ("-0.0", MPFR_RNDN, "0.0"); check4 ("6.37983013646045901440e+32", MPFR_RNDN, "5.9bc5036d09e0c@13"); check4 ("1.0", MPFR_RNDN, "1"); check4 ("1.0", MPFR_RNDZ, "1"); check4 ("3.725290298461914062500000e-9", MPFR_RNDN, "4@-4"); check4 ("3.725290298461914062500000e-9", MPFR_RNDZ, "4@-4"); check4 ("1190456976439861.0", MPFR_RNDZ, "2.0e7957873529a@6"); check4 ("1219027943874417664.0", MPFR_RNDZ, "4.1cf2af0e6a534@7"); /* the following examples are bugs in Cygnus compiler/system, found by Fabrice Rouillier while porting mpfr to Windows */ check4 ("9.89438396044940256501e-134", MPFR_RNDU, "8.7af7bf0ebbee@-56"); check4 ("7.86528588050363751914e+31", MPFR_RNDZ, "1.f81fc40f32062@13"); check4 ("0.99999999999999988897", MPFR_RNDN, "f.ffffffffffff8@-1"); check4 ("1.00000000000000022204", MPFR_RNDN, "1"); /* the following examples come from the paper "Number-theoretic Test Generation for Directed Rounding" from Michael Parks, Table 4 */ check4 ("78652858805036375191418371571712.0", MPFR_RNDN, "1.f81fc40f32063@13"); check4 ("38510074998589467860312736661504.0", MPFR_RNDN, "1.60c012a92fc65@13"); check4 ("35318779685413012908190921129984.0", MPFR_RNDN, "1.51d17526c7161@13"); check4 ("26729022595358440976973142425600.0", MPFR_RNDN, "1.25e19302f7e51@13"); check4 ("22696567866564242819241453027328.0", MPFR_RNDN, "1.0ecea7dd2ec3d@13"); check4 ("22696888073761729132924856434688.0", MPFR_RNDN, "1.0ecf250e8e921@13"); check4 ("36055652513981905145251657416704.0", MPFR_RNDN, "1.5552f3eedcf33@13"); check4 ("30189856268896404997497182748672.0", MPFR_RNDN, "1.3853ee10c9c99@13"); check4 ("36075288240584711210898775080960.0", MPFR_RNDN, "1.556abe212b56f@13"); check4 ("72154663483843080704304789585920.0", MPFR_RNDN, "1.e2d9a51977e6e@13"); check4 ("78652858805036375191418371571712.0", MPFR_RNDZ, "1.f81fc40f32062@13"); check4 ("38510074998589467860312736661504.0", MPFR_RNDZ, "1.60c012a92fc64@13"); check4 ("35318779685413012908190921129984.0", MPFR_RNDZ, "1.51d17526c716@13"); check4 ("26729022595358440976973142425600.0", MPFR_RNDZ, "1.25e19302f7e5@13"); check4 ("22696567866564242819241453027328.0", MPFR_RNDZ, "1.0ecea7dd2ec3c@13"); check4 ("22696888073761729132924856434688.0", MPFR_RNDZ, "1.0ecf250e8e92@13"); check4 ("36055652513981905145251657416704.0", MPFR_RNDZ, "1.5552f3eedcf32@13"); check4 ("30189856268896404997497182748672.0", MPFR_RNDZ, "1.3853ee10c9c98@13"); check4 ("36075288240584711210898775080960.0", MPFR_RNDZ, "1.556abe212b56e@13"); check4 ("72154663483843080704304789585920.0", MPFR_RNDZ, "1.e2d9a51977e6d@13"); check4 ("78652858805036375191418371571712.0", MPFR_RNDU, "1.f81fc40f32063@13"); check4 ("38510074998589467860312736661504.0", MPFR_RNDU, "1.60c012a92fc65@13"); check4 ("35318779685413012908190921129984.0", MPFR_RNDU, "1.51d17526c7161@13"); check4 ("26729022595358440976973142425600.0", MPFR_RNDU, "1.25e19302f7e51@13"); check4 ("22696567866564242819241453027328.0", MPFR_RNDU, "1.0ecea7dd2ec3d@13"); check4 ("22696888073761729132924856434688.0", MPFR_RNDU, "1.0ecf250e8e921@13"); check4 ("36055652513981905145251657416704.0", MPFR_RNDU, "1.5552f3eedcf33@13"); check4 ("30189856268896404997497182748672.0", MPFR_RNDU, "1.3853ee10c9c99@13"); check4 ("36075288240584711210898775080960.0", MPFR_RNDU, "1.556abe212b56f@13"); check4 ("72154663483843080704304789585920.0", MPFR_RNDU, "1.e2d9a51977e6e@13"); check4 ("78652858805036375191418371571712.0", MPFR_RNDD, "1.f81fc40f32062@13"); check4 ("38510074998589467860312736661504.0", MPFR_RNDD, "1.60c012a92fc64@13"); check4 ("35318779685413012908190921129984.0", MPFR_RNDD, "1.51d17526c716@13"); check4 ("26729022595358440976973142425600.0", MPFR_RNDD, "1.25e19302f7e5@13"); check4 ("22696567866564242819241453027328.0", MPFR_RNDD, "1.0ecea7dd2ec3c@13"); check4 ("22696888073761729132924856434688.0", MPFR_RNDD, "1.0ecf250e8e92@13"); check4 ("36055652513981905145251657416704.0", MPFR_RNDD, "1.5552f3eedcf32@13"); check4 ("30189856268896404997497182748672.0", MPFR_RNDD, "1.3853ee10c9c98@13"); check4 ("36075288240584711210898775080960.0", MPFR_RNDD, "1.556abe212b56e@13"); check4 ("72154663483843080704304789585920.0", MPFR_RNDD, "1.e2d9a51977e6d@13"); /* check that rounding away is just rounding toward positive infinity */ check4 ("72154663483843080704304789585920.0", MPFR_RNDA, "1.e2d9a51977e6e@13"); test_generic (MPFR_PREC_MIN, 300, 15); data_check ("data/sqrt", mpfr_sqrt, "mpfr_sqrt"); bad_cases (mpfr_sqrt, mpfr_sqr, "mpfr_sqrt", 0, -256, 255, 4, 128, 80, 50); bug20160120 (); bug20160908 (); test_sqrt1n (); tests_end_mpfr (); return 0; }